Outline

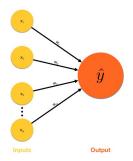
Introduction to Neural nets

Training Deep Neural Networks

Introduction to Statistical Decision Theory

The Formal Neuron: 1943 [?]

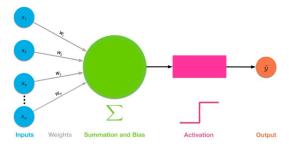
- Basis of Neural Networks
- Input: vector $\mathbf{x} \in \mathbb{R}^m$, *i.e.* $\mathbf{x} = \{x_i\}_{i \in \{1,2,\ldots,m\}}$
- Neuron output $\hat{y} \in \mathbb{R}$: scalar



The Formal Neuron: 1943 [?]

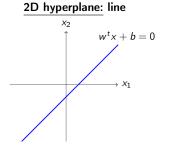
- Mapping from x to \hat{y} :

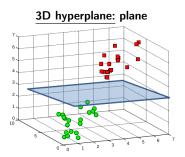
 - 1. Linear (affine) mapping: $s = w^{T}x + b$ 2. Non-linear activation function: $f: \hat{y} = f(s)$



The Formal Neuron: Linear Mapping

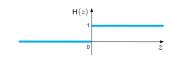
- Linear (affine) mapping: $s = w^{\mathsf{T}} x + b = \sum_{i=1}^{m} w_i x_i + b$
 - w: normal vector to an hyperplane in $\mathbb{R}^m \Rightarrow$ linear boundary
 - b bias, shift the hyperplane position



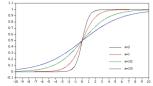


The Formal Neuron: Activation Function

- $\hat{y} = f(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b),$
- f: activation function
 - ▶ Bio-inspired choice: Step (Heaviside) function: $H(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{otherwise} \end{cases}$

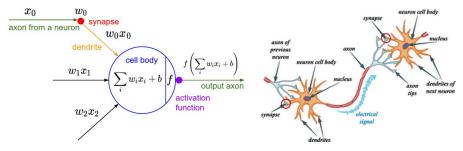


- Popular f choices: sigmoid, tanh, ReLU, GELU, ...
- Sigmoid: $\sigma(z) = (1 + e^{-az})^{-1}$



- a ↑: more similar to step function (step: a → ∞)
- Sigmoid: linear and saturating regimes

Step function: Connection to Biological Neurons



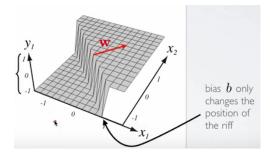
- Formal neuron, step activation $H: \hat{y} = H(w^T x + b)$
 - $\hat{y} = 1$ (activated) $\Leftrightarrow w^{\top} x \ge -b$
 - $\hat{y} = 0$ (unactivated) $\Leftrightarrow w^{\mathsf{T}} \times \langle -b \rangle$
- Biological Neurons: output activated
 - \Leftrightarrow input weighted by synaptic weight \geq threshold

The Formal neuron: Application to Binary Classification

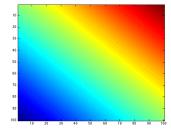
- Binary Classification: label input x as belonging to class 1 or 0
- Neuron output with sigmoid:

$$\hat{y} = \frac{1}{1 + e^{-a(\mathbf{w}^{\mathsf{T}} \mathbf{x} + b)}}$$

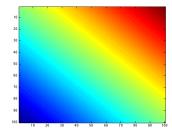
- Sigmoid: probabilistic interpretation $\Rightarrow \hat{y} \sim P(1|x)$
 - Input x classified as 1 if $P(1|x) > 0.5 \Leftrightarrow w^{T}x + b > 0$
 - Input x classified as 0 if P(1|x) < 0.5 ⇔ w^Tx + b < 0 ⇒ sign(w^Tx + b): linear boundary decision in input space !

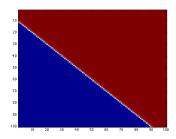


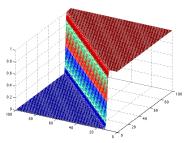
- 2d example: $m = 2, x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5]$
- Linear mapping: w = [1; 1] and b = -2
- Result of linear mapping : $s = w^T x + b$



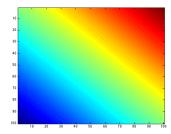
- 2d example: $m = 2, x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5]$
- Linear mapping: w = [1; 1] and b = -2
- Result of linear mapping : $s = w^T x + b$
- Sigmoid activation function: $\hat{y} = (1 + e^{-a(w^{\top}x+b)})^{-1}$, a = 10

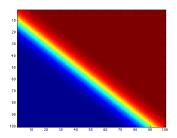


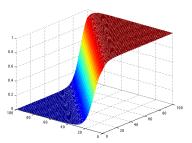




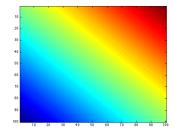
- 2d example: $m = 2, x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5]$
- Linear mapping: w = [1; 1] and b = -2
- Result of linear mapping : $s = w^T x + b$
- Sigmoid activation function: $\hat{y} = (1 + e^{-a(w^{\top}x+b)})^{-1}$, a = 1

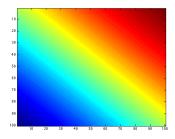


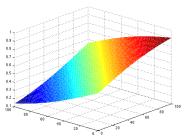




- 2d example: m = 2, $x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5]$
- Linear mapping: w = [1; 1] and b = -2
- Result of linear mapping : $s = w^T x + b$
- Sigmoid activation function: $\hat{y} = (1 + e^{-a(w^{T}x+b)})^{-1}$, a = 0.1

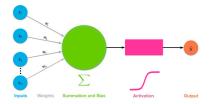






From Formal Neuron to Neural Networks

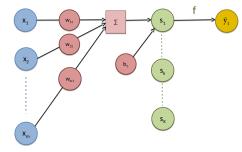
- Formal Neuron:
 - 1. A single scalar output
 - 2. Linear decision boundary for binary classification
- Single scalar output: limited for several tasks
 - Ex: multi-class classification, e.g. MNIST or CIFAR



- Formal Neuron: limited to binary classification
- Multi-Class Classification: use several output neurons instead of a single one!
 ⇒ Perceptron
- Input x in \mathbb{R}^m
- Output neuron $\hat{y_1}$ is a formal neuron:
 - Linear (affine) mapping: $s_1 = w_1^T x + b_1$
 - Non-linear activation function: f: ŷ₁ = f(s₁)
- Linear mapping parameters:

•
$$w_1 = \{w_{11}, ..., w_{m1}\} \in \mathbb{R}^m$$

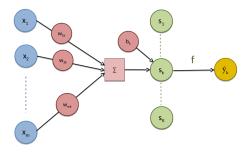
• $b_1 \in \mathbb{R}$



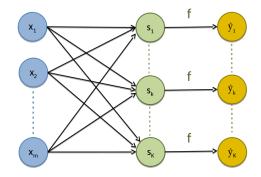
- Input x in \mathbb{R}^m
- Output neuron $\hat{y_k}$ is a formal neuron:
 - Linear (affine) mapping: $s_k = w_k^T x + b_k$
 - Non-linear activation function: f: $\hat{y_k} = f(s_k)$
- Linear mapping parameters:

•
$$w_k = \{w_{1k}, ..., w_{mk}\} \in \mathbb{R}^m$$

 $b_k \in \mathbb{R}$



- ▶ Input x in \mathbb{R}^m (1 × m), output \hat{y} : concatenation of K formal neurons
- Linear (affine) mapping ~ matrix multiplication: s = xW + b
 - W matrix of size m × K columns are w_k
 - b: bias vector size $1 \times K$
- Element-wise non-linear activation: $\hat{y} = f(s)$

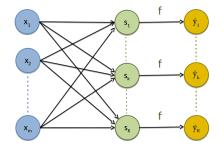


Soft-max Activation:

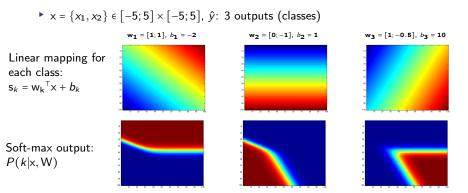
$$\hat{y_k} = f(s_k) = \frac{e^{s_k}}{\sum\limits_{k'=1}^{K} e^{s_{k'}}}$$

- Note that f(s_k) depends on the other s_{k'}, the arrow is a functional link
- Probabilistic interpretation for multi-class classification:
 - ► Each output neuron ⇔ class
 - $\hat{y_k} \sim P(k|\mathbf{x}, \mathbf{W})$

\Rightarrow Logistic Regression (LR) Model!



2d Toy Example for Multi-Class Classification



2d Toy Example for Multi-Class Classification

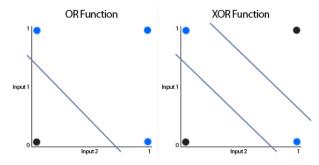
*
$$x = {x_1, x_2} \in [-5; 5] \times [-5; 5], \hat{y}: 3 \text{ outputs (classes)}$$

Soft-max output:
 $P(k|x, W)$
Class Prediction:
 $k^* = \arg \max_k P(k|x, W)$

Beyond Linear Classification

X-OR Problem

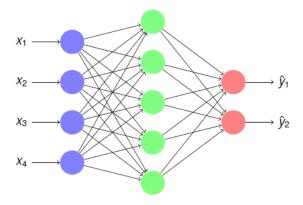
- Logistic Regression (LR): NN with 1 input layer & 1 output layer
- LR: limited to linear decision boundaries
- X-OR: NOT 1 and 2 OR NOT 2 AND 1
 - X-OR: Non linear decision function



Beyond Linear Classification

- LR: limited to linear boundaries
- Solution: add a layer!

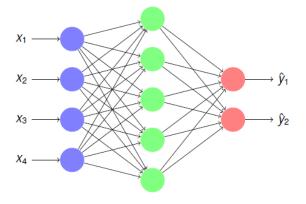
- Input x in \mathbb{R}^m , e.g. m = 4
- Output \hat{y} in \mathbb{R}^{K} (K # classes), e.g. K = 2
- Hidden layer h in \mathbb{R}^{L}



Multi-Layer Perceptron

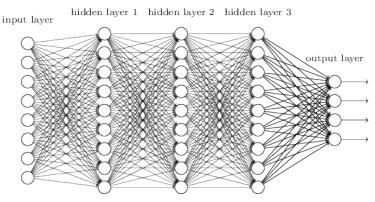
- ► Hidden layer h: x projection to a new space ℝ^L
- Neural Net with ≥ 1 hidden layer: Multi-Layer Perceptron (MLP)
- h: intermediate representations of x for classification ŷ:

- h = f (xW₁ + b₁) f non-linear activation, s = hW₂ + b₂ ŷ = SoftMax(s)
- Mapping from x to ŷ: non-linear boundary!
 - \Rightarrow non-linear activation f crucial!



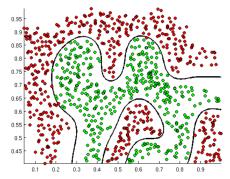
Deep Neural Networks

- Adding more hidden layers: Deep Neural Networks (DNN) ⇒ Basis of Deep Learning
- Each layer h' projects layer h'^{-1} into a new space
- Gradually learning intermediate representations useful for the task



Conclusion

 Deep Neural Networks: applicable to classification problems with non-linear decision boundaries



- Visualize prediction from fixed model parameters
- Reverse problem: Supervised Learning

Outline

Introduction to Neural nets

Training Deep Neural Networks

Introduction to Statistical Decision Theory

Training Multi-Layer Perceptron (MLP)

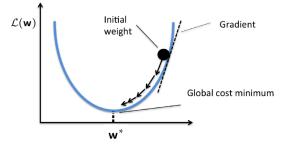
- Input x, output y
- A parametrized (w) model $x \Rightarrow y$: $f_w(x_i) = \hat{y_i}$
- Supervised context:
 - Training set $\mathcal{A} = \{(x_i, y_i^*)\}_{i \in \{1, 2, \dots, N\}}$
 - Loss function $\ell(\hat{y}_i, y_i^*)$ for each annotated pair (x_i, y_i^*)
 - Goal: Minimizing average loss \mathcal{L} over training set: $\mathcal{L}(w) = \frac{1}{N} \sum_{i=1}^{N} \ell(\hat{y}_i, y_i^*)$
- Assumptions: parameters $w \in \mathbb{R}^d$ continuous, \mathcal{L} differentiable
- Gradient $\nabla_{w} = \frac{\partial \mathcal{L}}{\partial w}$: steepest direction to decrease loss $\mathcal{L}(w)$

MLP Training

Gradient descent algorithm:

- Initialyze parameters w
- Vpdate: $w^{(t+1)} = w^{(t)} \eta \frac{\partial \mathcal{L}}{\partial w}$

• Until convergence, *e.g.*
$$\|\nabla_{\mathbf{w}}\|^2 \approx 0$$

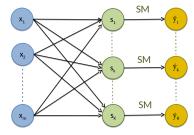


Supervised Learning: Multi-Class Classification

- Logistic Regression for multi-class classification
- $s_i = x_i W + b$
- ► Soft-Max (SM): $\hat{y_k} \sim P(k/x_i, W, b) = \frac{e^{\mathbf{s}_k}}{\sum\limits_{k'=\mathbf{1}}^{K} e^{\mathbf{s}_{k'}}}$
- Supervised loss function: $\mathcal{L}(W, b) = \frac{1}{N} \sum_{i=1}^{N} \ell(\hat{y}_i, y_i^*)$

pervised loss function:
$$\mathcal{L}(W, b) = \frac{1}{N} \sum_{i=1}^{k} \ell(y_i, y_i)$$

1. $y \in \{1; 2; ...; K\}$
2. $\hat{y_i} = \arg \max_k P(k/x_i, W, b)$
3. $\ell_{0/1}(\hat{y_i}, y_i^*) = \begin{cases} 1 & \text{if } \hat{y_i} \neq y_i^* \\ 0 & \text{otherwise} \end{cases}$: **0/1 loss**



Logistic Regression Training Formulation

- Input x_i, ground truth output supervision y^{*}_i
- One hot-encoding for y^{*}_i:

$$y_{c,i}^{*} = \begin{cases} 1 & \text{if c is the groud truth class for } x_i \\ 0 & \text{otherwise} \end{cases}$$

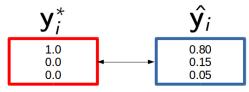
Logistic Regression Training Formulation

1

- ▶ Loss function: multi-class Cross-Entropy (CE) ℓ_{CE}
- ℓ_{CE} : Kullback-Leiber divergence between y_i^* and \hat{y}_i

$$\ell_{CE}(\hat{y}_{i}, y_{i}^{*}) = KL(y_{i}^{*}, \hat{y}_{i}) = -\sum_{c=1}^{K} y_{c,i}^{*} log(\hat{y}_{c,i}) = -log(\hat{y}_{c^{*},i})$$

• \land KL asymmetric: $KL(\hat{y}_i, y_i^*) \neq KL(y_i^*, \hat{y}_i)$ \land



 $\mathsf{KL}(\mathbf{y}^*_{\mathbf{i}}, \mathbf{\hat{y}}_{\mathbf{i}}) = -\log(\hat{y}_{c^*, i}) = -\log(0.8) \approx 0.22$

Logistic Regression Training

•
$$\mathcal{L}_{CE}(W, b) = \frac{1}{N} \sum_{i=1}^{N} \ell_{CE}(\hat{y}_i, y_i^*) = -\frac{1}{N} \sum_{i=1}^{N} log(\hat{y}_{c^*, i})$$

- ℓ_{CE} smooth convex upper bound of $\ell_{0/1}$ \Rightarrow gradient descent optimization
- ► Gradient descent: $W^{(t+1)} = W^{(t)} \eta \frac{\partial \mathcal{L}_{CE}}{\partial W} \quad (b^{(t+1)} = b^{(t)} \eta \frac{\partial \mathcal{L}_{CE}}{\partial b})$
- MAIN CHALLENGE: computing $\frac{\partial \mathcal{L}_{CE}}{\partial W} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell_{CE}}{\partial W}$?

$$\Rightarrow \frac{\text{Key Property:}}{z} \text{ chain rule } \frac{\partial x}{\partial z} = \frac{\partial x}{\partial y} \frac{\partial y}{\partial z}$$

⇒ Backpropagation of gradient error!

Chain Rule

