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Auto-Encoding Variational Bayes, https://arxiv.org/abs/1312.6114



Problems of AE/VAE

• It does not really try to simulate real images
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Problems of AE/VAE

Game scenario: 

Player1, Generator, produces samples 
Player2, – Its adversary Discriminator, attempts to distinguish real samples 
from fake generated ones (produced by Player1) ! 

Player1 aims at producing Realistic images to fool the Player2

GAN to tackle this pb:

Realistic Non Realistic

GAN: generative adversarial networks
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Adversarial Nets Framework
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GAN Learning – D and G updates
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Real images:

Binary 
Classifier

Game scenario: 

Player1, Generator G, produces samples 
Player2, – Its adversary Discriminator D, attempts 
to distinguish real samples from fake generated 
ones (produced by Player1) ! 

Player1 aims at producing Realistic images to fool 
the Player2

Fake images:



GAN - Discriminator
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Discriminator Optimization on a batch of images:
Using gradient descent to update the parameters in the discriminator, 
with a fixed generator



GAN - Generator
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= a network
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GAN Learning – D and G updates
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GAN algorithm
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One example GAN

Source of images: https://zhuanlan.zhihu.com/p/24767059

DCGAN: https://github.com/carpedm20/DCGAN-tensorflow



GAN

100 rounds
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GAN

50,000 rounds
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Recall Algo GAN

Functions G and D are NN
Question: 
Which architectures  for G and D?
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Basic Archi for G and D and expe







GAN architectures

• How to improve result quality?
• Spatial resolution

ÞCascade of GAN
• Object quality

=> Progressive growing of spatial resolution in G 
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LAPGAN

• Good idea (cascade) but Generator structure too 
weak

=> Other approach: progressive growing of spatial 
resolution
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Progressive growing of spatial 
resolution in G

=transposed convolutions =deconvolutions



Progressive growing of spatial 
resolution in G: DCGAN
Upsampling step by step
Combine with convolutional layers





DCGAN results - Faces
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Progressive growing of GANs
[Progressive Growing of GANs for Improved Quality, Stability and Variation, Tero Karras et al. (NVIDIA); ICLR 2018]

1. First, start with training 4x4 output images.
2. When this training has converged, add a new block to

generate 8x8 output images.
3. Etc.

The transition to adding a new block is gradual, we first
start with more weight on the (upsampled) output of the
previous block, and then add more and more weight to
the output of the current block.
All weights remain trainable during the whole process.
Discriminator = mirror image of generator



Progressive growing of GANs
[Progressive Growing of GANs for Improved Quality, Stability and Variation, Tero Karras et al. (NVIDIA); ICLR 2018]



Progressive growing of GANs
[Progressive Growing of GANs for Improved Quality, Stability and Variation, Tero Karras et al. (NVIDIA); ICLR 2018]
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MSG-GAN: Multi-Scale Gradients for Generative
Adversarial Networks [CVPR 2020]

Main Idea:
• ProGAN both use progressive growing, but although this gives

stability, it introduces many complicated training parameters
associated with each new network.

• Training cannot be done “out of the box”, have to adjust parameters
for each new dataset.

→ Train all at once without complicated adding on layers



MSG-GAN: Multi-Scale Gradients for Generative
Adversarial Networks [CVPR 2020]



MSG-GAN: results – Random generated CelebA-HQ 
Faces at resolution 1024x1024
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StyleGAN: A Style-Based Generator Architecture for 
Generative Adversarial Networks [Karras CVPR 2019]

Still progressive growing architecture but with new refinement block based 
on:  Arbitrary Style Transfer in Real-time with Adaptive Instance 
Normalization (AdaIN)



StyleGAN Network Architecture 



Building up the Model



Results -- faces





Results -- cars 
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DCGAN: Arithmetics in z space

Artithmetics in latent 
space

Latent space analysis for GAN editing





Gan Editing
Latent space analysis for GAN editing

Female/male

young


