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Xavier initialization: torch.nn.init.xavier_normal_

LeCun et al 1998 “Efficient Backprop”
Glorot & Bengio 2010 “Understanding the difficulty of training deep feedforward neural networks”

• Gaussian distribution:
-	~	0(2 = 0, 5 = 1/,)

• Uniform distribution:
-	~	9 −;,+; , ; = 3/,

• Consider forward and backward:
replace , with , + ,′ /2

)Var * = 1

)′Var * = 1
backward:

forward:



Xavier initialization: torch.nn.init.xavier_normal_

Glorot & Bengio 2010 “Understanding the difficulty of training deep feedforward neural networks”

poor initialization:
earlier layer has smaller gradients 

Xavier initialization:
all layers have similar gradient scale
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Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. ICCV 2015.

• if ReLU activation
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Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. ICCV 2015.
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Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. ICCV 2015.
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• if ReLU activation
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Kaiming initialization: torch.nn.init.kaiming_normal_

LeCun et al 1998 “Efficient Backprop”
Glorot & Bengio 2010 “Understanding the difficulty of training deep feedforward neural networks”

• Gaussian distribution:
-	~	0(2 = 0, 5 = 2/,)

• Uniform distribution:
-	~	9 −;,+; , ; = 6/,

• sufficient to use , or ,′

1
2)Var * = 1

1
2)′Var * = 1

backward:

forward:



Kaiming initialization: torch.nn.init.kaiming_normal_

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. ICCV 2015.

22-layer VGG w/ ReLU :
better init converges faster

Xavier init.

Kaiming init.

30-layer VGG w/ ReLU:
better init enables training

Xavier init.

Kaiming init.
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• We want to maintain variance for all layers
• normalize features in the network

what if we think of 
this as a new input?
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Normalization Modules

variance

depth (# layers)

• We want to maintain variance for all layers
• normalize features in the network
• train end-to-end by BackProp



Normalization Modules: Operations
1. compute E[%] and Var[%]
2. normalize by E[%] and std[%]
3. compensate by a linear transform

linear

norm

relu

linear

norm

relu

Ioffe & Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015

-% = % − E[%]
Var % + 1

2 = 3-% + 4



Normalization Modules: Variants
differ in support sets of E % , Var[%]

Ioffe & Szegedy, 2015; Ba, Kiros, Hinton, 2016; Ulyanov, Vedaldi, Lempitsky, 2016; Wu & He, 2018 
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Ioffe & Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015

Normalization Modules: Effects
• Enable training models that are otherwise not trainable

• Speed up convergence

• Improve accuracy


