

• Good initialization has a significant effect

 $(n'$ neurons)

- if linear activation
- one layer: variance scaled by

$$
Var[y] = nVar[w]Var[x]
$$

$$
y = Wx
$$

(*n'* neurons)

- if linear activation
- one layer: variance scaled by

$$
Var[y] = nVar[w]Var[x]
$$

• many layers: variance scaled by

$$
Var[y] = \prod_{d} n_d Var[w_d] Var[x]
$$

Variance Scaling: backward

Xavier initialization: torch.nn.init.xavier_normal_

forward:

 $nVar[w] = 1$

backward:

 $n'Var[w] = 1$

• Gaussian distribution:

$$
w \sim \mathcal{N}(\mu = 0, \sigma = \sqrt{1/n})
$$

- Uniform distribution: $w \sim \mathcal{U}(-a, +a), a = \sqrt{3/n}$
- Consider forward and backward: replace *n* with $(n + n')/2$

LeCun et al 1998 "Efficient Backprop" Glorot & Bengio 2010 "Understanding the difficulty of training deep feedforward neural networks"

Xavier initialization: torch.nn.init.xavier_normal_

poor initialization: earlier layer has smaller gradients

Xavier initialization: all layers have similar gradient scale

Glorot & Bengio 2010 "Understanding the difficulty of training deep feedforward neural networks"

Weight initialization: ReLU

 $x' = \text{ReLU}(x)$ $(n$ neurons)

- **if ReLU** activation
- one layer: variance scaled by

$$
Var[y] = \frac{1}{2} nVar[w]Var[x]
$$

! = #\$′ ()′ neurons) \$ Var (=

Weight initialization: ReLU

 $x' = \text{ReLU}(x)$ $(n$ neurons)

 $y = W x'$ $(n'$ neurons)

- **if ReLU** activation
- one layer: variance scaled by

$$
Var[y] = \frac{1}{2} nVar[w]Var[x]
$$

many layers: variance scaled by

$$
Var[y] = \prod_{d} \frac{1}{2} n_d Var[w_d] Var[x]
$$

Kaiming initialization: torch.nn.init.kaiming normal

forward:

1 $\frac{1}{2} n$ Var $[w] = 1$

backward:

1 $\frac{1}{2}n'Var[w] = 1$ • Gaussian distribution:

$$
w \sim \mathcal{N}(\mu = 0, \sigma = \sqrt{2/n})
$$

- Uniform distribution: $w \sim \mathcal{U}(-a, +a), a = \sqrt{6/n}$
- sufficient to use n or n'

LeCun et al 1998 "Efficient Backprop" Glorot & Bengio 2010 "Understanding the difficulty of training deep feedforward neural networks"

Kaiming initialization: torch.nn.init.kaiming normal

- We want to maintain variance for all layers
- normalize features in the network

- We want to maintain variance for all layers
- normalize features in the network

- We want to maintain variance for all layers
- normalize features in the network

- We want to maintain variance for all layers
- normalize features in the network

- We want to maintain variance for all layers
- normalize features in the network

- We want to maintain variance for all layers
- normalize features in the network

- We want to maintain variance for all layers
- normalize features in the network
- train end-to-end by BackProp

Normalization Modules: Operations

- 1. compute $E[x]$ and $Var[x]$
- 2. normalize by $E[x]$ and std[x]
- 3. compensate by a linear transform

linear

Ioffe & Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift". ICML 2015

Normalization Modules: Variants

differ in support sets of $E[x]$, $Var[x]$

Ioffe & Szegedy, 2015; Ba, Kiros, Hinton, 2016; Ulyanov, Vedaldi, Lempitsky, 2016; Wu & He, 2018

Normalization Modules: Effects

• **Enable training models that are otherwise not trainable**

Ioffe & Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift". ICML 2015