Generative models

Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN
3. GAN architectures

g " Drawing? =>learning from examples
K {1
l\l_m .

Review: Auto-encoder

As close as possible

— » NN » q A
_— ~ Encoder @ » Decoder » St ~

‘/ .

Randomly generate | 3
o Image ?
a vector as code) Decoder

Review: Auto—encoder

code
Decoder »m
NN

Decoder — O
< 5
-1.5 :
[_1.5] @ 1.5
0 | « NN

Decoder

Review: Auto-encoder

e e e R e T B
M T N L e e e
NNN™NSNS~
NN NN N~
./o.//./r./,l
MNMINN N NN
Ny By B &

N MM o o9
OO

OO O

2 W -ala

:- i) —- C- (SRS RS

NDODODODOO0O0
SEMENES RO NGNS
SINESES RO NGNS

T AV g g = —

PP S S ——
N PN o~ oo

NN~
TTTOCCCC
Qe r
QQQCTC

QQAQQQA®
QQQQQAR

Auto-encoder

Input » Encoder » » De?:'der

code

VAE

Decoder

. NN i's
nput » Encoder 2 » NI
) |

Ci = 0;¢€; —+ m;
From a normal
distribution N(0,1)

Auto-Encoding Variational Bayes, https://arxiv.org/abs/1312.6114

Problems of AE/VAE

* It does not really try to simulate real images

code

»
Decoder

»

One pixel difference
from the target

b

Output

4

Realistic

4 Y
As close as : 7
possible

One pixel difference
; . | from the target

Non
Realistic

Problems of AE/VAE

GAN to tackle this pb: 7 7

-

Realistic Non Realistic

GAN: generative adversarial networks

Game scenario:

Playerl, Generator, produces samples

Player2, — Its adversary Discriminator, attempts to distinguish real samples
from fake generated ones (produced by Playerl) !

Playerl aims at producing Realistic images to fool the Player2

Generative models

Outline

1. Preview: Auto-Encoders, VAE

2. Generative models with GAN
 GAN Algorithm

Adversarial Nets Framework
D(G(5) wenc
(i D (z;;l?:;‘;:ikf)

leferentlable
function D
T sarnpled from T sampled from
data model
leferentlable
function G

1
(Input noise 2 >
V = Exepyoe[109D ()] + Exopy[log(1 — D())]

G" =arg mGin max V(G,D)

N ())

GAN Learning — D and G updates

NN Game scenario:

Generator
1 Playerl, Generator G, produces samples
L Player2, — Its adversary Discriminator D, attempts
* to distinguish real samples from fake generated
ones (produced by Playerl) !

Fake images: _& o | 9
* Playerl aims at producing Realistic images to fool
the Player2
Discri-
minator
vl

Binary \
Classifier Real images: S 0 ,_,{ /

GAN - Discriminator

Randomly
sample a vector

Real images:
Discri-

e == minator =P 1/0 (real or fake)
vl

Discriminator Optimization on a batch of images:

Using gradient descent to update the parameters in the discriminator,
with a fixed generator

GAN - Generator

Updating the parameters of
generator

The output be classified as
“real” (as close to 1 as
possible)

)

Generator + Discriminator
= a network

Optimization:
Using gradient descent to update the

parameters in the generator, but fixing the

discriminator

Randomly
sample a vector

4

NN
Generator
V2 wpd

v

-

\

Discri-
minator
vl

\
o3

GAN Learning — D and G updates

NN NN NN IN
Generator » Generator » Generator e e o
v3

vl v2

Y 4 00*0 ‘ 00*00 ootz
- * * - * Game over:

Winner==Playerl

Discri- Discri- Generator G
mlnator mlnator producing fully
Realistic images

that fool the

\ K / Player2
Realimages: | O I/

Discri-
mlnator

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(V), ..., 2™} from noise prior Pg(2).
e Sample minibatch of m examples {x(1), ..., 2(™)} from data generating distribution
pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

Vo, 23 [log D () 4108 (1- D (6 (=9)))].

1=

D tries to make

D(G(z)) near 0,

G tries to make

D(G(z)) near 1
t

end for
e Sample minibatch of m noise samples {z(1), ..., 2(™} from noise prior pg(2).
e Update the generator by descending its stochastic gradient:
. D(x) tries to be
1 : 1
Vo, — ; log (1-D (G (29))). near
d fi
endror leferentlable
function D

)(

GAN algorithm (m

T sampled from

data : : model

V = Exepypia 109D ()] + Exp,[log(1 — D(x))]

G" =arg mGin max V(G,D)

Dlﬁerentlable
function G

t

(Input noise z

O W W W ww

One example GAN

Source of images: https://zhuanlan.zhihu.com/p/24767059
DCGAN: https://github.com/carpedm20/DCGAN-tensorflow

GAN

100rounds & &

GAN

20,000 rounds

GAN

50,000 rounds K9 ¥

Generative models

Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN
3. GAN architectures

g " Drawing? =>learning from examples
K {1
l\l_m .

Recall Algo GAN

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z1),. .., 2™} from noise prior p,(2).
e Sample minibatch of m examples {z(!),... (™)} from data generating distribution
pdata(w)-

e Update the discriminator by ascending its stochastic gradient:

Vo, 23 [log D (2 +1og (1- D (6 (=)))].

1=

end for
e Sample minibatch of m noise samples {2, ..., 2(™)} from noise prior py(2).
e Update the generator by descending its stochastic gradient:

Ve, Y olos (10 (6(=))).

D tries to make
D(G(z)) near 0,
@ tries to make

D(G(z)) near 1

t

D(x) tries to be

(near 1)
end for ? D
Differentiable
(function D) f
z sampled from
f model
(z sampled from) T
. data
Functions G and D are NN Difirniabl
nction

Question:
Which architectures for G and D?

t

Input noise z

a 4 A & &
O W O W ww

Generative models

Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN

3. GAN architectures
1. Basics

Basic Archi for G and D and expe

Models
G and D fully connected nets

or convolutional for D, (de)convolutional for G (as seen for
segmentation nets)
RelLU and/or sigmoids, dropout

Datasets
MNIST, Toronto Face Database, CIFAR-10

GAN - Evaluation

e Approximate p, by fitting a Gaussian Parzen window on the
generated images.

e Cross-validate o to maximize likelihood of validation set
e Compute the likelihood of the test set

Evaluation not trivial, can be done using generated images as
inputs for deep nets => inception scores

GAN - Qualitative results 1/2

Figure: Right col nearest from dataset. a) MNIST, b) TFD, c) CIFAR-10
(fully connected), d) CIFAR-10 (convolutional D, deconvolutional G)

GAN - Qualitative results 2/2

FVD IS PETSISIS|ISISN71212121217171/717])/

Figure: Linear interpolation between 2 points in z space

e Advantages:

» Computational advantages (no complex likelihood inference)
» Can represent sharper distributions

e Disadvantages:

» G and D must be well synchronized for the algorithm to
converge correctly

GAN architectures

* How to improve result quality?

 Spatial resolution
—>Cascade of GAN
* Object quality

=> Progressive growing of spatial resolution in G

Generative models

Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN

3. GAN architectures
1. Basics
2. LaPGAN

Laplacian Pyramid GANs (LAPGANS)

e GANs do not work well for complex / high level / natural
Images.

e |dea: decompose the generation in successive tasks using

Laplacian Pyramid (of GANs)

Let d(/) and u(/) be down-sampling and up-sampling operations.
Gaussian pyramid:

G(1) = [lo. h,.... I]. I = d9(1)

Laplacian pyramid:

he = L (1) = Ik — u(lk+1)

Reconstruction:

Ik = u(lks1) + he

LAPGAN model - sampling

e Set of generative convnets: Gy. ..., Gk
e Generated details: hy = Gi(zx. u(lis1))

e Reconstructed image: [= u(7k+1) L (7K+1 =)

LAPGAN model - training

e Low-pass version of lp: lp = u(d(lp)
e Either:
> High-pass~version of lo: ho = Ilp — Io
» Generate hg = Go(zp,)
e Forward Dy(lp + ho or l~70)
e Backward Dy and Gy
e Gy and Dy are trained as a simple GAN

Real/

Generated?

Real/Generated?

Real/Generated?

LAPGAN model - Experiments

e Datasets: CIFAR-10, STL

e Initial scale:

» Gk and Dk have 2 hidden layers and RelLU
> ZK U[_1,1]1oo
» Trained as GAN

e Subsequent scales:

» G, and Dy convnets with 3 and 2 layers
> 2z ~ Up_y gy ("color” layer)
» Trained as CGAN

LAPGAN model - Results - CIFAR

LAPGAN model - Results - STL

((b)
Figure 4: STL samples: (a) Random 96x96 samples from our LAPGAN model. (b) Coarse-to-fine
generation chain.

LAPGAN model - Results - LSUN

::-: a v "1 i
IR " ‘5.. \ ¥

”... w-‘f‘:w ««‘n*ﬂu, ;‘,;;.1;-”- |

: v Phital , | ¥) s’..-. PIT : _' t

"m "" el 9"“3’ s '(./

cmww L "n' vwwn- |

LAPGAN

* Good idea (cascade) but Generator structure too
weak

=> Other approach: progressive growing of spatial
resolution

Generative models

Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN

3. GAN architectures
1. Basics

2. LaPGAN
3. DCGAN

Progressive growing of spatial
resolution in G

Deep Convolutional GANs (DCGANS)

GANs are hard to scale => ldentify a family of architectures that
gives stable training

e Replace any pooling layers with strided convolutions
... =transposed convolutions =deconvolutions
(discriminator) and fractiona -strlée?] convolutions (generator)
e Use batchnorm in both the generator and the discriminator
e Remove fully connected hidden layers for deeper architectures
e Use RelLU activation in generator for all layers except for the
output, which uses Tanh

e Use LeakyRelLU activation in the discriminator for all layers

Progressive growing of spatial
resolution in G: DCGAN

Upsampling step by step
Combine with convolutional layers

n
5
O
qV)

L

DCGAN results

Generative models

Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN

3. GAN architectures
1. Basics
2. LaPGAN
3. DCGAN
4. ProGAN

Progressive growing of GANs

[Progressive Growing of GANs for Improved Quality, Stability and Variation, Tero Karras et al. (NVIDIA); ICLR 2018]

1. First, start with training 4x4 output images.

2. When this training has converged, add a new block to
generate 8x8 output images.

3. Etc.

The transition to adding a new block is gradual, we first
start with more weight on the (upsampled) output of the
previous block, and then add more and more weight to
the output of the current block.

All weights remain trainable during the whole process.
Discriminator = mirror image of generator

Progressive growing of GANs

[Progressive Growing of GANs for Improved Quality, Stability and Variation, Tero Karras et al. (NVIDIA); ICLR 2018]

G Latent Latent

|
;

D

v

|] [&8 |

i n.
. i Reals ' Reals

seoe ‘ i ,
&; : Reals

Training progresses

1024x1024 |

L 2
1024x1024]

\/

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4 x4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable

throughout the process. Here

N x N

refers to convolutional layers operating on /N X NV spatial

resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024 x 1024.

Progressive growing of GANs

[Progressive Growing of GANs for Improved Quality, Stability and Variation, Tero Karras et al. (NVIDIA); ICLR 2018]

G 16x16 | 16x16 |
32x32

toRGB toRGB toRGB
l l-avla
,,,,,,,,,,,,, ‘ T _'
D fromRGB fromRGB
fromRGB X

b)

(a)

16&16

32x32

toRGB

|

}

fromRGB
32x32

—

C

0.5x

Figure 2: When doubling the resolution of the generator (G) and discriminator (D) we fade in the
new layers smoothly. This example illustrates the transition from 16 x 16 images (a) to 32 x 32
images (c). During the transition (b) we treat the layers that operate on the higher resolution like a
residual block, whose weight « increases linearly from 0 to 1. Here | 2x
and halving the image resolution using nearest neighbor filtering and average pooling, respectively.

represents a layer that projects feature vectors to RGB colors and
the reverse; both use 1 x 1 convolutions. When training the discriminator, we feed in real images
that are downscaled to match the current resolution of the network. During a resolution transition,
we interpolate between two resolutions of the real images, similarly to how the generator output
combines two resolutions.

The

toRGB

and

0.5x

refer to doubling

fromRGB

does

Generative models

Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN

3. GAN architectures
Basics

LaPGAN

DCGAN

ProGAN
MSG-GAN

ik wn e

MSG-GAN: Multi-Scale Gradients for Generative
Adversarial Networks [CVPR 2020]

Main Idea:

* ProGAN both use progressive growing, but although this gives
stability, it introduces many complicated training parameters
associated with each new network.

« Training cannot be done “out of the box”, have to adjust parameters

for each new dataset.

— Train all at once without complicated adding on layers

MSG-GAN: Multi-Scale Gradients for Generative
Adversarial Networks [CVPR 2020]

Real Images downsampled to various resolutions

16x 16 . 8x 8 4x4
. (1x1) Conv . (2 x 2) Average Pool (downsample)
B @x4)convt | | Minibatchstd
B G x3)conv B x4 conv highest

resolution
samples

. (2 x 2) Upsample . Fully Connected

Combine Function

6x 16 x c3'
8 x 8 x c2' Critic-loss
4x4xcl 4x4xcl : function
e f |25 I 1 i 15
Gges T 3 as? at! T

16 x 16

8x8

4x4

Figure 2: Architecture of MSG-GAN, shown here on the base model proposed in ProGANs [13]. Our architecture includes
connections from the intermediate layers of the generator to the intermediate layers of the discriminator. Multi-scale im-
ages sent to the discriminator are concatenated with the corresponding activation volumes obtained from the main path of
convolutional layers followed by a combine function (shown in yellow).

MSG-GAN: results — Random generated CelebA-HQ
Faces at resolution 1024x1024

Generative models

Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN

3. GAN architectures
Basics

LaPGAN

DCGAN

ProGAN
MSG-GAN
StyleGAN

A A T o

StyleGAN: A Style-Based Generator Architecture for
Generative Adversarial Networks [Karras CVPR 2019]

Still progressive growing architecture but with new refinement block based
on: Arbitrary Style Transfer in Real-time with Adaptive Instance
Normalization (AdalN)

ARIN (e, 9 = o5 (m ;(‘;g”))

- ———————————

\
m
2 |-
Q 8 B AdalN
®
//Style Transfer Network

StyleGAN Network Architecture

z € Z z € Z i 1
Latent = Latent € Synthesis netwosk g Noise
[Normalize | | Normalize | | Const 4x4x512|
Mapping
| Fully-connected | network f
1
| Cony 3x3] [FCc |
[PixeINorm | [__FC |
4x4 __FC |
| __FC | | Upsample |
| Upsample | T
__FC |
1 x | Conv3x3 |
| Conv3ix3 | | FC |
T r
[PixeINorm | [== |
| Conv3ix3 |

|
[PixelNorm |
8x8

(a) Traditional (b) Style-based generator

Building up the Model

Method CelebA-HQ FFHQ
A Baseline Progressive GAN [2Y] 7.79 8.04
B + Tuning (incl. bilinear up/down) 6.11 5.25
C + Add mapping and styles 5.34 4.85
D + Remove traditional input 5.07 4.88
E + Add noise inputs 5.06 4.42
F + Mixing regularization 5.17 4.40

Generative models

Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN
3. GAN architectures

4. Editing

DCGAN: Arithmetics in z space

Latent space analysis for GAN editing

Artithmetics in latent
space

with glasses without glasses

without glasses

o IR
Walking ,
inlatent

Gan Editing

Latent space analysis for GAN editing

Female/male

