
Outline

Introduction to Neural nets

Training Deep Neural Networks

Introduction to Statistical Decision Theory



The Formal Neuron: 1943 [?]

� Basis of Neural Networks
� Input: vector x ∈ Rm, i.e. x = {xi}i∈{1,2,...,m}� Neuron output ŷ ∈ R: scalar



The Formal Neuron: 1943 [?]

� Mapping from x to ŷ :
1. Linear (affine) mapping: s = w

�
x + b

2. Non-linear activation function: f : ŷ = f (s)



The Formal Neuron: Linear Mapping

� Linear (affine) mapping: s = w�x + b = m∑
i=1wixi + b

� w: normal vector to an hyperplane in Rm ⇒ linear boundary� b bias, shift the hyperplane position

2D hyperplane: line 3D hyperplane: plane



The Formal Neuron: Activation Function

� ŷ = f (w�x + b),� f: activation function
� Bio-inspired choice: Step (Heaviside) function: H(z) = �1 if z ≥ 0

0 otherwise

� Popular f choices: sigmoid, tanh, ReLU, GELU, ...� Sigmoid: �(z) = (1 + e−az)−1

� a ↑: more similar to step function (step: a →∞)� Sigmoid: linear and saturating regimes



Step function: Connection to Biological Neurons

� Formal neuron, step activation H: ŷ = H(w�x + b)� ŷ = 1 (activated) ⇔ w
�
x ≥ −b� ŷ = 0 (unactivated) ⇔ w
�
x < −b

� Biological Neurons: output activated⇔ input weighted by synaptic weight ≥ threshold



The Formal neuron: Application to Binary Classification

� Binary Classification: label input x as belonging to class 1 or 0
� Neuron output with sigmoid:

ŷ = 1
1 + e−a(w�x+b)� Sigmoid: probabilistic interpretation ⇒ ŷ ∼ P(1�x)� Input x classified as 1 if P(1�x) > 0.5 ⇔ w

�
x + b > 0� Input x classified as 0 if P(1�x) < 0.5 ⇔ w
�
x + b < 0⇒ sign(w

�
x + b): linear boundary decision in input space !



The Formal neuron: Toy Example for Binary Classification

� 2d example: m = 2, x = {x1, x2} ∈ [−5;5] × [−5;5]� Linear mapping: w = [1;1] and b = −2
� Result of linear mapping : s = w�x + b



The Formal neuron: Toy Example for Binary Classification

� 2d example: m = 2, x = {x1, x2} ∈ [−5;5] × [−5;5]� Linear mapping: w = [1;1] and b = −2
� Result of linear mapping : s = w�x + b
� Sigmoid activation function: ŷ = �1 + e−a(w�x+b)�−1,

a = 10



The Formal neuron: Toy Example for Binary Classification

� 2d example: m = 2, x = {x1, x2} ∈ [−5;5] × [−5;5]� Linear mapping: w = [1;1] and b = −2
� Result of linear mapping : s = w�x + b
� Sigmoid activation function: ŷ = �1 + e−a(w�x+b)�−1,

a = 1



The Formal neuron: Toy Example for Binary Classification

� 2d example: m = 2, x = {x1, x2} ∈ [−5;5] × [−5;5]� Linear mapping: w = [1;1] and b = −2
� Result of linear mapping : s = w�x + b
� Sigmoid activation function: ŷ = �1 + e−a(w�x+b)�−1,

a = 0.1



From Formal Neuron to Neural Networks

� Formal Neuron:
1. A single scalar output

2. Linear decision boundary for binary

classification� Single scalar output: limited for several tasks� Ex: multi-class classification, e.g. MNIST or

CIFAR



Perceptron and Multi-Class Classification

� Formal Neuron: limited to binary
classification

� Multi-Class Classification: use several
output neurons instead of a single one!⇒ Perceptron

� Input x in Rm

� Output neuron ŷ1 is a formal neuron:� Linear (affine) mapping: s1 = w1
�
x + b1� Non-linear activation function: f :

ŷ1 = f (s1)� Linear mapping parameters:� w1 = {w11, ...,wm1} ∈ Rm� b1 ∈ R



Perceptron and Multi-Class Classification

� Input x in Rm

� Output neuron ŷk is a formal neuron:� Linear (affine) mapping: sk = wk
�
x + bk� Non-linear activation function: f :

ŷk = f (sk)� Linear mapping parameters:� wk = {w1k , ...,wmk} ∈ Rm� bk ∈ R



Perceptron and Multi-Class Classification

� Input x in Rm (1 ×m), output ŷ : concatenation of K formal neurons� Linear (affine) mapping ∼ matrix multiplication: s = xW + b� W matrix of size m ×K - columns are wk� b: bias vector - size 1 ×K
� Element-wise non-linear activation: ŷ = f (s)



Perceptron and Multi-Class Classification

� Soft-max Activation:

ŷk = f (sk) = e
sk

K∑
k′=1 e

s
k′

� Note that f (sk) depends on the other sk′ ,
the arrow is a functional link� Probabilistic interpretation for multi-class
classification:� Each output neuron ⇔ class� ŷk ∼ P(k �x,W)

⇒ Logistic Regression (LR) Model!



2d Toy Example for Multi-Class Classification

� x = {x1, x2} ∈ [−5;5] × [−5;5], ŷ : 3 outputs (classes)

Linear mapping for
each class:
sk = wk

�x + bk

w1 = [1;1], b1 = −2 w2 = [0;−1], b2 = 1 w3 = [1;−0.5], b3 = 10

Soft-max output:
P(k �x,W)



2d Toy Example for Multi-Class Classification

� x = {x1, x2} ∈ [−5;5] × [−5;5], ŷ : 3 outputs (classes)

Soft-max output:
P(k �x,W)

w1 = [1;1], b1 = −2 w2 = [0;−1], b2 = 1 w3 = [1;−0.5], b3 = 10

Class Prediction:
k
∗ = argmax

k

P(k �x,W)



Beyond Linear Classification

X-OR Problem

� Logistic Regression (LR): NN with 1 input layer & 1 output layer
� LR: limited to linear decision boundaries� X-OR: NOT 1 and 2 OR NOT 2 AND 1� X-OR: Non linear decision function



Beyond Linear Classification

� LR: limited to linear boundaries
� Solution: add a layer!

� Input x in Rm, e.g. m = 4
� Output ŷ in RK (K # classes),

e.g. K = 2
� Hidden layer h in RL



Multi-Layer Perceptron

� Hidden layer h: x projection to a new
space RL

� Neural Net with ≥ 1 hidden layer:
Multi-Layer Perceptron (MLP)

� h: intermediate representations of x
for classification ŷ:

� h = f (xW1 + b1)
f non-linear activation,
s = hW2 + b2
ŷ = SoftMax(s)

� Mapping from x to ŷ: non-linear
boundary!⇒ non-linear activation f crucial!



Deep Neural Networks

� Adding more hidden layers: Deep Neural Networks (DNN) ⇒ Basis of Deep
Learning

� Each layer hl projects layer hl−1 into a new space
� Gradually learning intermediate representations useful for the task



Conclusion

� Deep Neural Networks: applicable to classification problems with non-linear
decision boundaries

� Visualize prediction from fixed model parameters
� Reverse problem: Supervised Learning



Outline

Introduction to Neural nets

Training Deep Neural Networks

Introduction to Statistical Decision Theory



Training Multi-Layer Perceptron (MLP)

� Input x, output y
� A parametrized (w) model x⇒ y: fw(xi) = ŷi� Supervised context:� Training set A = �(xi , y∗i )�i∈{1,2,...,N}� Loss function `(ŷi , y∗i ) for each annotated pair (xi , y∗i )� Goal: Minimizing average loss L over training set: L(w) = 1

N
∑N

i=1 `(ŷi , y∗i )� Assumptions: parameters w ∈ Rd continuous, L differentiable
� Gradient ∇w = @L

@w : steepest direction to decrease loss L(w)



MLP Training

� Gradient descent algorithm:� Initialyze parameters w

� Update: w
(t+1) = w

(t) − ⌘ @L
@w� Until convergence, e.g. ��∇w ��2 ≈ 0



Supervised Learning: Multi-Class Classification

� Logistic Regression for multi-class classification
� si = xiW + b
� Soft-Max (SM): ŷk ∼ P(k�xi,W,b) = e

s
k

K∑
k′=1 e

s
k′

� Supervised loss function: L(W,b) = 1
N

N∑
i=1 `(ŷi , y∗i )

1. y ∈ {1;2; ...;K}
2. ŷi = argmax

k

P(k�xi ,W,b)
3. `0�1(ŷi , y∗i ) =

�������
1 if ŷi ≠ y∗i
0 otherwise

: 0/1 loss



Logistic Regression Training Formulation

� Input xi , ground truth output supervision y∗i� One hot-encoding for y∗i :

y
∗
c,i =
�������
1 if c is the groud truth class for xi
0 otherwise



Logistic Regression Training Formulation

� Loss function: multi-class Cross-Entropy (CE) `CE� `CE : Kullback-Leiber divergence between y∗i and ŷi

`CE (̂yi, y∗i ) = KL(y∗i , ŷi) = − K�
c=1

y
∗
c,i log(ŷc,i) = −log(ŷc∗,i)

� " KL asymmetric: KL(̂yi, y∗i ) ≠ KL(y∗i , ŷi) "



Logistic Regression Training

� LCE(W,b) = 1
N

N∑
i=1 `CE(ŷi , y∗i ) = − 1

N

N∑
i=1 log(ŷc∗,i)� `CE smooth convex upper bound of `0�1⇒ gradient descent optimization

� Gradient descent: W(t+1) =W(t) − ⌘ @LCE

@W (b(t+1) = b(t) − ⌘ @LCE

@b )

� MAIN CHALLENGE: computing @LCE

@W = 1
N

N∑
i=1

@`CE
@W ?

⇒ Key Property: chain rule
@x

@z
= @x

@y

@y

@z⇒ Backpropagation of gradient error!



Chain Rule

@`
@x
= @`

@ŷ

@ŷ

@x

� Logistic regression: @`CE
@W
= @`CE

@ŷi

@ŷi
@si

@si
@W


	Introduction to Neural nets
	

	Training Deep Neural Networks
	

	Introduction to Statistical Decision Theory
	


