Transfer learning and Domain adaptation

Transfer from ImageNet (source)

Transfer as generic features

Brut Deep features (learned from ImageNet)

(== a learned embedding from Image to vector representation)

Retrieval

Transfer learning (from source to target)

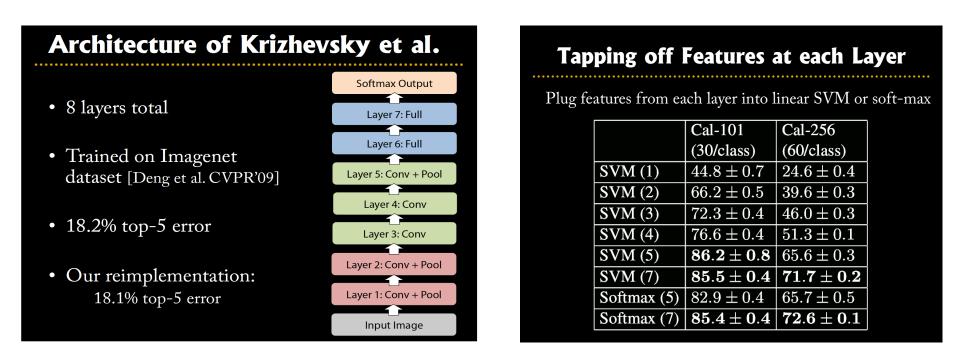
- Frozen features + SVM => solution to small datasets
- Frozen features + Deep
- Fine tuning not easy in that case (small datasets)

Transfer from source(=ImageNet task) to target task

Source: ImageNet (dataset + 100 classes) => AlexNet trained

Target: new dataset Cal-101 and new classification task with 101 classes =>Chopped

AlexNet (layer i) + SVM trained on



=> Results better than SoA CV methods on Cal-101!

Transfer: fine-tuning of a deep model on target task

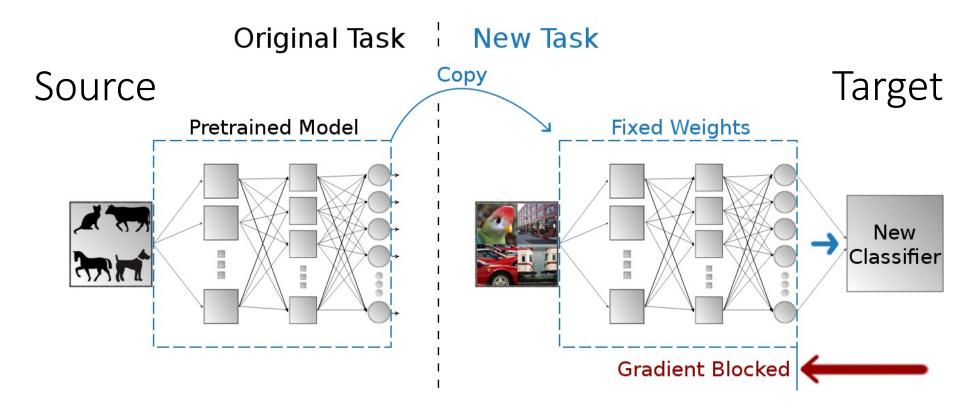
Train a deep (AlexNet) on source (ImageNet)

Keep the deep params. for target and complete with a small deep on top (fully trained on target task)

Fine-tune the whole model on target data

Challenge: only limited target data, careful about overfitting

Solution: Freeze the gradient's update for AlexNet part



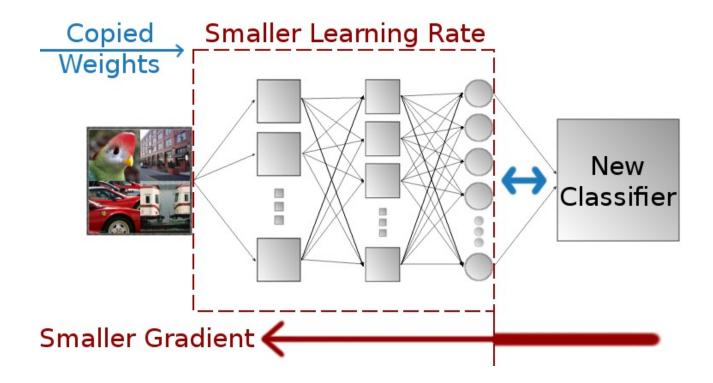
Transfer: fine-tuning of a deep model on target task

Train a deep (AlexNet) on source (ImageNet)

Keep the deep params. for target and complete with a small deep on top (fully trained on target task)

Fine-tune the whole model on target data

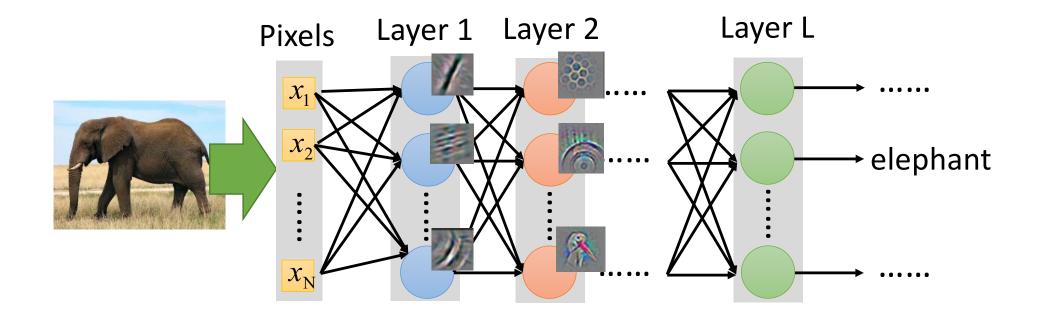
Challenge: only limited target data, careful about overfitting Solution: Freeze the gradient's update for AlexNet part Other solution: use smaller gradient's update for AlexNet part



Transfer: which parts of the deep?

Which layer(s) can be transferred (copied)?

- Speech: usually copy the last few layers
- Image: usually copy the first few layers



Transfer: which supervision?

- Task description
 - Source data: (x^s, y^s) \leftarrow A large amount
 - Target data: (x^t, y^t) (Very) little

Rq: Few/One-shot learning: only a few/one examples in target domain

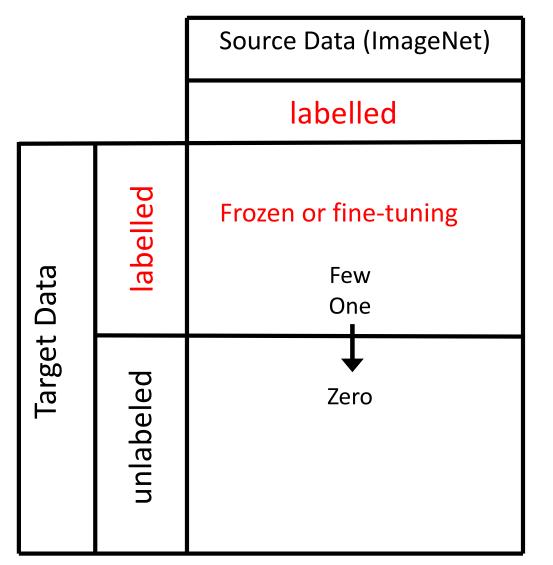
Many different contexts:

In vision: from large dataset (ImageNet) to small datasets **(VOC2007)**

In speech: (supervised) speaker adaption

- Source data: audio data and transcriptions from many speakers
- Target data: audio data and its transcriptions of specific user

More on transfer framework



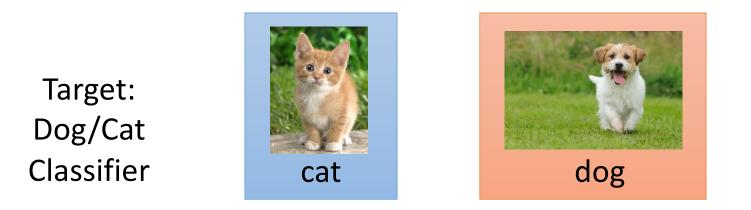
Main purposes: Similar visual domain? Same tasks (ie class)?

Similar domain: ImageNet task => Dog/Cat task

Data not directly related to the task considered

ImageNet: Similar domain, different task (1000 classes but NOT Dog and Cat classes)

General Framework for Transfer Learning



Data not directly related to the task considered

Similar domain, completely different tasks

Different domains, same task

General Framework for Transfer Learning

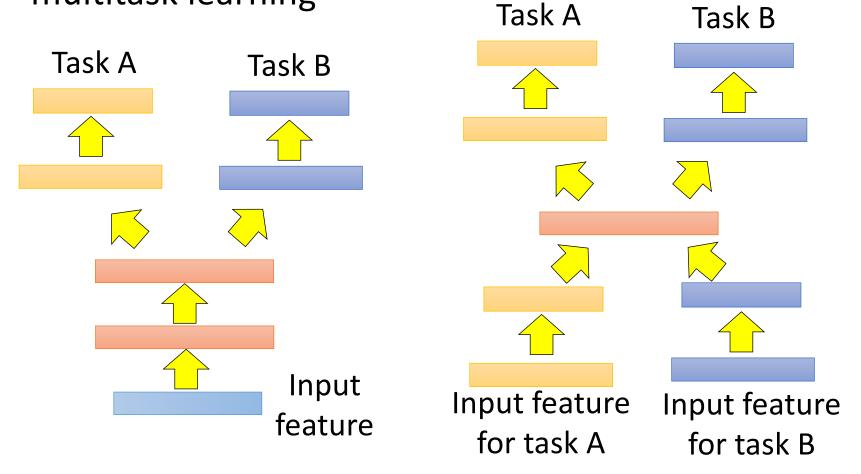
		Source Data (not directly related to the task)		
		labelled	unlabeled	
Target Data	labelled	Fine-tuning Multitask Learning	Self-supervised Self-taught learning Not considered here	
	unlabeled	Domain-adversarial training Zero-shot learning	Self-taught Clustering	

General Framework for Transfer Learning

		Source Data (not directly related to the task)		
		labelled	unlabeled	
Target Data	labelled	Fine-tuning <i>Multitask Learning</i>	Not considered here	
	unlabeled		Not considered here	

Multitask Learning

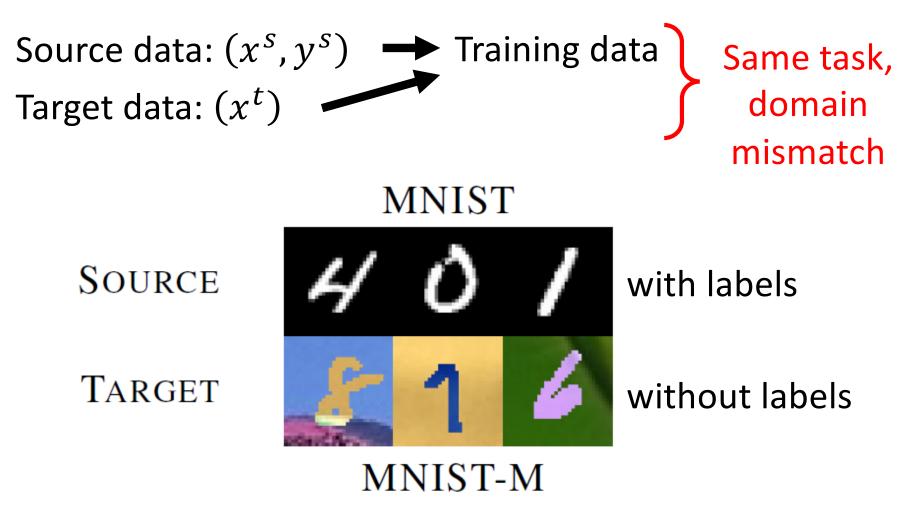
• The multi-layer structure makes NN suitable for multitask learning



Transfer Learning - Overview

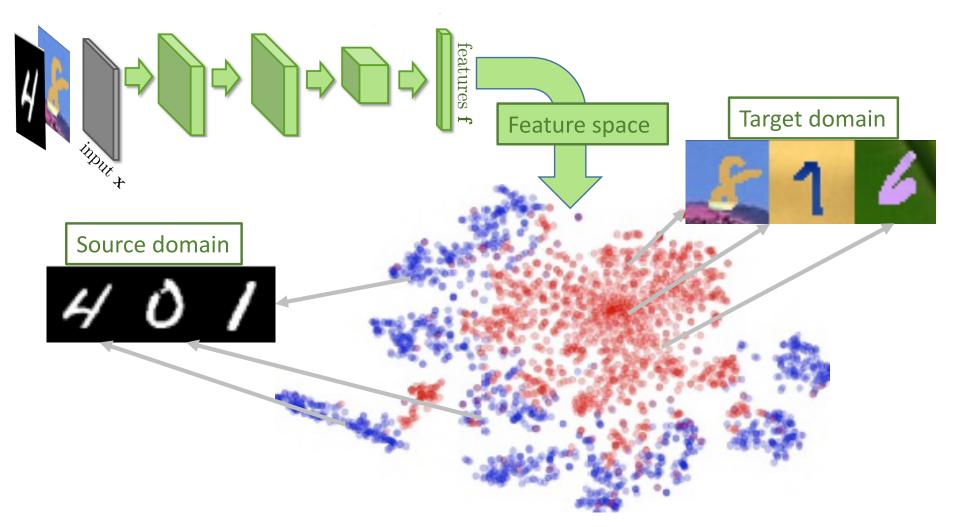
		Source Data (not directly related to the task)		
		labelled	unlabeled	
Target Data	labelled	Fine-tuning Multitask Learning	Not considered here	
	unlabeled	Domain adaptation- adversarial training	Not considered here	

Unsupervised Domain Adaptation (UDA)



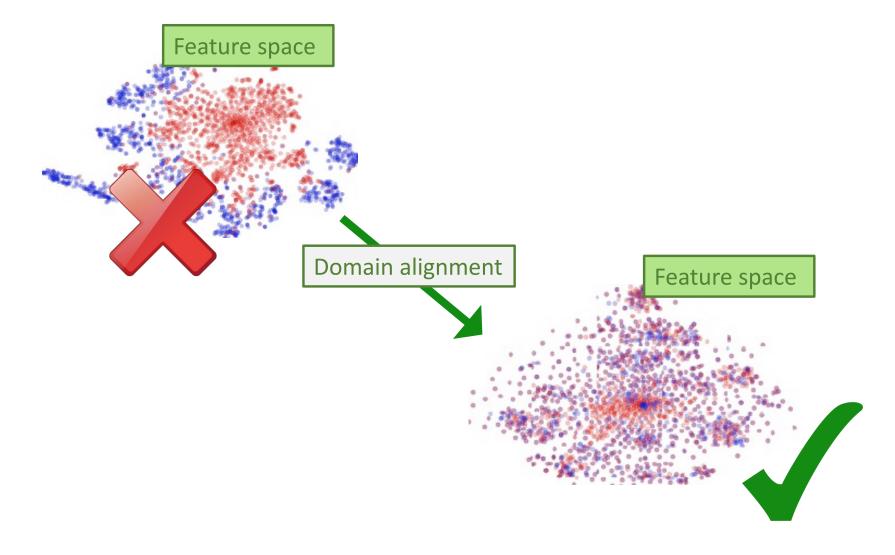
Final test on target domain!

Unsupervised Domain adaptation (UDA): objectives



Main principle: diminish the domain shift in the learned features, encourage domain confusion

UDA strategy: align both domains



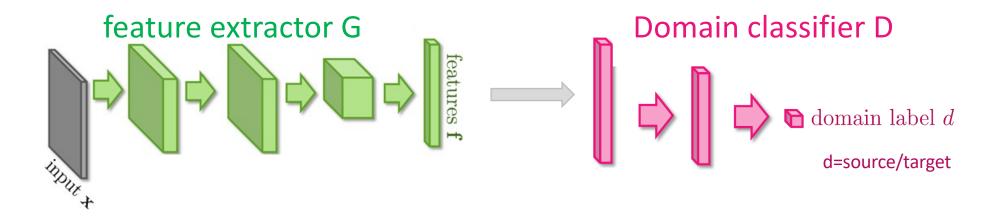
UDA strategy: 1/ domain-adversarial training

Add to the feature generator (G) a domain classifier (discriminant D) for which labels are available!

Learn G and D:

G tries to align domains

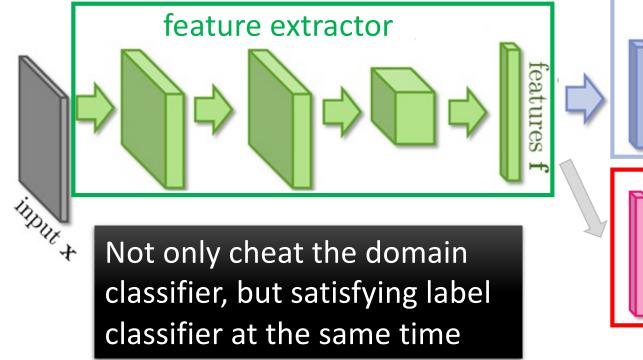
D tries to identify domains



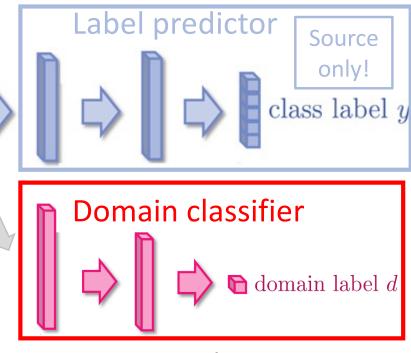
Rq: Similar to GAN (coming soon)

UDA strategy: 1/ domain-adversarial training 2/ classification task (same for source and target here)

Maximize label classification accuracy + minimize domain classification accuracy

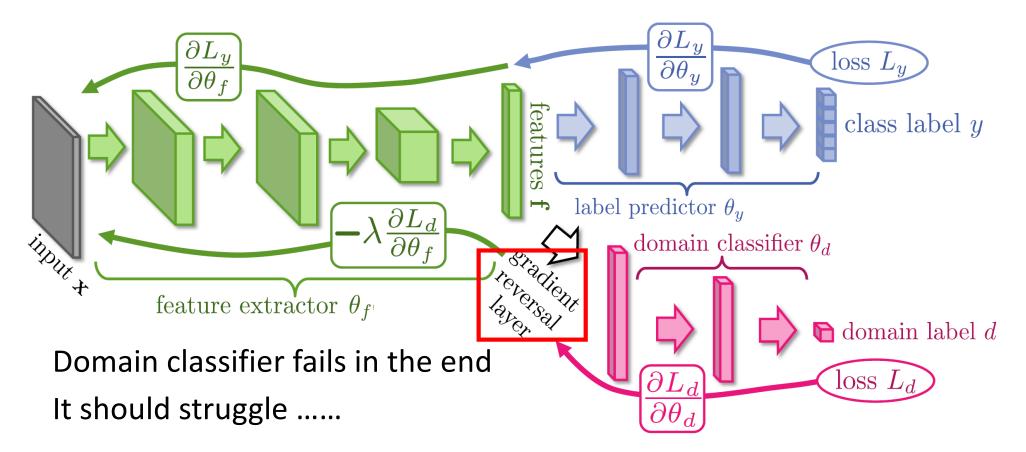


Maximize label classification accuracy



Maximize domain classification accuracy

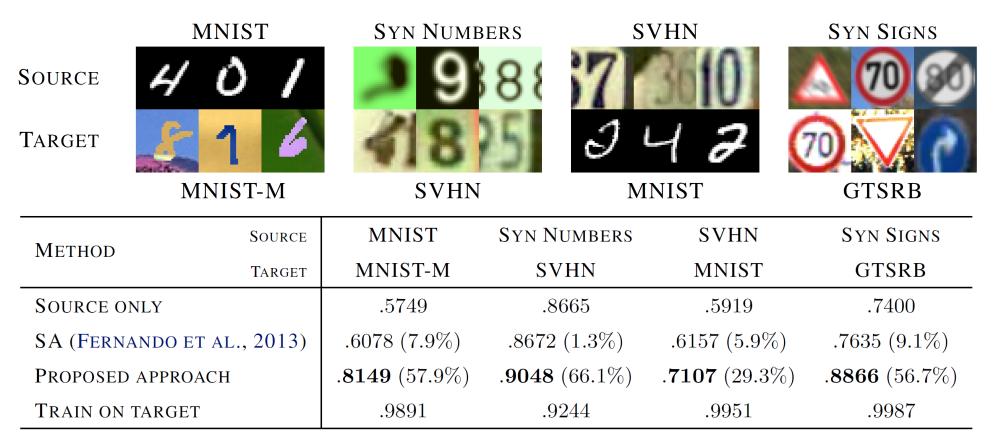
UDA strategy: joint learning



Yaroslav Ganin, Victor Lempitsky, Unsupervised Domain Adaptation by Backpropagation, ICML, 2015

Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Domain-Adversarial Training of Neural Networks, JMLR, 2016

Domain-adversarial training

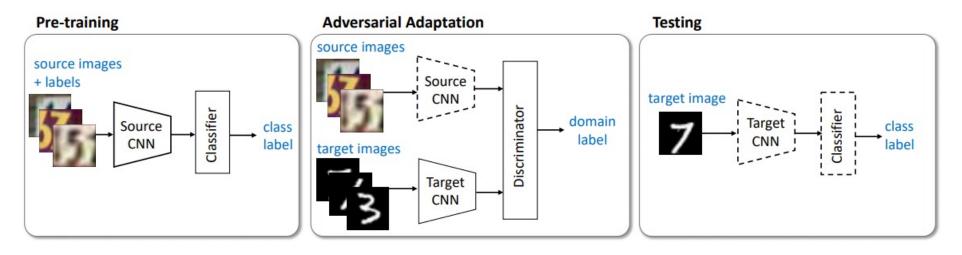


Yaroslav Ganin, Victor Lempitsky, Unsupervised Domain Adaptation by Backpropagation, ICML, 2015

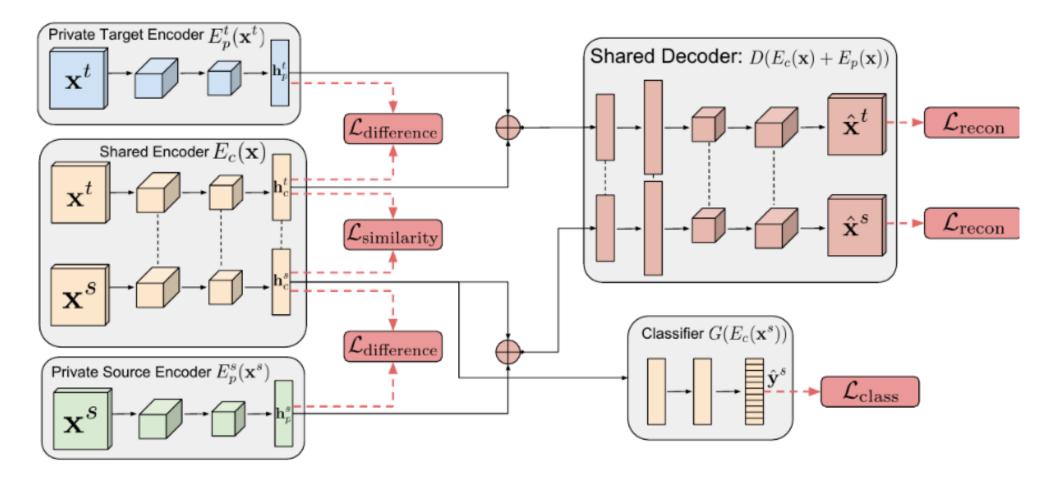
Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Domain-Adversarial Training of Neural Networks, JMLR, 2016

Main principle: diminish the domain shift in the learned features, encourage domain confusion

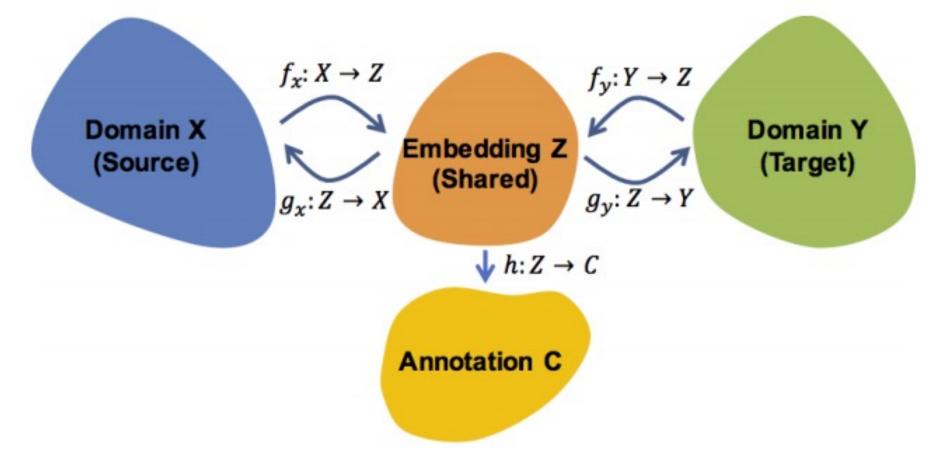
Another example: Adversarial Discriminative Domain Adaptation [Tzeng et al. 2017]



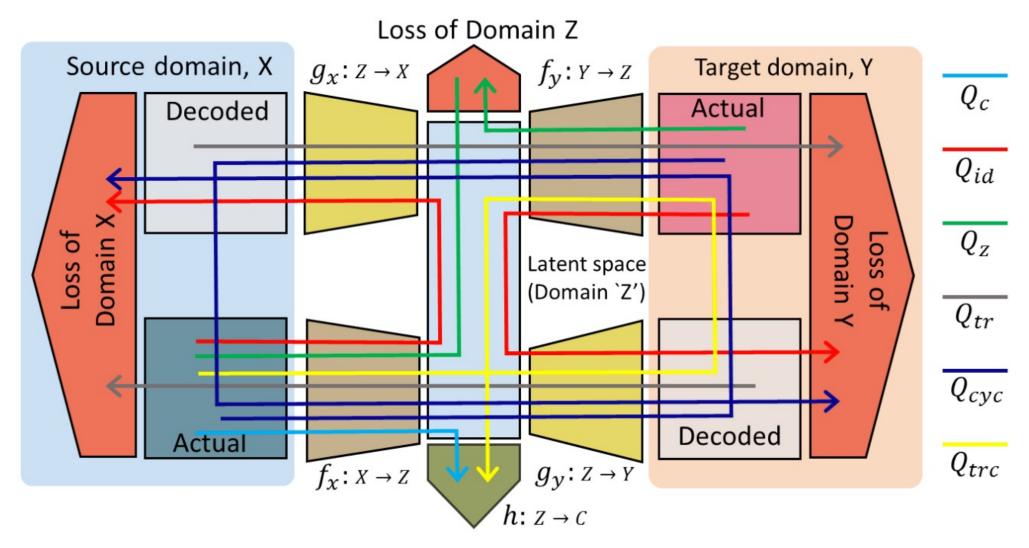
Other architecture



Other architecture: Image translation for Domain adaptation [Murez 2017]

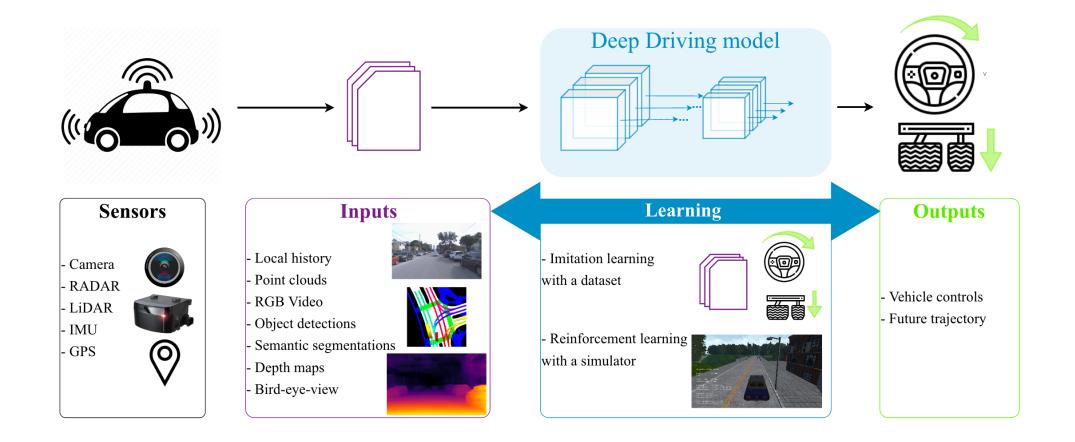


Other architecture: Image translation for Domain adaptation [Murez 2017]



Use-Case: Domain adaptation for Autonomous driving

Context: Neural network-based autonomous driving system framework



Challenges for perception

Multi-sensor perception

• Sensor fusion; Camera, radar and Lidar

3D dynamic understanding

- 3D object detection; Motion forecast; Intention prediction Frugal learning
- Training with limited data or supervision; Domain adaptation

Reliability

- Robustness; Uncertainty estimation; Failure prediction
 Explainability
- Decision interpretation; Post-hoc or by-design

Different, though *related* input data distributions

Source domain → Target domain

Different, though *related* input data distributions

Source domain → Target domain

Different, though *related* input data distributions

Source domain → Target domain

Different, though *related* input data distributions

Source domain → Target domain

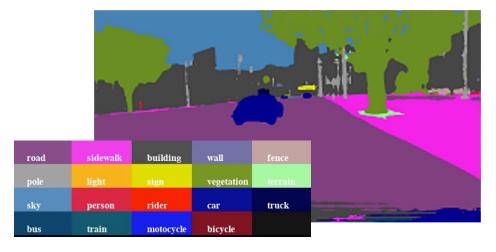
Different, though *related* input data distributions

Source domain → Target domain

• Synthetic vs. real

Domain gap for VISUAL SEGMENTATION

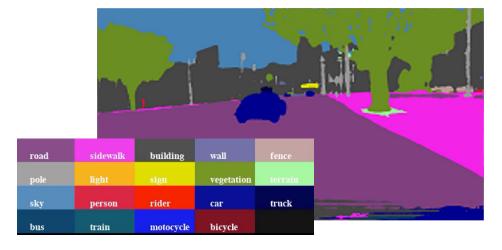
Different, though *related* input data distributions Source domain → Target domain

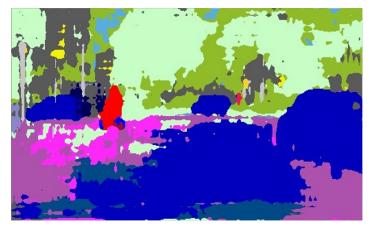


• Synthetic vs. real

Different, though *related* input data distributions

Source domain → Target domain

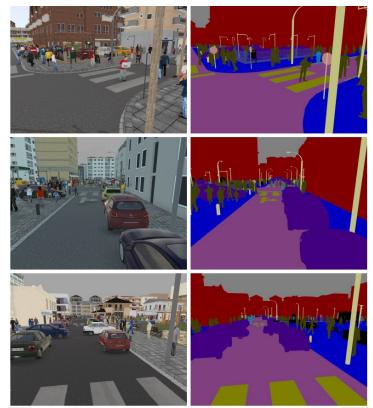




• Synthetic vs. real

Unsupervised Domain Adaptation (UDA)

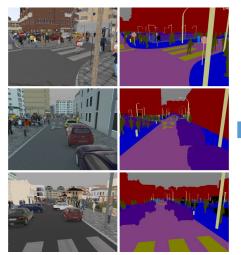
Labelled source domain data

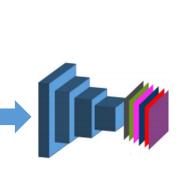


Sky Building Road Sidewalk Fence Vegetation Pole Car Sign Pedestrian Cyclist

Unlabelled target domain data

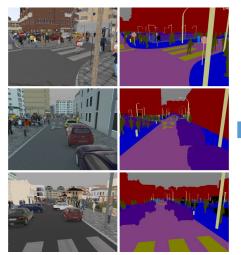
Source labelled data

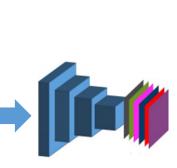


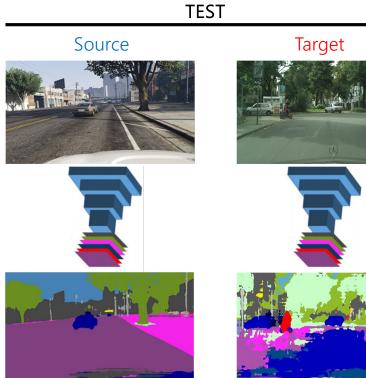




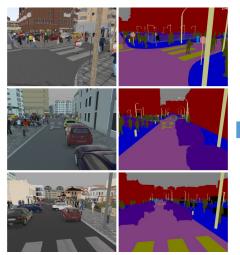
Source labelled data

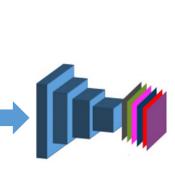


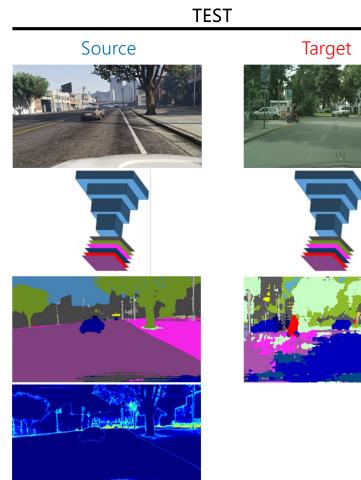




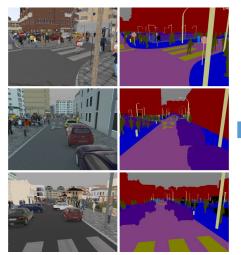
Source labelled data

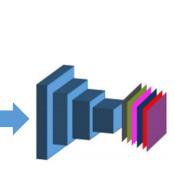


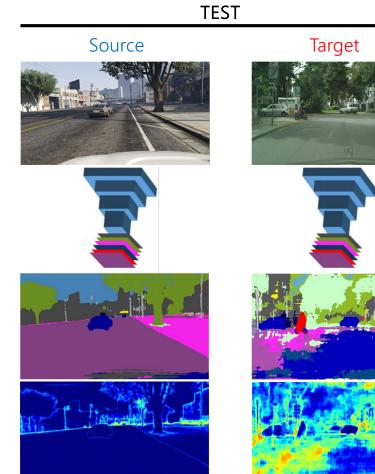




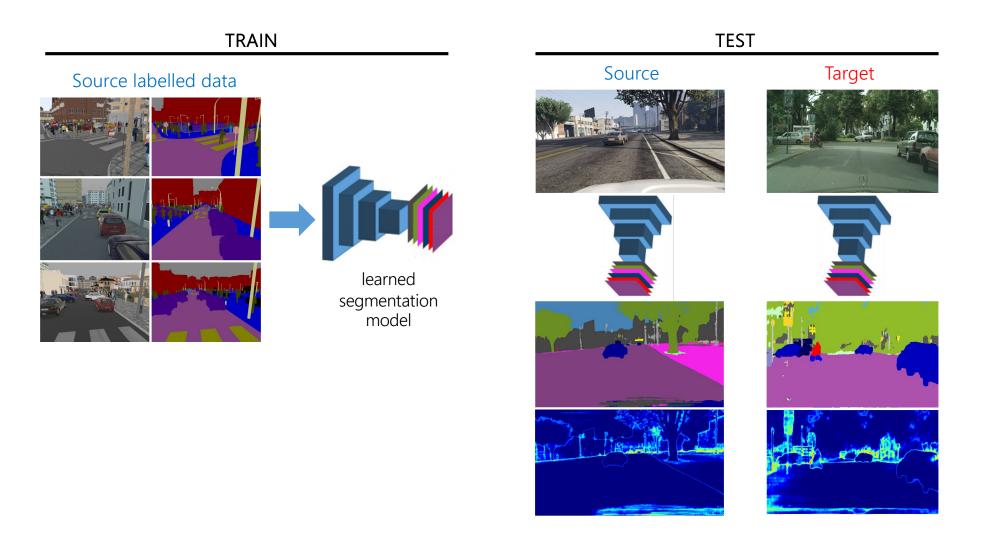
Source labelled data

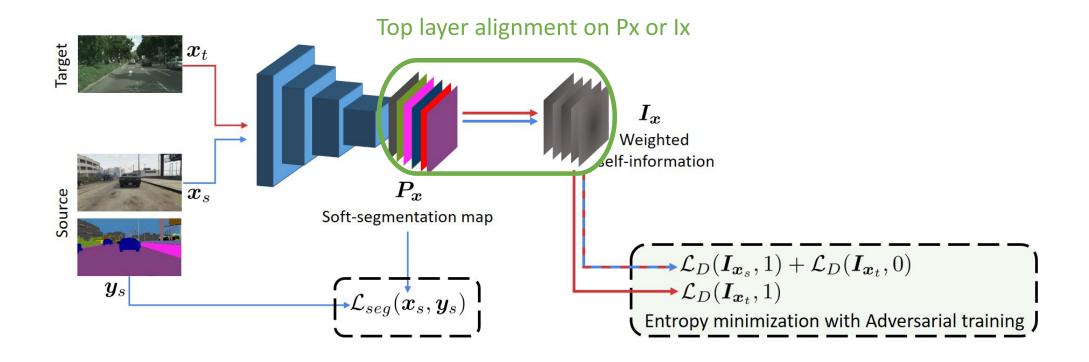






Expected results with UDA training





Qualitative results

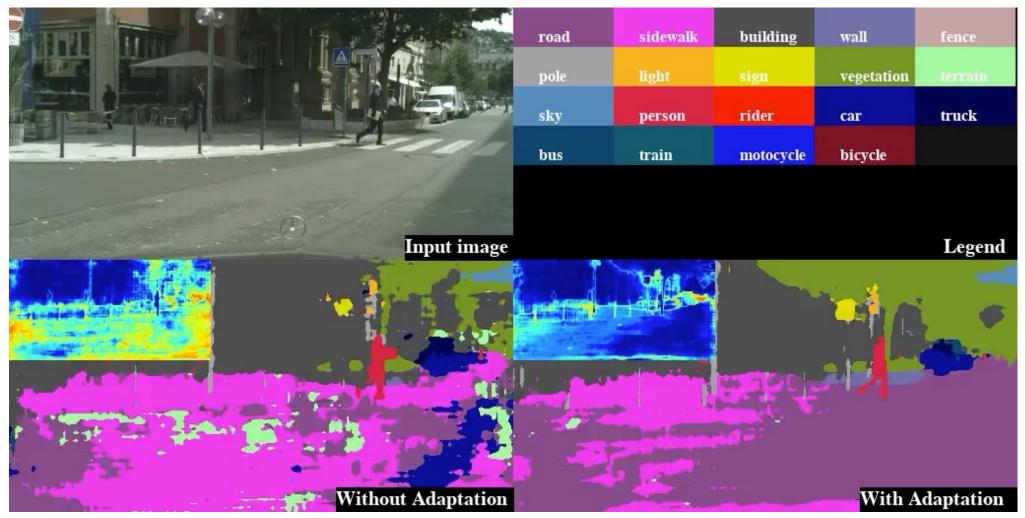
input image

without UDA

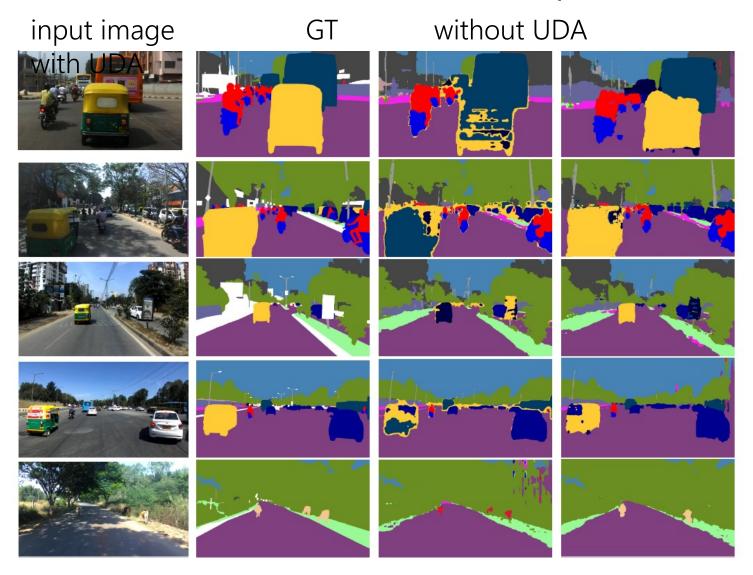
with UDA

road	sidewalk	building	wall	fence
pole		sign	vegetation	terrain
sky	person	rider	car	truck
bus	train	motocycle	bicycle	

UDA Results (with Adversarial Entropy)



Extension: Zero shot + Domain adaptation



Private target classes: tuk-tuk, animal. Some shared classes: truck, road, side walk, car, person, motorbike, tree, building.

Transfer Learning - Overview

		Source Data (not directly related to the task)			
		labelled	unlabeled		
Target Data	labelled	Fine-tuning Multitask Learning	Not considered here		
	unlabeled	Domain adaptation- adversarial training <i>Zero-shot learning</i>	Not considered here		

- Source data: $(x^s, y^s) \rightarrow$ Training data
- Target data: (Ø) usually same domain

Training time :

+ Class Information

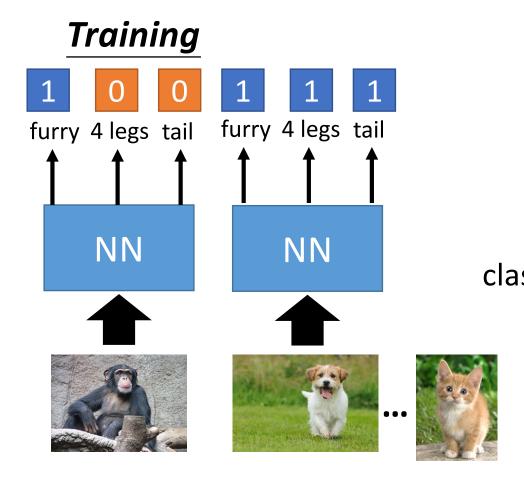
Different

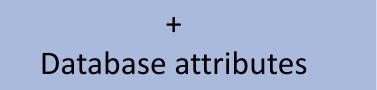
tasks

Test time x^t :

=> Fish class!

• Representing each class by its attributes

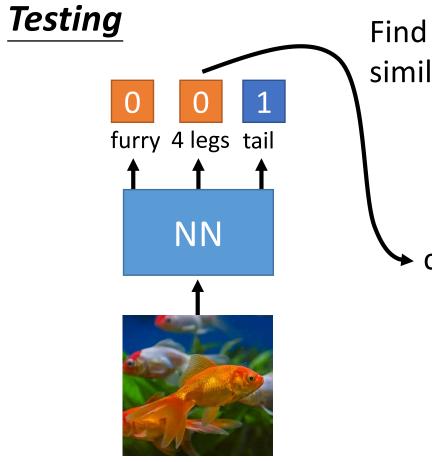




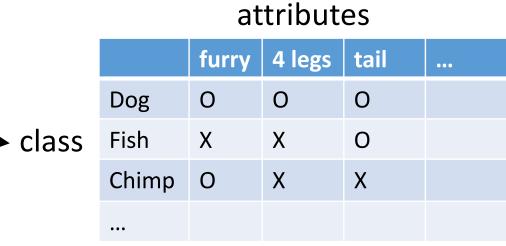
		furry	4 legs	tail	•••
ISS	Dog	0	0	0	
	Fish	X	Х	0	
	Chimp	0	Х	Х	
	•••				

sufficient attributes for one to one mapping

• Representing each class by its attributes



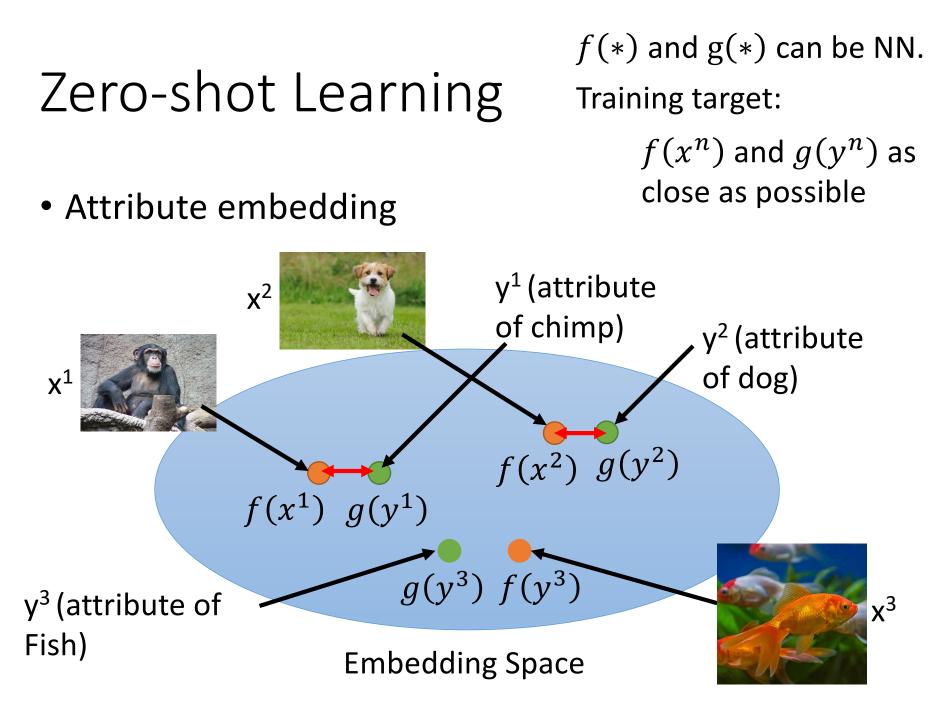
Find the class with the most similar attributes



sufficient attributes for one to one mapping

What if we don't have attribute database

 Attribute embedding + class (word name) embedding



yⁱ are linked together by a class relationship (e.g. class name embedding as W2v)