Outline

Beyond ImageNet

- 1. Fully Convolutional Networks (FCNs)
- 2. Supervised Segmentation with Deep ConvNets

Outline

Beyond ImageNet

- 1. Fully Convolutional Networks (FCNs)
- 2. Supervised Segmentation with Deep ConvNets

From ImageNet to complex scenes

• ImageNet: huge dataset (1.2M training images) with labels ... but centered objects

• How to apply/adapt/modify learning strategies to deal with:

From ImageNet to complex scenes?

• Working on datasets with complex scenes (large and cluttered background), not centered objects, variable size, ...

VOC07/12

MIT67

15 Scene

COCO VOC12 Action

- Select relevant regions \rightarrow better prediction

• Full annotations expensive \Rightarrow training with weak supervision

How to adapt VGG16 archi. for large/complex images?

Naïve approach: brut transfer (next Section)

• Resize the image

Sliding window \Rightarrow convolutional layers

Sliding window \Rightarrow convolutional layers

 Fully connected as convolutional layer (here 4096 conv. filters 7x7x512)

Sliding window \Rightarrow convolutional layers

Transfer – Pooling – Classification

Image-based strategy

• Global Average Pooling (GoogLeNet, ResNet)

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba Learning Deep Features for Discriminative Localization. In *CVPR*, 2016.

Region-based strategy

• Deep MIL

Maxime Oquab, Léon Bottou, Ivan Laptev and Josef Sivic Is object localization for free? – Weakly-supervised learning with CNNs. In *CVPR*, 2015.

• WELDON and ProNet [Sun, CVPR16]

Thibaut Durand, Nicolas Thome, and Matthieu Cord WELDON: Weakly Supervised Learning of Deep ConvNets. In *CVPR*, 2016.

Pixel contribution to the classification

Pixel contribution to the classification

Pooling schemes

-

• Max [Oquab, CVPR15]

• GAP [Zhou, CVPR16]

• LSE [Pinheiro, CVPR15] / SPLeap [Kulkarni, ECCV16]

$$y^{c} = \frac{1}{\beta} \log \left(\frac{1}{N} \sum_{i,j} \exp(\beta \cdot z_{ij}^{c}) \right)$$

Max pooling limitation

• Classifying only with the max scoring region

• Loss of contextual information

Max pooling limitation

• Classifying only with the max scoring region

• Loss of contextual information

WELDON: max+min pooling

- $h^+ :$ presence of the class \rightarrow high h^+
- h⁻: localized evidence of the absence of class

original image

bedroom

airport inside

dining room

- Generalization to K models per class
- Catch multiple class-related modalities

Class activation maps

bus

aeroplane

bottle

bicycle

Class activation maps

person

sheep

bird

Class activation maps

person

person

Visual recognition task: localization

Method	VOC 2012	MS COCO
Deep MIL	74.5	41.2
ProNet	77.7	46.4
WSLocalization	79.7	49.2

In preview Segmentation

- WSL segmentation framework
 - Learning with image-level labels (presence/absence of the class)
 - Difficult task: no information about location and extend of objects
- Localized features in spatial maps
- Deep + fully connected CRFs

In preview Segmentation

Outline

Beyond ImageNet

- 1. Fully Convolutional Networks (FCNs)
- 2. Supervised Segmentation with Deep ConvNets
 - 1. F-CN Fully Convolutional Network
 - 2. DeepLab approach for supervised segmentation
 - 3. Deconvolution Networks

Segmentation: definitions

Def1: Semantic Segmentation

Label each pixel with a category label

Object Detection

Detect every instance of the category and localize it with a bounding box.

Def2: Instance segmentation

Simultaneous Detection and Segmentation Detect and segment every instance of the category in the image

- **1. F-CN Fully Convolutional Network**
- 2. DeepLab approach for supervised segmentation
- 3. Deconvolution Networks

F-CN Fully Convolutional Network

- Fully-convolutional network: classify each "pixel"
- Upsampling output (bilinear interpolation + deconvolution)
- Network architecture: AlexNet, VGG16, GoogleNet
- Loss: soft-max per pixel

F-CN Fully Convolutional Network

Learning process

- 1. Model pretrained on ImageNet
- 2. Decapitate each net by discarding the final classifier layer
- 3. Convert all fully-connected layers to convolutions
- 4. Append $n^1 \ 1 \times 1$ convolutions
- 5. Fine-tuning all layers by backpropagation

¹n=number of classes

F-CN Fully Convolutional Network

Solution of the

FCN approach

- Problem: max pooling and striding reduces spatial resolution
- Dense prediction: combines feature hierarchies
- Initialized with the parameters of coarse net
- Fine-tuning all layers by backpropagation

- 1. F-CN Fully Convolutional Network
- 2. DeepLab approach for supervised segmentation
- 3. Deconvolution Networks

DeepLab (v123) approach for supervised segmentation

Problem of the spatial resolution reduction

Solution of the 1 DeepLab 2 approach

- .. Learn CNN for dense prediction tasks (Atrous)
- 2. Improve the localization of object boundaries with

fully-connected CRF [?] (FC-CRF)

DeepLab approach: Atrous filtering algo

- Remove the down-sampling from the last pooling layers.
- Up-sample the original filter by a factor of the strides:

Atrous convolution for 1-D signal:

$$y[i] = \sum_{k=1}^{K} x[i + r \cdot k]w[k]$$

$$x[i] \text{ 1-D input signal}$$

$$w[k] \text{ filter of length } K$$

$$r \text{ rate parameter corresponds to the stride}$$
with which we sample the input signal. Introduce zeros between filter values

- y[i] output of atrous convolution.
- Note: standard convolution is a special case for rate r=1.

Classical filtering/pooling/downsampling

DeepLab approach: Atrous filtering algo

DeepLab approach: Atrous filtering algo

Filters field-of-view

- Small field-of-view \rightarrow accurate localization
- Large field-of-view \rightarrow context assimilation
- 'Holes': Introduce zeros between filter values.
- Effective filter size increases (enlarge the field-of-view of filter): k×k filter to k_e = k + (k 1)(r 1)
- However, we take into account only the non-zero filter values:
 - ✓ Number of filter parameters is the same.
 - ✓ Number of operations per position is the same.

DeepLab approach: Atrous filtering algo

Standard convolution

DeepLab: Fully-Connected CRF

- Problem: poor object delineation (spatial and appearance consistency neglected)
- Solution: fully-connected CRF accounts for contextual information in the image

$$E(\mathbf{y}) = \sum_{i} heta_i(y_i) + \sum_{i,j} heta_{ij}(y_i, y_j)$$

- Unary term: output of FCN (upscaled)
- ► Pairwise term: penalizes similar pixels having different labels

• DeepLab V3+ [ECCV 2018]

Figure 3. Cascaded modules without and with atrous convolution.

- 1. F-CN Fully Convolutional Network
- 2. DeepLab approach for supervised segmentation
- **3. Deconvolution Networks**

Deconvolution Network

- Learn a multi-layer deconvolution network
- Network is composed of two parts:
 - 1. Convolution: feature extractor
 - 2. Deconvolution: shape generator that produces object segmentation from the feature extracted
- Deconvolution net is a mirrored version of the convolution net

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network for semantic segmentation. In *ICCV*, 2015. [paper]

Deconvolution Network

Unpooling

- Perform the reverse operation of pooling
- Reconstruct the original size of activations
- Useful to reconstruct the structure of input object
- Output: sparse activation map

Deconvolution Network

Deconvolution

- Connect single input activation to a multiple activations
- Learned filters correspond to bases to reconstruct shape of an input object
- Output: enlarged and dense activation map

Deconvolution Net: hourglass structure + unpooling switch variables

Deconvolution Net + shortcut connection

U-Net: Hourglass/U shape Net + shortcut connection by feature copies

Very popular in medical Works well with low training data

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations.

Fig. 2. Overlap-tile strategy for seamless segmentation of arbitrary large images (here segmentation of neuronal structures in EM stacks). Prediction of the segmentation in the yellow area, requires image data within the blue area as input. Missing input data is extrapolated by mirroring

http://deeplearning.net/tutorial/unet.html

Extra: Datasets

PASCAL VOC 12

- Train 1464 images / Val 1449 images / Test 1456 images
- 21 classes: aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted plant, sheep, sofa, train, tv/monitor + background
- Evaluation: intersection-over-union metric
- Webpage: http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

COCO

- Train 80k images / Val 20k images
- 91 classes, 11 super-categories:

person & Accessory	Animal	Vehicle	Outdoor Obj.	Sports	Kitchenware	Food	Furniture	Appliance	Electronics	Indoor objects
Å ₽Ø	\$	Á	影	0]	\bigcirc	\mathcal{I}	h m		ð 🎝	\square
	5	æ	ŧ	11 🕑	\bigcirc	J Ø	<u>国</u>	Ĩ		0 /
7 5	XA	5 6 😄		3	10		[®] ∎		ð	8 8
-	>	*	STOP	8 Ø	8	\bigcirc				Ve
රුර			Ŷ	×,	Ľ	8		Ð		

- 3 challenges: detection, instance segmentation, captioning
- Webpage: http://mscoco.org [paper]

Extra: Weakly Supervised Segmentation

Supervised Image Segmentation Methods

Full supervision

- Precise annotation $\ensuremath{\textcircled{\sc 0}}$
- Expensive and time consuming to obtain
 - ▶ "79s per label per image" [RBFL15] ⓒ
- Bottleneck for learning models at large scale 🙁

Weakly Supervised Image Segmentation Methods

Weak supervision

- Reduce supervision: class labels (or tags) 🙁
- Cheap to obtain
 - ▶ "1s per label per image" [RBFL15] ☺
- Scalable to large number of categories 🙂

- 🗸 background
- 🗡 aeroplane
- 🗡 cat
- 🗸 chair
- 🗡 dog
- 🗡 person
- 🗡 sheep
- 🗸 table
- 🗡 tvmonitor

Weakly supervised segmentation with CNN

Standard learning algorithms

• Maximize the likelihood of the observed training data

Problem

- Require full knowledge of the ground truth labeling
 - ► not available in the weakly supervised setting ©

Solutions

- 1. Generation of segmentation mask
 - George Papandreou, Liang-Chieh Chen, Kevin Murphy, and Alan L. Yuille. Weakly-and semi-supervised learning of a dcnn for semantic image segmentation. In *ICCV*, 2015.
- 2. Modified loss function: CNN optimized for classification
 - Pedro O. Pinheiro and Ronan Collobert.
 From image-level to pixel-level labeling with convolutional networks.
 In CVPR, 2015.

Generation of segmentation mask

- George Papandreou, Liang-Chieh Chen, Kevin Murphy, and Alan L. Yuille. Weakly-and semi-supervised learning of a dcnn for semantic image segmentation. In *ICCV*, 2015.
- Idea: adaptive bias
 - Generated segmentation mask and train fully-supervised CNN
 - Adaptive bias into the multi-instance learning framework
 - Boost classes known to be present
 - Suppress all others

Segmentation Results

@Y. LeCun

Segmentation Results

@Y. LeCun

Segmentation Results

@Y. LeCun

=> Mask-R-CNN