Outline

- 1. Attention and Vision Transformers (ViT)
 - NLP: Attention is all you need
 - Transformer Encoder ViT with Self Attention for image classification

Vision Transformer (ViT)
Class Bid Bail Car
Transformer Encoder
Patch + Position - 0 1 2 2 3 4 5 6 7 8 9
* Estra learnable [class] embedding Linear Projection of Flattened Patches

Attention process in Vision

Layernorm (LN) before every block, and residual connections after every block

MSA: Multi Head Self Attention

MLP: two layers with a GELU non-linearity

Hybrid Architecture : Raw image patches --> Feature map of a CNN

Outline

- 1. Attention and Vision Transformers (ViT)
 - NLP: Attention is all you need
 - Transformer Encoder ViT with Self Attention for image classification
- 2. Transformer Decoder for downstream tasks

Vision Transformer (ViT)
Class Bid Bd Bd Car Head
Transformer Encoder
Patch + Position - 00 00 20 30 40 50 00 70 80 90
* Extra learnable [class] embedding Linear Projection of Flattened Patches
H H L 🔊 🏹 🔛 H 🕍 🖉 🚟 🎬

Outline

- 1. Attention and Vision Transformers (ViT)
 - NLP: Attention is all you need
 - Transformer Encoder ViT with Self Attention for image classification

2. Transformer Decoder for downstream tasks

- Detection
- Segmentation
- Continual Learning, ...

Vision Transformer (ViT)
Class Bial Car - Head - Head
Transformer Encoder
Patch + Position - 0 1 2 3 4 5 6 7 8 9
* Extra learnable [class] embedding Linear Projection of Flattened Patches

[Perceiver IO A General Architecture for Structured Inputs & Outputs ICLR22]

[Perceiver IO A General Architecture for Structured Inputs & Outputs ICLR22]

Output query array / Output array defines the downstream task: detection, segmentation ...

[Perceiver IO A General Architecture for Structured Inputs & Outputs ICLR22]

Transformer Decoder for detection

Just another scheme for DETR model

Cornell University

arxiv > cs > arXiv:2005.12872

Computer Science > Computer Vision and Pattern Recognition

[Submitted on 26 May 2020 (v1), last revised 28 May 2020 (this version, v3)]

End-to-End Object Detection with Transformers

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko

We present a new method that views object detection as a direct set prediction problem. Our approach streamlines the detection pipe hand-designed components like a non-maximum suppression procedure or anchor generation that explicitly encode our prior knowl the new framework, called DEtection TRansformer or DETR, are a set-based global loss that forces unique predictions via bipartite material set.

[Perceiver IO A General Architecture for Structured Inputs & Outputs ICLR22]

Output query array / Output array defines the downstream task: segmentation ...

General Decoder: or not!

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation. Except for this watermark, it is identical to the accepted version; the final published version of the proceedings is available on IEEE Xplore.

Segmenter: Transformer for Semantic Segmentation

[Perceiver IO A General Architecture for Structured Inputs & Outputs ICLR22]

Output query array / Output array defines the downstream task: continual learning

Video Transformer

[ViViT: A Video Vision Transformer ICCV 2021]

Input array = N cameras

Input array = N cameras

Input array = N cameras

Input array = N cameras

Output array = Bird Eye View (BEV) representation

Input array = N cameras

Output array = Bird Eye View (BEV) representation

Input array = N cameras

Output array = Bird Eye View (BEV) representation

Vision Transformers

Global Attention mechanism at every layer of the deep archi

Very **competitive architectures** in image classification with the best Convnets

Fusion/Merging by mixing thanks to cross attention process

Somehow universal deep structure around encoding/decoding for many vision tasks as classification (1 class token), object detection, segmentation, ...

