
Weight Initialization

exploding:
too big

vanishing
too small

ideal

signal variance
(forward)

Weight initialization
• Good initialization has a significant effect

depth (# layers)

exploding
too large

vanishing
too small

ideal

Weight initialization
• Good initialization has a significant effect

depth (# layers)

gradient variance
(backward)

Weight initialization
!

(! neurons)

" = $!
(!′ neurons)

$ Var (=)Var * Var[,]

• if linear activation
• one layer: variance scaled by

!
(! neurons)

" = $!
(!′ neurons)

$

Weight initialization
!! =#

"
$!"%" • definition

Var !! = Var[#
"
$!"%"]

Var !! =#
"
Var[$!"%"] • independence

Var !! =#
"
Var[$!"]	Var[%"] • independence &

zero-mean

Var ! = ,Var[-]Var[%] • identical distributions

derivation

Weight initialization
!

(! neurons)

" = $!
(!′ neurons)

$ Var (=)Var * Var[,]

• if linear activation
• one layer: variance scaled by

Var (=.
!
)!Var *! Var[,]

• many layers: variance scaled by

exploding
if ,#Var -# >1

vanishing
if ,#Var -# <1

ideal

variance

Var (=.
!
)!Var *! Var[,]

Variance Scaling: forward

depth (# layers)

exploding
if ,′#Var -# >1

vanishing
if ,′#Var -# <1

ideal

variance

Var /ℰ/, =.
!
)′!Var *! Var[/ℰ/(]

Variance Scaling: backward

depth (# layers)

Xavier initialization: torch.nn.init.xavier_normal_

LeCun et al 1998 “Efficient Backprop”
Glorot & Bengio 2010 “Understanding the difficulty of training deep feedforward neural networks”

• Gaussian distribution:
-	~	0(2 = 0, 5 = 1/,)

• Uniform distribution:
-	~	9 −;,+; , ; = 3/,

• Consider forward and backward:
replace , with , + ,′ /2

)Var * = 1

)′Var * = 1
backward:

forward:

Xavier initialization: torch.nn.init.xavier_normal_

Glorot & Bengio 2010 “Understanding the difficulty of training deep feedforward neural networks”

poor initialization:
earlier layer has smaller gradients

Xavier initialization:
all layers have similar gradient scale

Weight initialization: ReLU
!" = ReLU(!)

(! neurons)

! = #$′
()′ neurons)

$ Var (= 1
2)Var * Var[,]

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. ICCV 2015.

• if ReLU activation
• one layer: variance scaled by

Weight initialization: ReLU
!" = ReLU(!)

(! neurons)

! = #$′
()′ neurons)

$

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. ICCV 2015.

!! =#
"
$!"%"$ • !	" = ReLU(!)

Var !! = Var[#
"
$!"%"$]

Var !! =#
"
Var[$!"%"$]

Var !! =#
"
Var[$!"]	E[%"$%]

Var ! = ,Var[-] 12Var[%]

derivation

Var &'′
= * &'′ ! − * &'" !

= * &'" ! − * & * ' !

= * &! * '′! = V,- & * '′!
if & is zero-mean but '′ is not.

E '	"! = Var ' /2
if ' is zero-mean and symmetric

Weight initialization: ReLU
!" = ReLU(!)

(! neurons)

! = #$′
()′ neurons)

$ Var (= 1
2)Var * Var[,]

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. ICCV 2015.

Var (=.
!

1
2)!Var *! Var[,]

• many layers: variance scaled by

• if ReLU activation
• one layer: variance scaled by

Kaiming initialization: torch.nn.init.kaiming_normal_

LeCun et al 1998 “Efficient Backprop”
Glorot & Bengio 2010 “Understanding the difficulty of training deep feedforward neural networks”

• Gaussian distribution:
-	~	0(2 = 0, 5 = 2/,)

• Uniform distribution:
-	~	9 −;,+; , ; = 6/,

• sufficient to use , or ,′

1
2)Var * = 1

1
2)′Var * = 1

backward:

forward:

Kaiming initialization: torch.nn.init.kaiming_normal_

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”. ICCV 2015.

22-layer VGG w/ ReLU :
better init converges faster

Xavier init.

Kaiming init.

30-layer VGG w/ ReLU:
better init enables training

Xavier init.

Kaiming init.

Normalization Modules

Normalization Modules

variance

depth (# layers)

normalized
input

• We want to maintain variance for all layers
• normalize features in the network

what if we think of
this as a new input?

Normalization Modules

variance

depth (# layers)

normalized
features

• We want to maintain variance for all layers
• normalize features in the network

Normalization Modules

variance

depth (# layers)

normalized
features

• We want to maintain variance for all layers
• normalize features in the network

Normalization Modules

variance

depth (# layers)

normalized
features

• We want to maintain variance for all layers
• normalize features in the network

Normalization Modules

variance

depth (# layers)

normalized
features

• We want to maintain variance for all layers
• normalize features in the network

Normalization Modules

variance

depth (# layers)

normalized
features

• We want to maintain variance for all layers
• normalize features in the network

Normalization Modules

variance

depth (# layers)

• We want to maintain variance for all layers
• normalize features in the network
• train end-to-end by BackProp

Normalization Modules: Operations
1. compute E[%] and Var[%]
2. normalize by E[%] and std[%]
3. compensate by a linear transform

linear

norm

relu

linear

norm

relu

Ioffe & Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015

-% = % − E[%]
Var % + 1

2 = 3-% + 4

Normalization Modules: Variants
differ in support sets of E % , Var[%]

Ioffe & Szegedy, 2015; Ba, Kiros, Hinton, 2016; Ulyanov, Vedaldi, Lempitsky, 2016; Wu & He, 2018

w/o BN

ac
cu

ra
cy

w/ BN

iterations
Ioffe & Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. ICML 2015

Normalization Modules: Effects
• Enable training models that are otherwise not trainable

• Speed up convergence

• Improve accuracy

