Outline

[Introduction to Neural nets](#page-0-0)

[Training Deep Neural Networks](#page-23-0)

[Introduction to Statistical Decision Theory](#page-0-0)

The Formal Neuron: 1943 [?]

- ▸ Basis of Neural Networks
- ▶ Input: vector $x \in \mathbb{R}^m$, *i.e.* $x = \{x_i\}_{i \in \{1, 2, ..., m\}}$
- ▸ Neuron output *y*ˆ ∈ R: scalar

The Formal Neuron: 1943 [?]

- ▸ Mapping from x to *y*ˆ:
	- 1. Linear (affine) mapping: *s* = w⊺x + *b*
	- 2. Non-linear activation function: $f: \hat{y} = f(s)$

The Formal Neuron: Linear Mapping

- ▶ Linear (affine) mapping: $s = w^T x + b = \sum_{i=1}^m w_i x_i + b$
	- *i*=1 ▸ w: normal vector to an hyperplane in ^R*^m* [⇒] linear boundary ▸ *^b* bias, shift the hyperplane position
	-

The Formal Neuron: Activation Function

- \hat{y} = *f* (w[⊤]x + *b*),
- \triangleright f: activation function
	- ▶ Bio-inspired choice: Step (Heaviside) function: $H(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{otherwise} \end{cases}$

- ▶ Popular f choices: sigmoid, tanh, ReLU, GELU, ...
- \triangleright Sigmoid: $\sigma(z) = (1 + e^{-az})^{-1}$

- ▸ *^a* [↑]: more similar to step function (step: *^a* [→] [∞]) ▸ Sigmoid: linear and saturating regimes
-

Step function: Connection to Biological Neurons

- **► Formal neuron, step activation** *H***:** $\hat{y} = H(w^{\top}x + b)$ **

►** $\hat{y} = 1$ **(activated)** $\Leftrightarrow w^{\top}x \ge -b$
	-
	- \hat{y} = 0 (unactivated) \Leftrightarrow w[⊤]x < −*b*
- ▸ Biological Neurons: output activated \Leftrightarrow input weighted by synaptic weight \geq threshold

The Formal neuron: Application to Binary Classification

- Binary Classification: label input \times as belonging to class 1 or 0
- ▸ Neuron output with sigmoid:

$$
\hat{y} = \frac{1}{1 + e^{-a(w^\top x + b)}}
$$

- Sigmoid: probabilistic interpretation ⇒ $\hat{y} \sim P(1|x)$
 • Input x classified as 1 if $P(1|x) > 0.5 \Leftrightarrow w^T x + b > 0$
	-
	- \triangleright Input x classified as 0 if $P(1|x) < 0.5$ ⇔ w^Tx + *b* < 0 ⇒ sign(w⊺x + *b*): linear boundary decision in input space !

- ▸ 2d example: *m* = 2, x = {*x*1*, x*2} ∈ [−5; 5] × [−5; 5]
- ▸ Linear mapping: w = [1; 1] and *b* = −2
- **►** Result of linear mapping : $s = w^Tx + b$

- ▸ 2d example: *m* = 2, x = {*x*1*, x*2} ∈ [−5; 5] × [−5; 5]
- \triangleright Linear mapping: w = [1; 1] and *b* = −2
- **►** Result of linear mapping : $s = w^T x + b$
- ▸ Sigmoid activation function: *^y*^ˆ ⁼ (¹ ⁺ *^e*−*a*(w⊺x+*b*)) −1 , $a = 10$

- ▸ 2d example: *m* = 2, x = {*x*1*, x*2} ∈ [−5; 5] × [−5; 5]
- \triangleright Linear mapping: w = [1; 1] and *b* = −2
- **►** Result of linear mapping : $s = w^T x + b$
- ▸ Sigmoid activation function: *^y*^ˆ ⁼ (¹ ⁺ *^e*−*a*(w⊺x+*b*)) −1 , *a* = 1

- ▸ 2d example: *m* = 2, x = {*x*1*, x*2} ∈ [−5; 5] × [−5; 5]
- **►** Linear mapping: $w = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $b = -2$
- ▸ Result of linear mapping : *s* = w⊺x + *b*
- ▸ Sigmoid activation function: *^y*^ˆ ⁼ (¹ ⁺ *^e*−*a*(w⊺x+*b*)) −1 , *a* = 0*.*1

From Formal Neuron to Neural Networks

- ▸ Formal Neuron:
	- 1. A single scalar output
	- 2. Linear decision boundary for binary classification
- ▸ Single scalar output: limited for several tasks
	- ▸ Ex: multi-class classification, *e.g.* MNIST or CIFAR

- ▶ Formal Neuron: limited to binary classification
- ▶ Multi-Class Classification: use several output neurons instead of a single one! ⇒ Perceptron
- \blacktriangleright Input x in \mathbb{R}^m
- **►** Output neuron $\hat{y_1}$ is a formal neuron:
	- ▸ Linear (affine) mapping: *s*¹ = w¹ [⊺]x + *b*¹
	- ▸ Non-linear activation function: *f* : $\hat{y_1} = f(s_1)$
- Einear mapping parameters:

$$
w_1 = \{w_{11}, ..., w_{m1}\} \in \mathbb{R}^m
$$

$$
\bullet \quad b_1 \in \mathbb{R}
$$

- \blacktriangleright Input x in \mathbb{R}^m
- ▶ Output neuron \hat{y}_k is a formal neuron:
	- ▸ Linear (affine) mapping: *sk* = w^k [⊺]x + *bk*
	- ▸ Non-linear activation function: *f* : $\hat{y_k} = f(s_k)$
- ▸ Linear mapping parameters:

$$
\mathbf{w}_{k} = \{w_{1k}, \dots, w_{mk}\} \in \mathbb{R}^{m}
$$

▸ *bk* ∈ R

- ▶ Input x in \mathbb{R}^m (1 × *m*), output \hat{y} : concatenation of K formal neurons
- ▸ Linear (affine) mapping ∼ matrix multiplication: s = xW + b
	- ▶ W matrix of size $m \times K$ columns are w_k **▶** b: bias vector size $1 \times K$
	-
- ▶ Element-wise non-linear activation: $\hat{y} = f(s)$

▸ Soft-max Activation:

$$
\hat{y_k} = f(s_k) = \frac{e^{s_k}}{\sum\limits_{k'=1}^{K} e^{s_{k'}}}
$$

- \triangleright Note that $f(s_k)$ depends on the other $s_{k'}$, the arrow is a functional link
- ▸ Probabilistic interpretation for multi-class classification:
	- ▸ Each output neuron [⇔] class ▸ *^y*ˆ*^k* [∼] *^P*(*k*∣x*,*W)
	-

 \Rightarrow Logistic Regression (LR) Model!

2d Toy Example for Multi-Class Classification

2d Toy Example for Multi-Class Classification

Beyond Linear Classification

X-OR Problem

- ▶ Logistic Regression (LR): NN with 1 input layer & 1 output layer
- ▸ LR: limited to linear decision boundaries
- ▸ X-OR: NOT 1 and 2 OR NOT 2 AND 1
	- ▸ X-OR: Non linear decision function

Beyond Linear Classification

- \triangleright LR: limited to linear boundaries
- ▶ Solution: add a layer!
- \blacktriangleright Input x in \mathbb{R}^m , *e.g.* $m = 4$
- ▶ Output \hat{y} in \mathbb{R}^K (*K* $\#$ classes), *e.g. K* = 2
- ▸ Hidden layer h in R*^L*

Multi-Layer Perceptron

- \triangleright Hidden layer h: x projection to a new space R*^L*
- ▶ Neural Net with ≥ 1 hidden layer: Multi-Layer Perceptron (MLP)
- \blacktriangleright h: intermediate representations of x for classification \hat{y} :
- $h = f (xW_1 + b_1)$ *f* non-linear activation, $s = hW_2 + b_2$ $\hat{y} = SoftMax(s)$
- \blacktriangleright Mapping from \times to \hat{v} : non-linear boundary!
	- ⇒ non-linear activation *f* crucial!

Deep Neural Networks

- ▸ Adding more hidden layers: Deep Neural Networks (DNN) ⇒ Basis of Deep Learning
- ▸ Each layer h*^l* projects layer h*^l*−¹ into a new space
- ▸ Gradually learning intermediate representations useful for the task

Conclusion

▶ Deep Neural Networks: applicable to classification problems with non-linear decision boundaries

- ▸ Visualize prediction from fixed model parameters
- ▸ Reverse problem: Supervised Learning

Outline

[Introduction to Neural nets](#page-0-0)

[Training Deep Neural Networks](#page-23-0)

[Introduction to Statistical Decision Theory](#page-0-0)

Training Multi-Layer Perceptron (MLP)

- ▸ Input x, output y
- ► A parametrized (w) model $x \Rightarrow y$: $f_w(x_i) = \hat{y}_i$
- ▸ Supervised context:
	- ▸ Training set A = {(x*i,* y[∗] *ⁱ*)}*i*∈{1*,*2*,...,N*}
	- ▶ Loss function $\ell(\hat{y}_i, y_i^*)$ for each annotated pair (x_i, y_i^*)
	- ▶ Goal: Minimizing average loss $\mathcal L$ over training set: $\mathcal L(w) = \frac{1}{N} \sum_{i=1}^N \ell(\hat{y_i}, y_i^*)$
- **► Assumptions: parameters w** $\in \mathbb{R}^d$ continuous, \mathcal{L} differentiable
- ► Gradient $\nabla_{\mathbf{w}} = \frac{\partial \mathcal{L}}{\partial \mathbf{w}}$: steepest direction to decrease loss $\mathcal{L}(\mathbf{w})$

MLP Training

▸ Gradient descent algorithm:

- ▸ Initialyze parameters w
- \triangleright Update: $w^{(t+1)} = w^{(t)} \eta \frac{\partial \mathcal{L}}{\partial w}$

► Until convergence, e.g.
$$
\|\nabla_{\mathbf{w}}\|^2 \approx 0
$$

Supervised Learning: Multi-Class Classification

- ▸ Logistic Regression for multi-class classification
- \bullet $s_i = x_iW + b$
- ▸ Soft-Max (SM): ^yˆ*^k* [∼] *^P*(*k*/xi*,*W*,* ^b) ⁼ *^e*s*^k K* ∑ *k*′=1 *e*s *k*′
- Supervised loss function: $\mathcal{L}(W, b) = \frac{1}{N}$ *N* $\sum_{i=1} \ell(\hat{y}_i, y_i^*)$

1.
$$
y \in \{1; 2; ...; K\}
$$

\n2. $\hat{y}_i = \underset{k}{\arg \max} P(k/x_i, W, b)$
\n3. $\ell_{0/1}(\hat{y}_i, y_i^*) = \begin{cases} 1 & \text{if } \hat{y}_i \neq y_i^* \\ 0 & \text{otherwise} \end{cases}$: **0/1 loss**

Logistic Regression Training Formulation

- ▸ Input x*i*, ground truth output supervision y[∗] *i*
- ▸ One hot-encoding for y[∗] *i* :

$$
y_{c,i}^* = \begin{cases} 1 & \text{if } c \text{ is the ground truth class for } x_i \\ 0 & \text{otherwise} \end{cases}
$$

Logistic Regression Training Formulation

- ▶ Loss function: multi-class Cross-Entropy (CE) ℓ_{CE}
- ► ℓ_{CE} : Kullback-Leiber divergence between y_i* and \hat{y}_i

$$
\ell_{CE}(\hat{y}_i, y_i^*) = KL(y_i^*, \hat{y}_i) = -\sum_{c=1}^K y_{c,i}^* log(\hat{y}_{c,i}) = -log(\hat{y}_{c^*,i})
$$

► <u>∧</u>, KL asymmetric: *KL*(\hat{y}_i, y_i^*) ≠ *KL*(y_i^*, \hat{y}_i) <u>∧</u>

 $KL(y_i^*, \hat{y}_i) = -log(\hat{y}_{c^*, i}) = -log(0.8) \approx 0.22$

Logistic Regression Training

$$
\triangleright \mathcal{L}_{CE}(W, b) = \frac{1}{N} \sum_{i=1}^{N} \ell_{CE}(\hat{y}_i, y_i^*) = -\frac{1}{N} \sum_{i=1}^{N} log(\hat{y}_{c^*, i})
$$

- $\triangleright \ell_{CE}$ smooth convex upper bound of $\ell_{0/1}$ ⇒ gradient descent optimization
- ► Gradient descent: $W^{(t+1)} = W^{(t)} \eta \frac{\partial \mathcal{L}_{CE}}{\partial W}$ ($b^{(t+1)} = b^{(t)} \eta \frac{\partial \mathcal{L}_{CE}}{\partial b}$)
- \triangleright **MAIN CHALLENGE:** computing $\frac{\partial \mathcal{L}_{CE}}{\partial W} = \frac{1}{N}$ *N* ∑ *i*=1 $\frac{\partial \ell_{\textsf{CE}}}{\partial \textsf{W}}$?

$$
\Rightarrow \underline{\text{Key Property:}} \text{ chain rule } \frac{\partial x}{\partial z} = \frac{\partial x}{\partial y} \frac{\partial y}{\partial z}
$$

$$
\Rightarrow \underline{\text{Backpropagation of gradient error}}
$$

⇒ Backpropagation of gradient error!

Chain Rule

