- How to improve AlexNet architecture?
- +++Deep?
- +++Convolutional?
- +++Fully connected?
- All?
- ⇒A lot of empirical studies
 ⇒Tuning various design parameters
 ⇒what really works?
 ⇒Winners: GoogLeNet, VGG, ResNet

- How to improve AlexNet architecture?
- +++Deep?
- +++Convolutional?
- +++Fully connected?
- All?
- ⇒A lot of empirical studies
 ⇒Tuning various design parameters
 ⇒what really works?
- \Rightarrow Winners: **GoogLeNet**, VGG, ResNet

GoogLeNet (2014)

Winner of ILSVRC -2014. Very deep network with 22 layers:

- Network-in-network-in-network
- Removed fully connected layers \rightarrow small # of parameters (5M weights)

Convolution Pooling Softmax Other

GoogLeNet (2014)

- How to improve AlexNet architecture?
- +++Deep?
- +++Convolutional?
- +++Fully connected?
- All?
- ⇒A lot of empirical studies
 ⇒Tuning various design parameters
 ⇒what really works?
 ⇒Winners: GoogLeNet, VGG, ResNet

VGG Net: Archi post-2012 revolution

VGG, 16/19 layers, 2014

K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015

VGG Net

Basic Idea: Investigate the **effect of depth** in large scale image recognition

• Fix other parameters of architecture, and steadily increase depth

Fixed configuration:

- Convolutional Layers: from 8 to 16
- Fully Connected Layers: 3
- Stride: 1
- ReLu: Follow all hidden layers
- Max-Pooling: 2x2 window
- Padding: s/t spatial resolution is preserved
- #Convolutional filters: Starting from 64, double after each max-pooling layer until 512
- Filter sizes: 3x3 and 1x1

ConvNet Configuration					
А	A-LRN	В	C	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
input (224×224 RGB image)					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
maxpool					
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
maxpool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
		max	pool		
FC-4096					
FC-4096					
FC-1000					
soft-max					

3x3 conv, 64
3x3 conv, 64, pool/2
3x3 conv, 128
V
3x3 conv, 128, pool/2
3x3 conv 256
₩
3x3 conv, 256
242 0004 250
3x3 conv, 256
3x3 conv, 256, pool/2
*
3x3 conv, 512
3x3 conv, 512
*
3x3 conv, 512
3x3 conv 512 pool/2
V
3x3 conv, 512
242 conv 512
5x5 conv, 512
3x3 conv, 512
¥
3x3 conv, 512, pool/2
fc, 4096
fc, 4096
fc 1000

TABLE CREDIT: VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION, ICLR2015

VGG Net

Results:

- First place in localization (25.3% error), second in classification (7.3% error) in ILSVRC 2014 using ensemble of 7 networks
- Outperforms Szegedy et.al (GoogLeNet) in terms of single network classification accuracy (7.1% vs 7.9%)

Observations with VGG testing:

- Deepnets with small filters outperform shallow networks with large filters
 - Shallow version of B: 2 layers of 3x3 replaced with single 5x5 performs worse
- Classification error decreases with increases ConvNet depth
- Important to capture more spatial context (config D vs C)
- Error rate saturated at 19 layers
- Scale jittering at training helps capturing multiscale statistics and leads to better performance

- How to improve AlexNet architecture?
- +++Deep?
- +++Convolutional?
- +++Fully connected?
- All?
- ⇒A lot of empirical studies
 ⇒Tuning various design parameters
 ⇒what really works?
 ⇒Winners: GoogLeNet, VGG, ResNet

Deep ConvNets for image classification

• **ResNet** 152 layers, 60M parameters

 Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun Deep Residual Learning for Image Recognition.
 In CVPR, 2016.

Deeper VGG:

Deeper networks maintain the tendency of results

- Features in same level will be almost same
- An amount of changes is fixed
- Adding layers make smaller differences
- Optimal mappings closer to an identity

Residual Network

Plain block Difficult to make identity mapping because of multiple nonlinear layers

Residual Network Residual block If identity were optimal, easy to set weights as 0 If optimal mapping is closer to identity, easier to

-> Appropriate for treating perturbation as keeping a base information

find small fluctuations

Residual Network

 Difference between an original image and a changed image

perturbation

Residual Network

Deeper ResNets have lower training error

Conclusion

- ResNet: currently the best ConvNet archi for large scale image classification
- Not yet consensus about the design of the Net, Neural Architecture Search
- Fully Convolutional Net (FCN) very interesting option