Transfer learning and Domain adaptation

Transfer from ImageNet (source)

Transfer as generic features

Brut Deep features (learned from ImageNet)

(== a learned embedding from Image to vector representation)

Retrieval

Transfer learning (from source to target)

- Frozen features + SVM => solution to small datasets Frozen features + Deep
- Fine tuning not easy in that case (small datasets)

Transfer from source(=ImageNet task) to target task

Source: ImageNet (dataset + 100 classes) => AlexNet trained

Target: new dataset Cal-101 and new classification task with 101 classes =>Chopped

AlexNet (layer i) + SVM trained on

=> Results better than SoA CV methods on Cal-101!

Transfer: fine-tuning of a deep model on target task

Train a deep (AlexNet) on source (ImageNet) Keep the deep params. for target and complete with a small deep on top (fully trained on target task)

Fine-tune the whole model on target data

Challenge: only limited target data, careful about overfitting

Solution: Freeze the gradient's update for AlexNet part

Transfer: fine-tuning of a deep model on target task

Train a deep (AlexNet) on source (ImageNet) Keep the deep params. for target and complete with a small deep on top (fully trained on target task)

Fine-tune the whole model on target data

Challenge: only limited target data, careful about overfitting Solution: Freeze the gradient's update for AlexNet part Other solution: use smaller gradient's update for AlexNet part

Transfer: which supervision?

- Task description
 - Source data: (x^s, y^s) \leftarrow A large amount
 - Target data: (x^t, y^t) (Very) little

Rq: Few/One-shot learning: only a few/one examples in target domain

Many different contexts:

In vision: from large dataset (ImageNet) to small datasets **VOC2007**

In speech: (supervised) speaker adaption

- Source data: audio data and transcriptions from many speakers
- Target data: audio data and its transcriptions of specific user

More on transfer framework

Main purposes: Similar visual domain? Same tasks (ie class)?

Similar domain: ImageNet task => Dog/Cat task

Data not directly related to the task considered

ImageNet: Similar domain, different task (1000 classes but NOT Dog and Cat classes)

General Framework for Transfer Learning

Data *not directly related to* the task considered

Similar domain, completely different tasks

dog

Different domains, same task

General Framework for Transfer Learning

		Source Data (not directly related to the task)		
		labelled	unlabeled	
Data	labelled	Fine-tuning Multitask Learning	Self-supervised Self-taught learning Not considered here	
Target	unlabeled	Domain-adversarial training Zero-shot learning	Self-taught Clustering	

General Framework for Transfer Learning

		Source Data (not directly related to the task)		
		labelled	unlabeled	
Target Data	labelled	Fine-tuning <i>Multitask Learning</i>	Not considered here	
	unlabeled		Not considered here	

Multitask Learning

 The multi-layer structure makes NN suitable for multitask learning
Task A Task B

Transfer Learning - Overview

		Source Data (not directly related to the task)		
		labelled	unlabeled	
Target Data	labelled	Fine-tuning Multitask Learning	Not considered here	
	unlabeled	Domain adaptation- adversarial training	Not considered here	

Unsupervised Domain Adaptation (UDA)

Final test on target domain!

Unsupervised Domain adaptation (UDA): objectives

Main principle: diminish the domain shift in the learned features, encourage domain confusion

UDA strategy: align both domains

UDA strategy: 1/ domain-adversarial training

Add to the feature generator (G) a domain classifier (discriminant D) for which labels are available!

Learn G and D:

G tries to align domains

D tries to identify domains

Rq: Similar to GAN (coming soon)

UDA strategy: 1/ domain-adversarial training 2/ classification task (same for source and target here)

Maximize label classification accuracy + minimize domain classification accuracy

feature extractor

Not only cheat the domain classifier, but satisfying label classifier at the same time

input +

Maximize label classification accuracy

Maximize domain classification accuracy

UDA strategy: joint learning

Optim from [Yaroslav Ganin, Victor Lempitsky, ICML, 2015], reconsidered and better formulated in GAN framework (latter in the course)

Domain-adversarial training

TARGET

MNIST-M

SYN SIGNS

GTSRB

MNIST

Method	SOURCE	MNIST	Syn Numbers	SVHN	Syn Signs
METHOD	TARGET	MNIST-M	SVHN	MNIST	GTSRB
SOURCE ONLY		.5749	.8665	.5919	.7400
SA (Fernando et al., 2013)		.6078~(7.9%)	.8672~(1.3%)	.6157~(5.9%)	.7635~(9.1%)
PROPOSED APPROACH		.8149~(57.9%)	. 9048 (66.1%)	. 7107 (29.3%)	. 8866 (56.7%)
TRAIN ON TARGET		.9891	.9244	.9951	.9987

Domain adaptation

General formulation

Domain adaptation

General formulation

Use-Case: Domain adaptation for Autonomous driving

Context: Neural network-based autonomous driving system framework

Different, though *related* input data distributions

Source domain → Target domain

Different, though *related* input data distributions

Source domain → Target domain

Different, though *related* input data distributions

Source domain → Target domain

Different, though *related* input data distributions

Source domain → Target domain

Different, though *related* input data distributions

Source domain → Target domain

• Synthetic vs. real

Domain gap for VISUAL SEGMENTATION

Different, though *related* input data distributions Source domain → Target domain

• Synthetic vs. real

Different, though *related* input data distributions

Source domain → Target domain

• Synthetic vs. real

Unsupervised Domain Adaptation (UDA)

Labelled source domain data

Sky Building Road Sidewalk Fence Vegetation Pole Car Sign Pedestrian Cyclist

Unlabelled target domain data

Qualitative results

input image

without UDA

with UDA

road	sidewalk	building	wall	fence
pole		sign	vegetation	
sky	person	rider	car	truck
bus	train	motocycle	bicycle	

UDA Results (with Adversarial Entropy)

