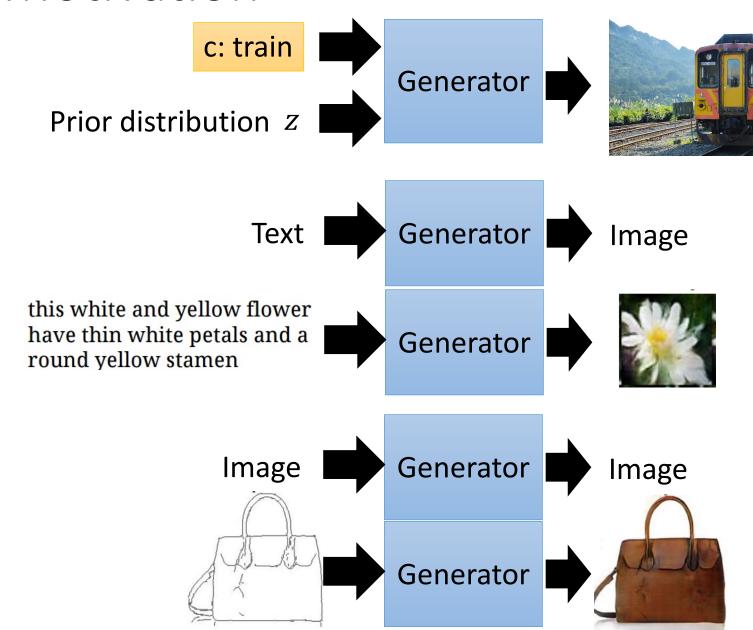
# Generative models Outline

- 1. Preview: Auto-Encoders, VAE
- 2. Generative models with GAN
- 3. GAN architectures
- 4. Editing
- 5. Conditional GANs

# Generative models Outline

- 1. Preview: Auto-Encoders, VAE
- 2. Generative models with GAN
- 3. GAN architectures
- 4. Editing
- 5. Conditional GANs
  - 1. Principle

## Motivation



## Conditional GAN

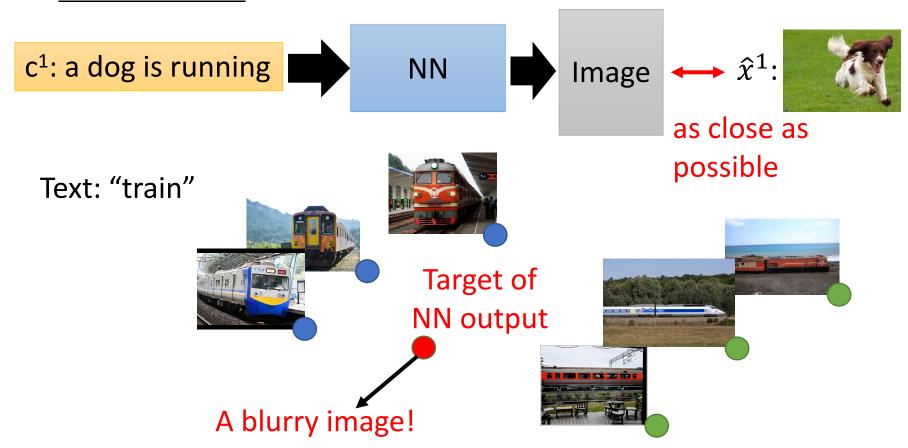
 $c^1$ : a dog is running  $\hat{x}$ 



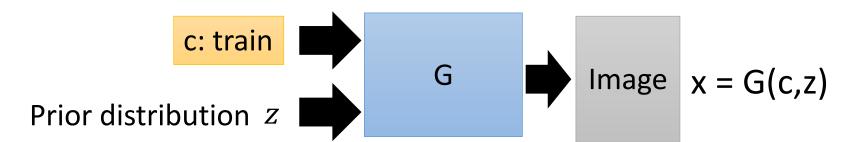
c<sup>2</sup>: a bird is flying



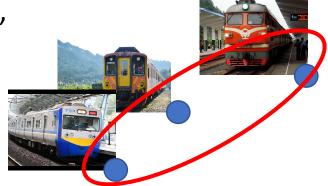
• Text to image by traditional supervised learning



## Conditional GAN

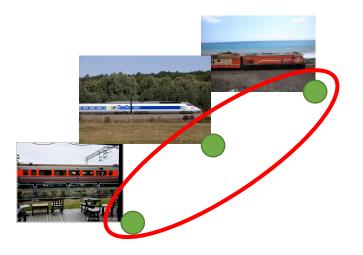


Text: "train"

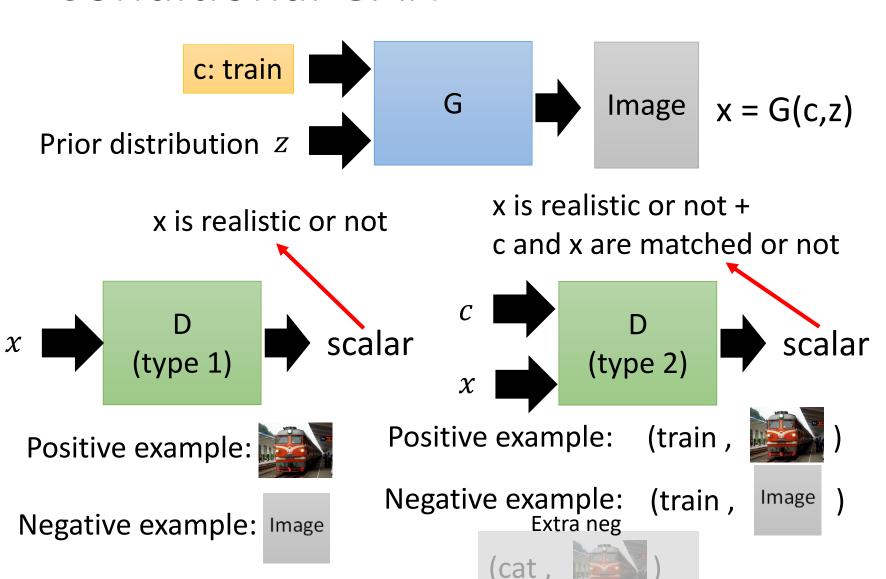


It is a distribution

Approximate the distribution of real data



## Conditional GAN



### Conditional GAN (cGAN model)

#### **GAN**

$$V(G, D) = \mathbb{E}_{x \sim P_{data}}[log D(x)] + \mathbb{E}_{x \sim P_{G}}[log(1 - D(x))]$$

$$G^* = arg \min_{G} \max_{D} V(G, D)$$

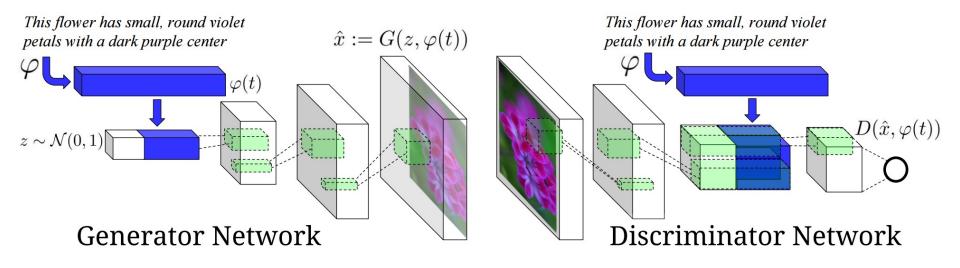
#### cGAN

$$\min_{G} \max_{D} \left( \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim p_{\text{data}}(\mathbf{x}, \mathbf{y})} \left[ \log D(\mathbf{x}, \mathbf{y}) \right] + \mathbb{E}_{\mathbf{y} \sim p_{\mathbf{y}}, \mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})} \left[ \log \left( 1 - D(G(\mathbf{z}, \mathbf{y}), \mathbf{y}) \right) \right] \right)$$

# Generative models Outline

- 1. Preview: Auto-Encoders, VAE
- 2. Generative models with GAN
- 3. GAN architectures
- 4. Editing
- 5. Conditional GANs
  - 1. Principle
  - 2. Text2Image

# Text2Image: architecture example



- Positive samples:
  - real image + right texts
- Negative samples:
  - fake image + right texts
  - Real image + wrong texts

# Text2Image results

this small bird has a pink breast and crown, and black primaries and secondaries.



the flower has petals that are bright pinkish purple with white stigma



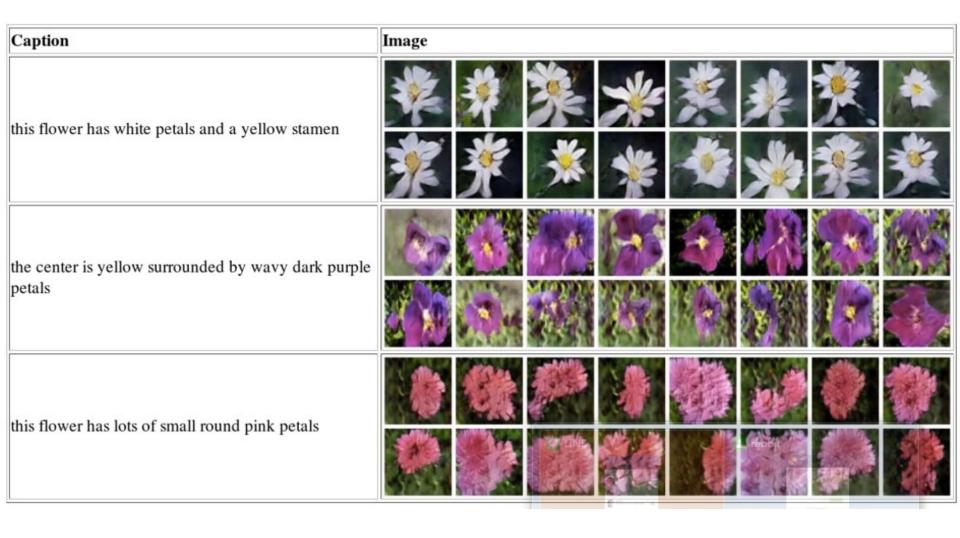
this magnificent fellow is almost all black with a red crest, and white cheek patch.



this white and yellow flower have thin white petals and a round yellow stamen

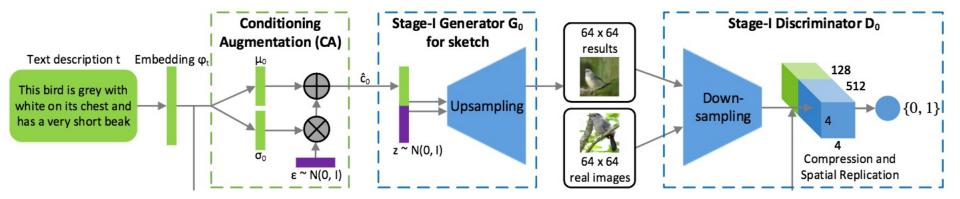


# Text2Image results



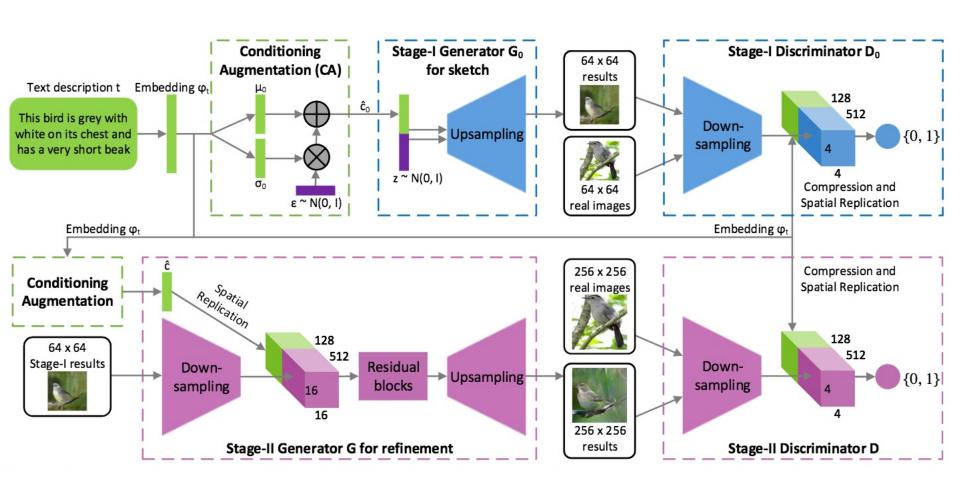
# Text2Image: architecture example (2)

Generating higher resolution images (from 64 to 256)



# Text2Image: architecture example (2)

Generating higher resolution images (from 64 to 256)



## StackGAN results

This bird has a yellow This bird is white belly and tarsus, grey back, wings, and brown throat, nape with a black face

with some black on its head and wings, and has a long orange beak

This flower has overlapping pink pointed petals surrounding a ring of short yellow filaments

(a) Stage-I images







(b) Stage-II images



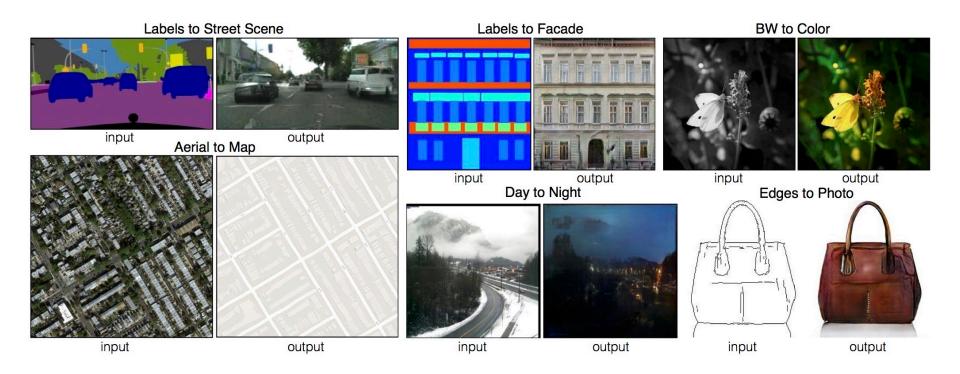




# Generative models Outline

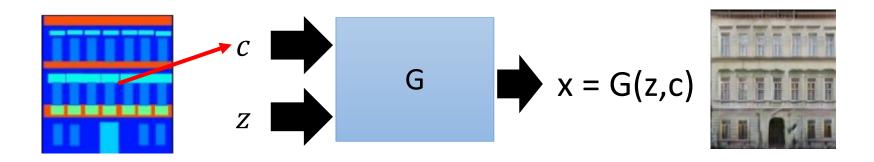
- 1. Preview: Auto-Encoders, VAE
- 2. Generative models with GAN
- 3. GAN architectures
- 4. Editing
- 5. Conditional GANs
  - 1. Principle
  - 2. Text2Image
  - 3. Image2Image

# Image-based Conditional GAN

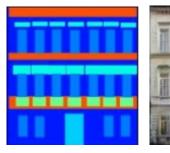


- Conditioned on an image of different modality
- Image-to-Image Translation => pix2pix

# Image-to-image pix2pix

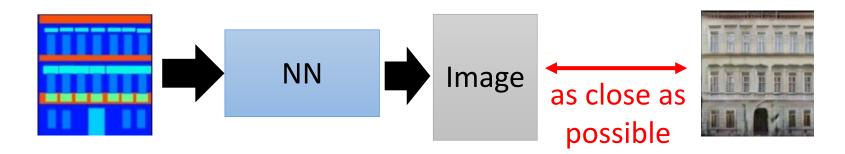


# Image-to-image pix2pix

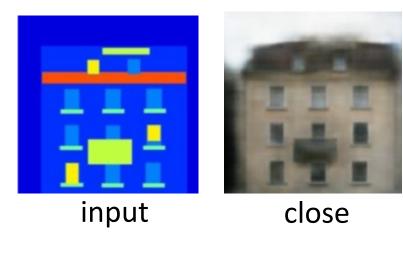




Traditional supervised approach

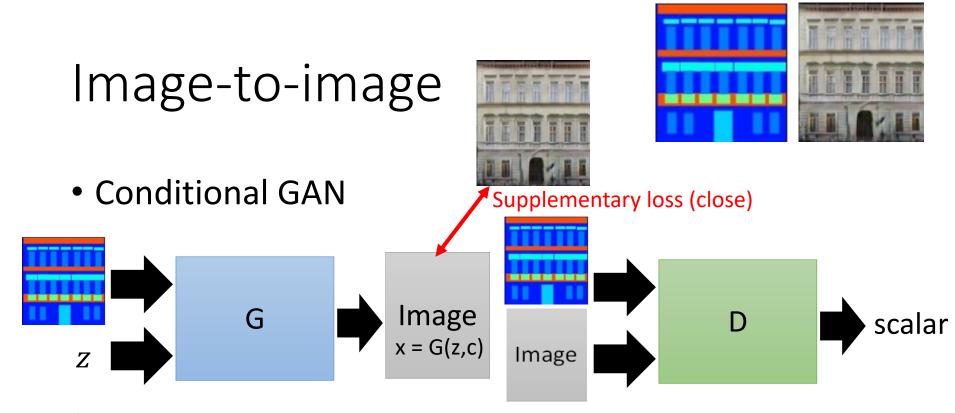


#### Testing:



It is blurry because it is the average of several images.



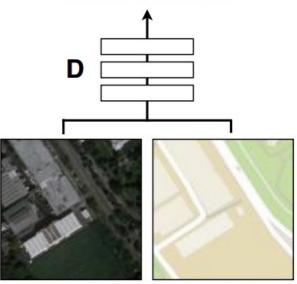


#### Testing:



#### Positive examples

Real or fake pair?

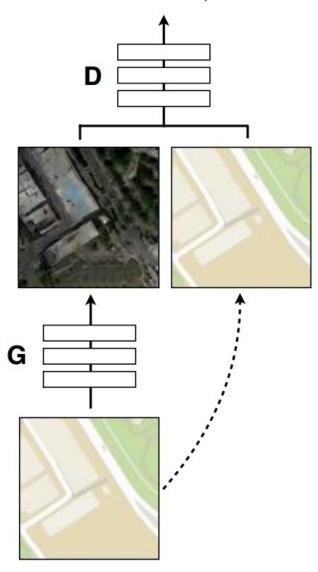


**G** tries to synthesize fake images that fool **D** 

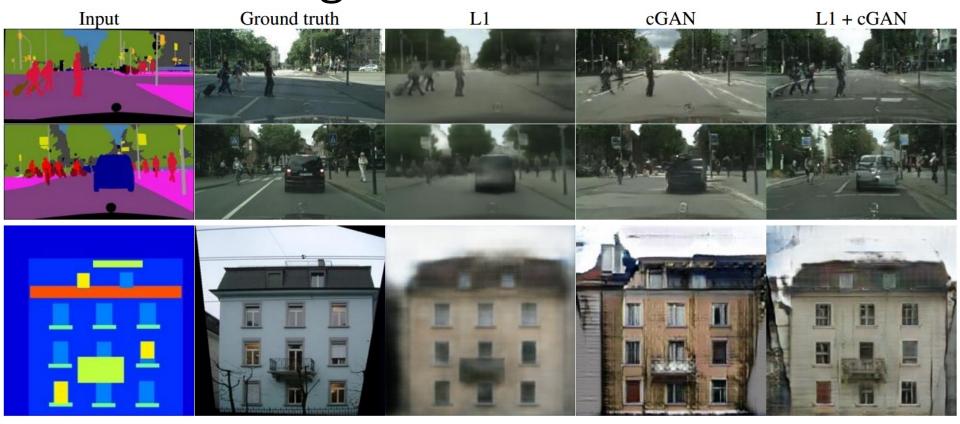
**D** tries to identify the fakes

#### Negative examples

Real or fake pair?



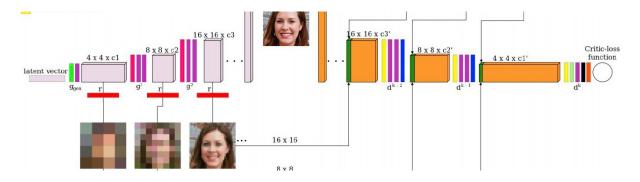
# Label2Image



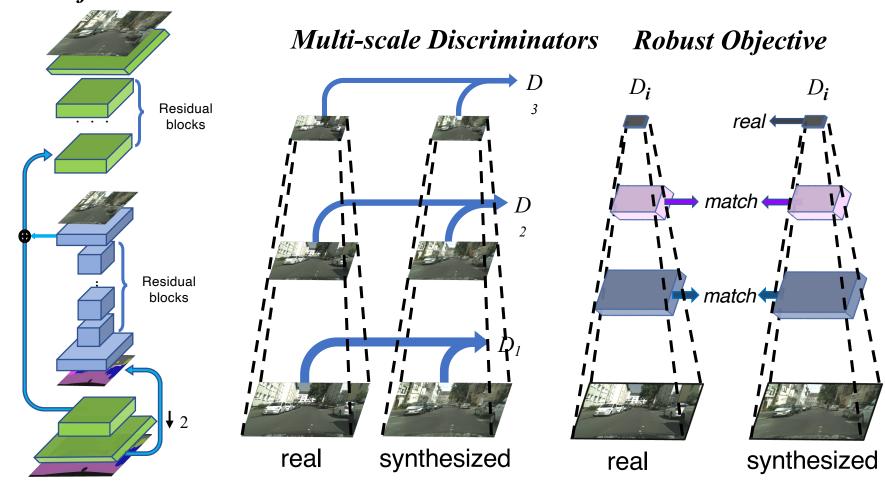
# Edges2Image



## Pix2pixHD



#### Coarse-to-fine Generator





Semantic Map



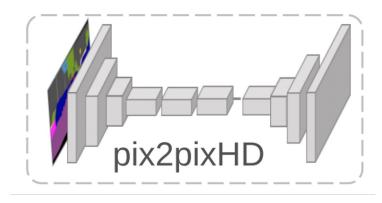


pix2pix



## Improving Segmentation2Image strategy?

Limitation of the approach:



Directly feed the semantic layout as input to the deep network, which is processed through stacks of convolution, normalization, and nonlinearity layers.

However, this is suboptimal as the normalization layers tend to "wash away" semantic information in input semantic segmentation masks.

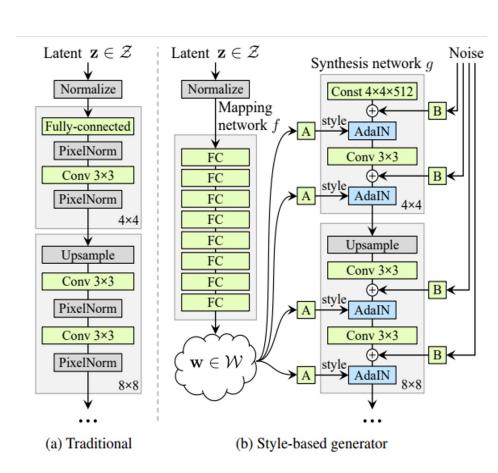
### Improving Segmentation2Image strategy

Proven effective for recent generative adversarial networks such as StyleGAN

Can we do the same for conditional GAN?

Conditional Normalization

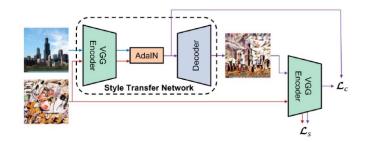
Layers?



### Improving Segmentation2Image strategy

Recall: Adaptive instance normalization

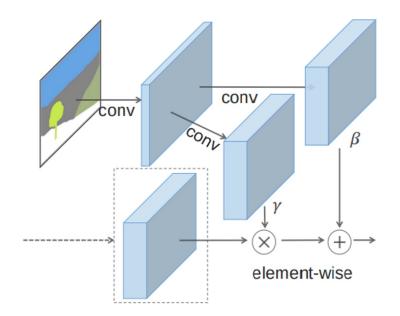
$$\operatorname{AdaIN}(x,y) = \sigma(y) \left( \frac{x - \mu(x)}{\sigma(x)} \right) + \mu(y)$$



# SPADE block= spatially-adaptive denormalization: Same idea but per class c over each channel i (N=batch size)

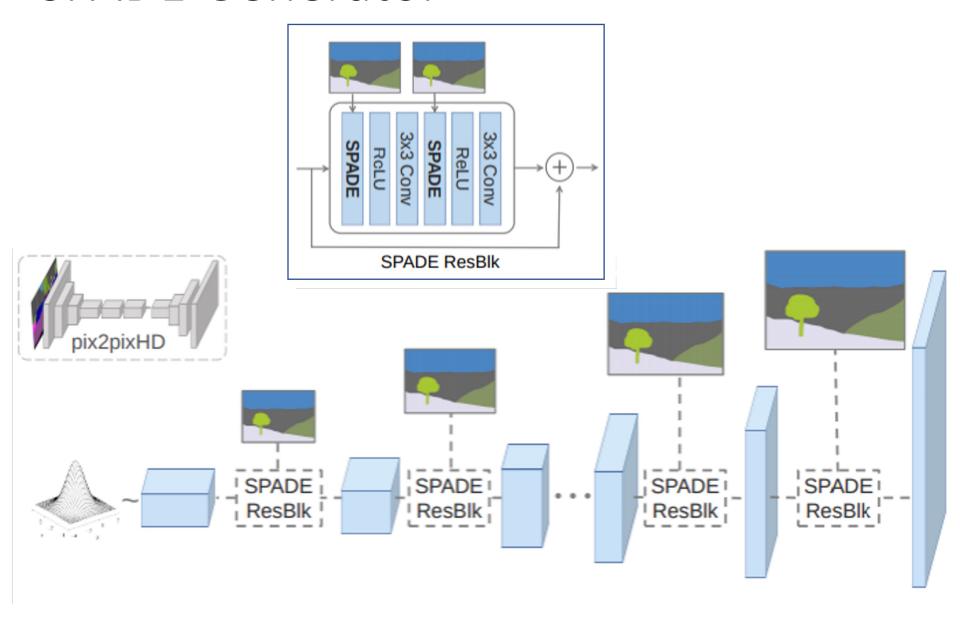
$$\gamma_{c,y,x}^{i}(\mathbf{m}) \frac{h_{n,c,y,x}^{i} - \mu_{c}^{i}}{\sigma_{c}^{i}} + \beta_{c,y,x}^{i}(\mathbf{m})$$
$$\mu_{c}^{i} = \frac{1}{NH^{i}W^{i}} \sum_{i} h_{n,c,y,x}^{i}$$

$$\sigma_c^i = \sqrt{\frac{1}{N H^i W^i} \sum_{n,y,x} (h_{n,c,y,x}^i)^2 - (\mu_c^i)^2}$$

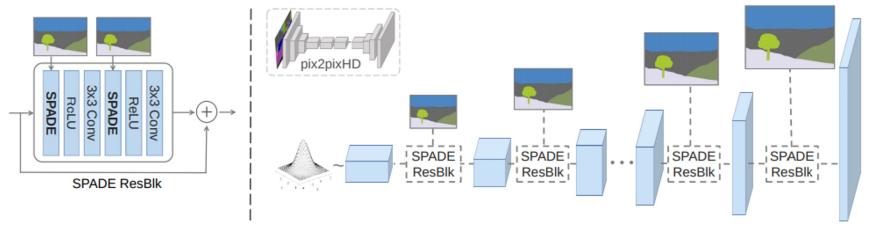


**SPADE** paper = [Semantic Image Synthesis with Spatially-Adaptive Normalization CVPR 2019]

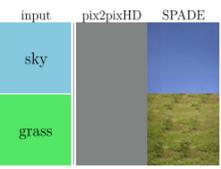
## SPADE Generator



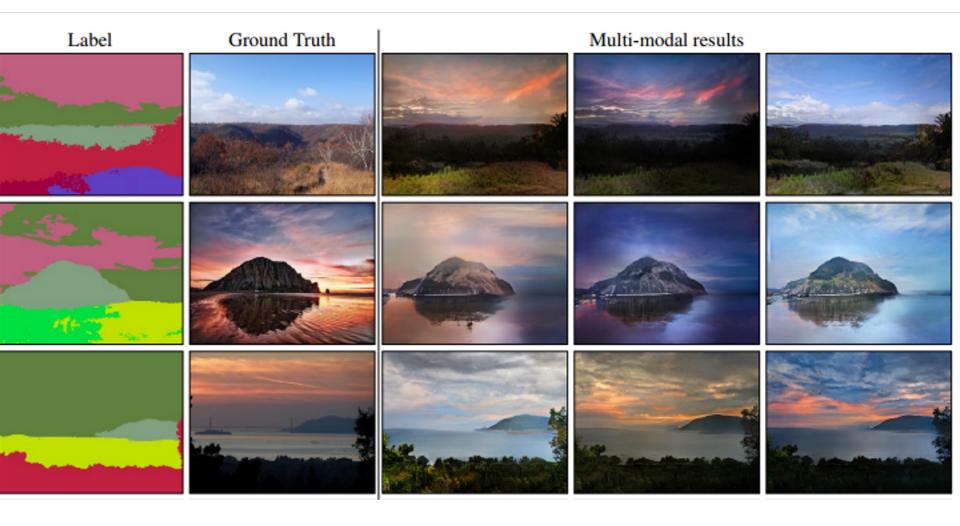
## SPADE Generator



Better preserve semantic information against common normalization layers



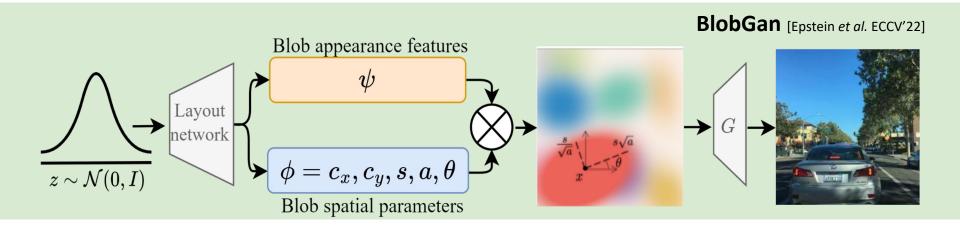
## **SPADE** results



## Spade and follow-up approaches

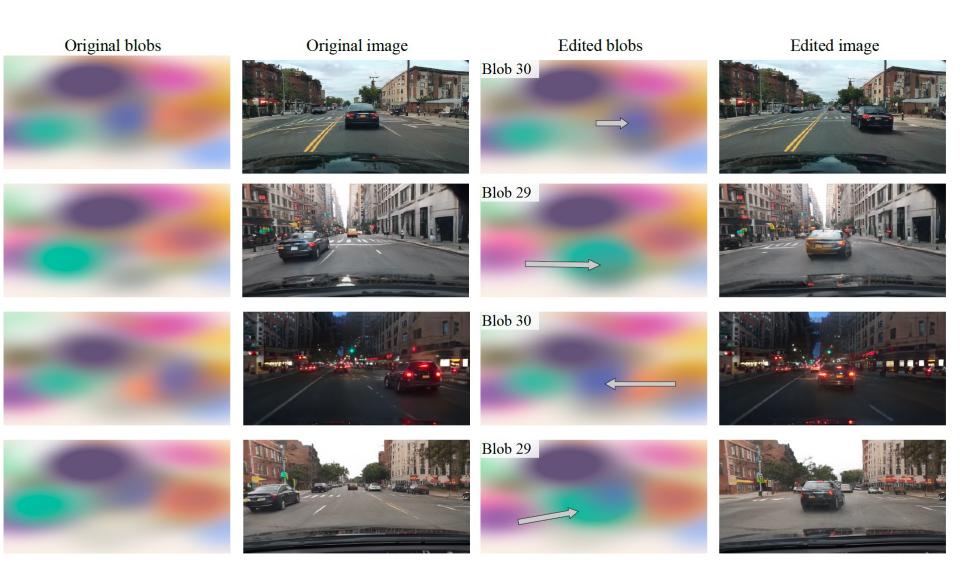


### Editing with conditional-or-structured-latent GANs





## Editing with conditional-or-structured-latent GANs



### Editing with conditional-or-structured-latent GANs

Example of Counterfactual optimization for editing



# Generative models Outline

- 1. Preview: Auto-Encoders, VAE
- 2. Generative models with GAN
- 3. GAN architectures
- 4. Editing
- 5. Conditional GANs
  - 1. Principle
  - 2. Text2Image
  - 3. Image2Image
  - 4. Inpainting and general missing data encoder

# Inpainting task

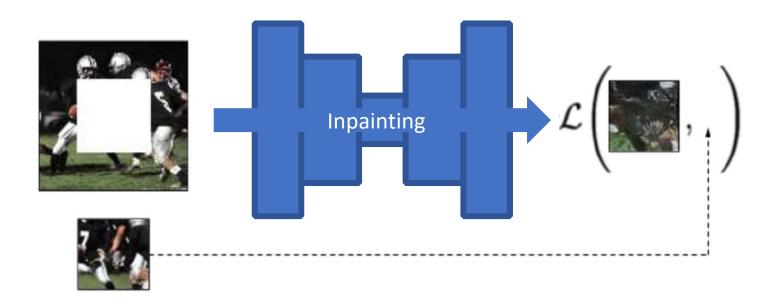
Complete the missing part







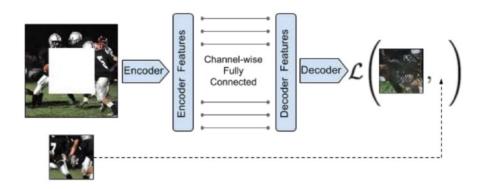
# Inpainting as unsupervised learning with GAN loss



Reconstruct missing pixels by decoding using context Loss defined on the predicted patch and the real one (known at training time)

# First proposition -- Architecture

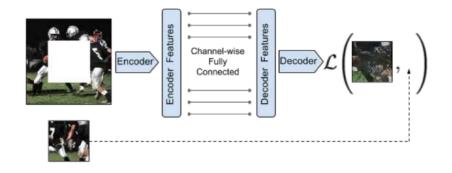
Architecture: Encoder/Fully connected/Decoder



- DC-GAN for inpainting task
- **Input:** 227 × 227 × 3 image
- Output: encoder context features  $(6 \times 6 \times 256)$

#### Channel-wise fully-connected layer

- Input / output:  $6 \times 6 \times 256$  channels
- First layer: Channel-wise fully-connected
   (each 6 × 6 input connected to the corresponding 6 × 6 output)
- Second layer: Stride 1 convolution to mix channels

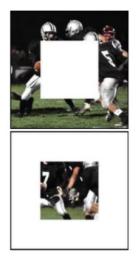


#### Decoder

- Architecture: Same as DC-GAN: 5 up-convolutional layers ("deconv" + ReLU)
- **Input**: decoder context features  $6 \times 6 \times 256$
- Output: 227 × 227 × 3 image

### Training: Masking the images

- How to define the mask?
  - Center region of the image
  - ► Random regions (chosen solution)
  - ► Random segmentation mask from VOC (said to be equivalent to random regions)
- Formal definition: Defined by a mask  $\hat{M} \in \{0,1\}^{227 \times 227}$  with 1 if the pixel should be masked











### Training: Loss - Overview

- Trained completely from scratch to fill-up the masked areas
- Problem: multiple plausible solutions
- **Solution**: combining 2 losses:
  - ▶  $\mathcal{L}_{rec}$  **L2 reconstruction loss:** learn the structure of the missing region (average multiple modes in prediction)
  - ▶  $\mathcal{L}_{adv}$  Adversarial loss: make it look real (pick a mode from the distribution)

$$\min_{F} \mathcal{L} = \lambda_{rec} \mathcal{L}_{rec} + \lambda_{adv} \mathcal{L}_{adv}$$

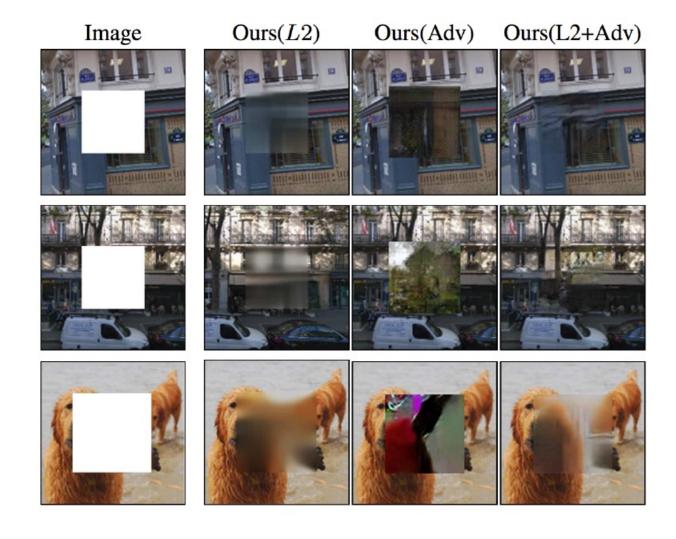
$$\mathcal{L}_{rec}(x) = \left\| \hat{M} \odot \left( x - F((1 - \hat{M}) \odot x) \right) \right\|_{2}$$

$$\mathcal{L}_{adv} = \max_{D} \mathbb{E}_{x \in \mathcal{X}} \left[ \log(D(x)) + \log\left(1 - D(F((1 - \hat{M}) \odot x))\right) \right]$$

Rq: The encoder-decoder is the generator, D is a CNN

## Results

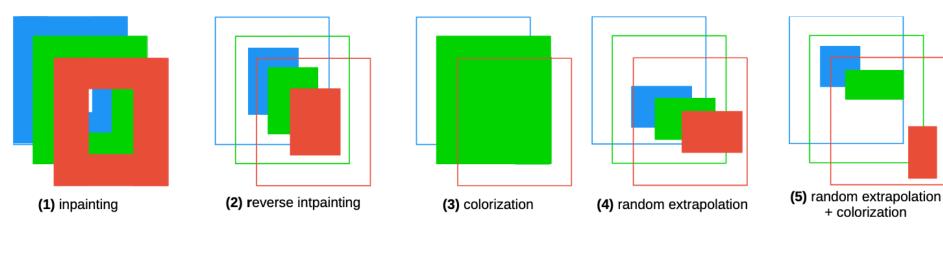
Dataset: StreetView Paris and ImageNet

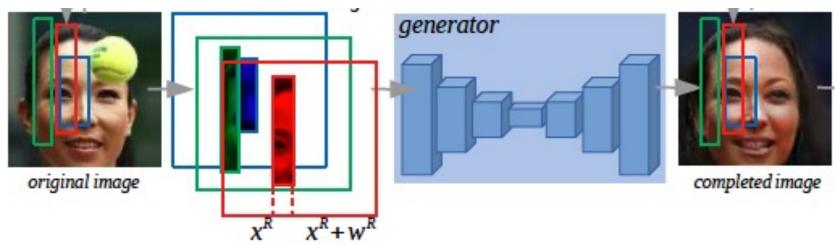


## Semantic inpainting - Qualitative results

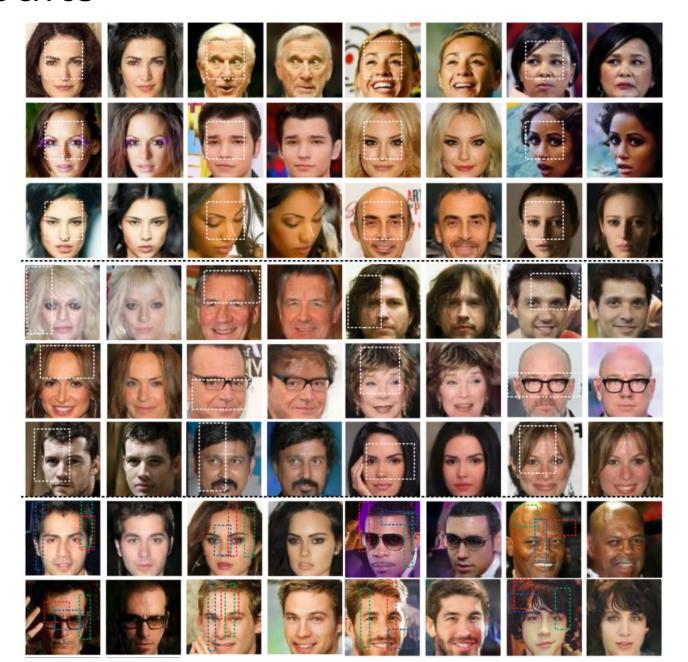


# Generalizing inpainting: missing data encoder





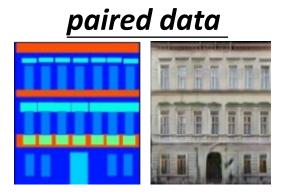
# Results



# Generative models Outline

- 1. Preview: Auto-Encoders, VAE
- 2. Generative models with GAN
- 3. GAN architectures
- 4. Editing
- 5. Conditional GANs
  - 1. Principle
  - 2. Text2Image
  - 3. Image2Image
  - 4. Inpainting and general missing data encoder
  - 5. Learning unpaired Transformation

# **Unpaired Transformation**



Transform an object from one domain to another without paired data







# Cycle GAN

https://arxiv.org/abs/1703.10593 https://junyanz.github.io/CycleGAN/

#### Domain X



#### Domain Y







#### Domain X



 $G_{X o Y}$ 

Become similar to domain Y



Not what we want



ignore input









Input image belongs to domain Y or not





## Cycle GAN



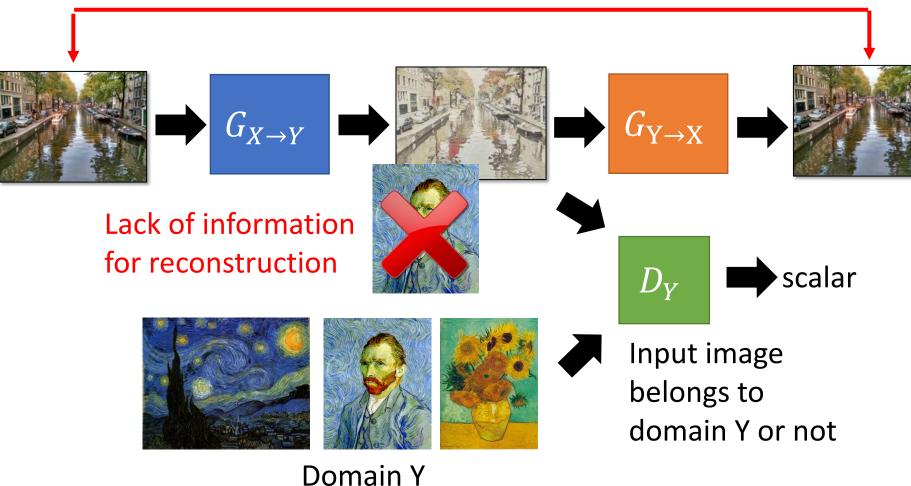
Domain Y







#### as close as possible



# Cycle GAN



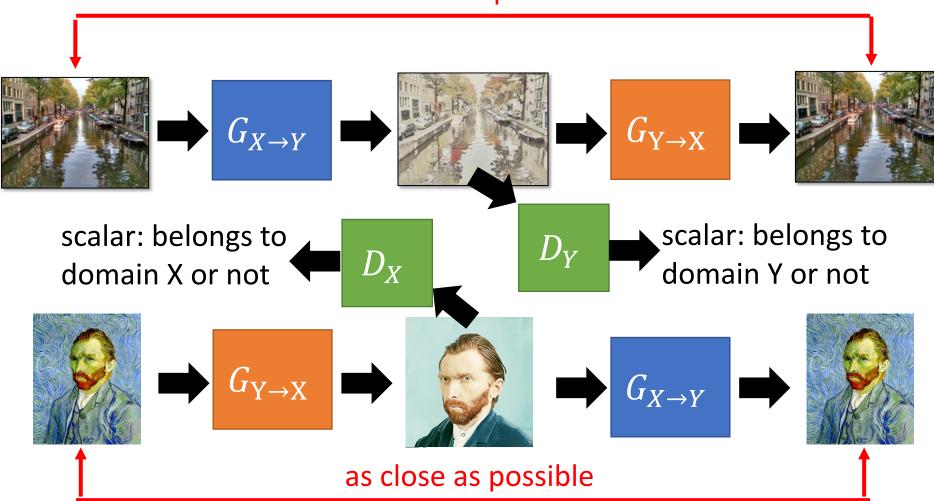
Domain Y



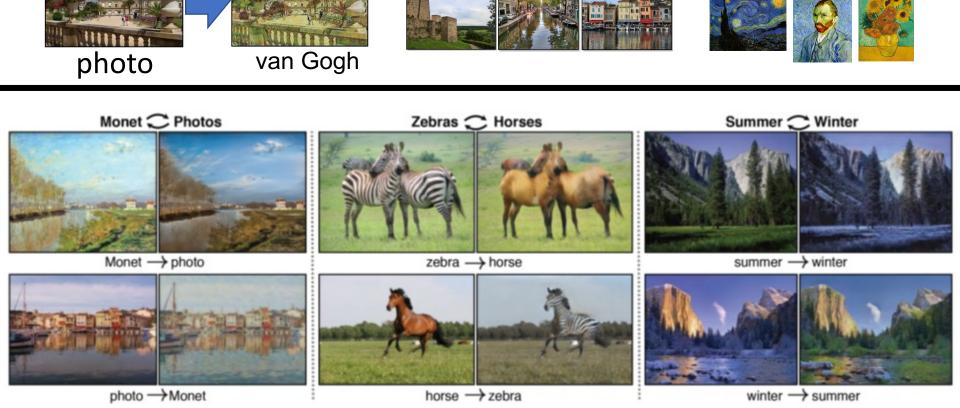




#### as close as possible



# Results -- Cycle GAN

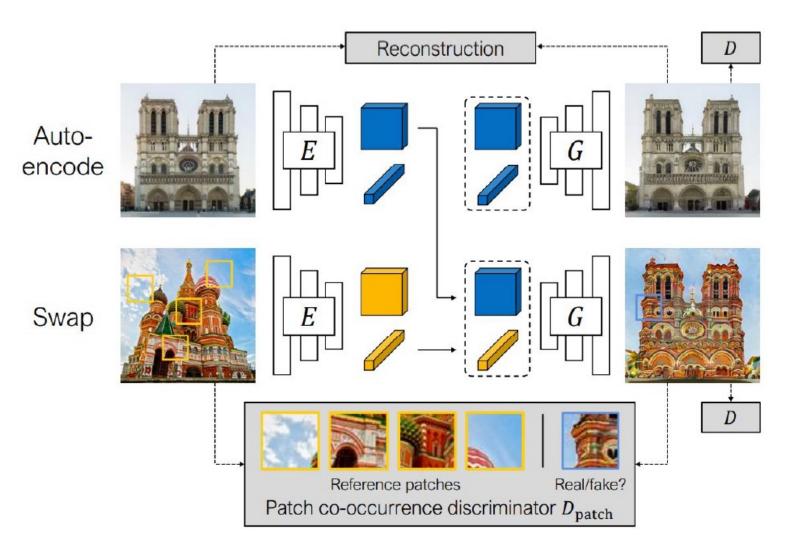


Domain X

Domain Y

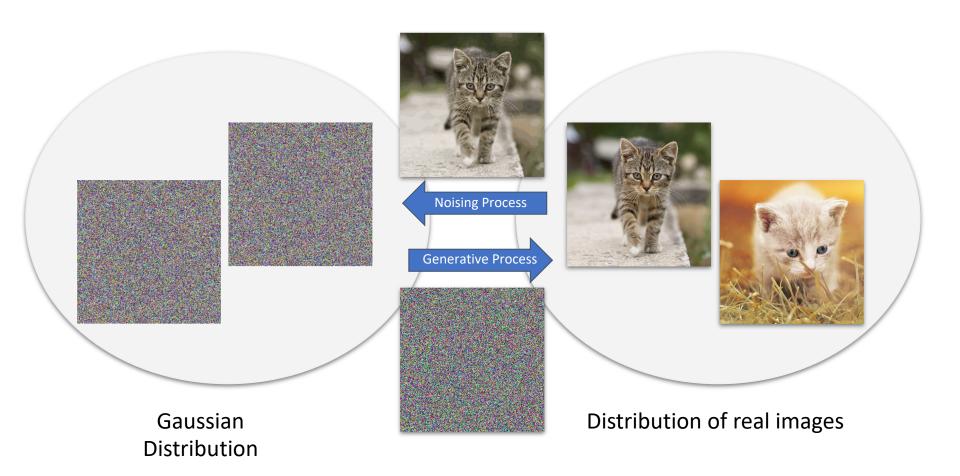
# GANs: works in progress

A lot of things to better understand, to use, adapt, ...

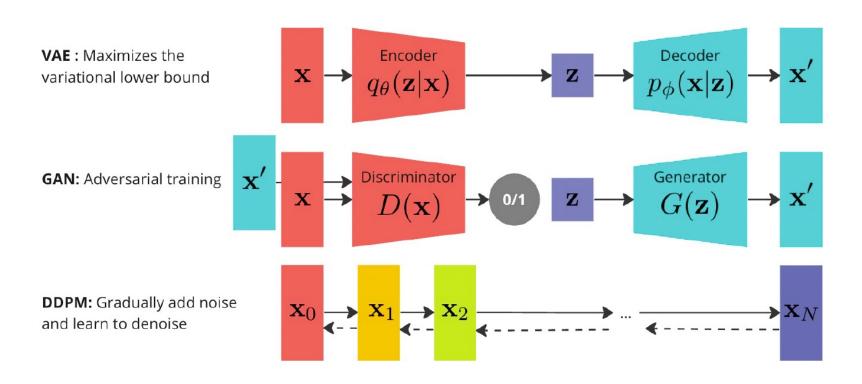


# Generative models Outline

- 1. Preview: Auto-Encoders, VAE
- 2. Generative models with GAN
- 3. GAN architectures
- 4. Editing
- 5. Conditional GANs
- 6. Diffusion models



DDPM: Denoising Diffusion Probabilistic Models In context with other genenrative Models:



DDPM: Denoising Diffusion Probabilistic Models

$$\mathbf{x}_{t} = \sqrt{1 - \beta_{t}} \mathbf{x}_{t-1} + \sqrt{\beta_{t}} \epsilon \qquad \mathbf{x}_{t} = \sqrt{\alpha_{t}} \mathbf{x}_{0} + \sqrt{1 - \alpha_{t}} \epsilon$$

#### Training:

The reverse process refers to learning a model,  $\epsilon_{\theta}$  which approximates the noise added at a given timestep t:  $\mathcal{L} = \mathbb{E}_{\mathbf{x}_0,t,\epsilon} \|\epsilon - \epsilon_{\theta}(\mathbf{x}_t,t)\|_2^2$ 

Sampling: 
$$\hat{\mathbf{x}}_0 = \frac{1}{\sqrt{\alpha_t}} (\mathbf{x}_t - \sqrt{1 - \alpha_t} \cdot \epsilon_{\theta}(\mathbf{x}_t, t)),$$
 
$$\mathbf{x}_{t-1} = \frac{(\alpha_{t-1} - \alpha_t)\sqrt{\alpha_{t-1}}}{\alpha_{t-1}(1 - \alpha_t)} \hat{\mathbf{x}}_0 + \frac{(1 - \alpha_{t-1})\sqrt{\alpha_t}}{(1 - \alpha_t)\sqrt{\alpha_{t-1}}} \mathbf{x}_t + \sigma_t \mathbf{z}_t$$

#### DDPM: Denoising Diffusion Probabilistic Models

#### **Algorithm 1** Training

- 1: repeat
- 2:  $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3:  $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4:  $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

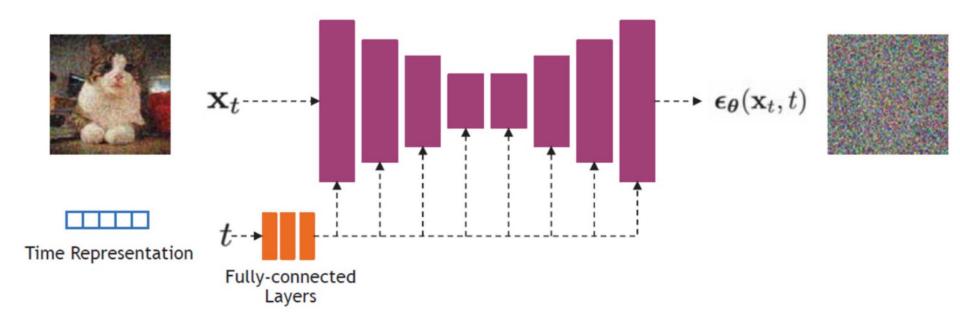
$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} \left( \sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon} \right) \right\|^{2}$$

6: until converged

#### **Algorithm 2** Sampling

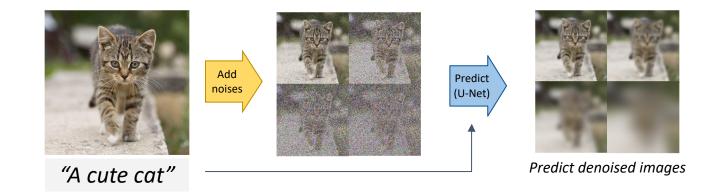
- 1:  $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3:  $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 4:  $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left( \mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: **return**  $\mathbf{x}_0$

## U-Net for Diffusion models

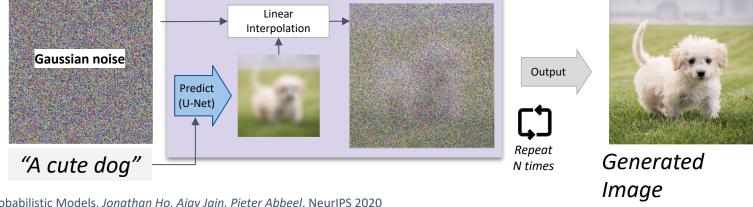


## Text-conditional Diffusion models

Training:

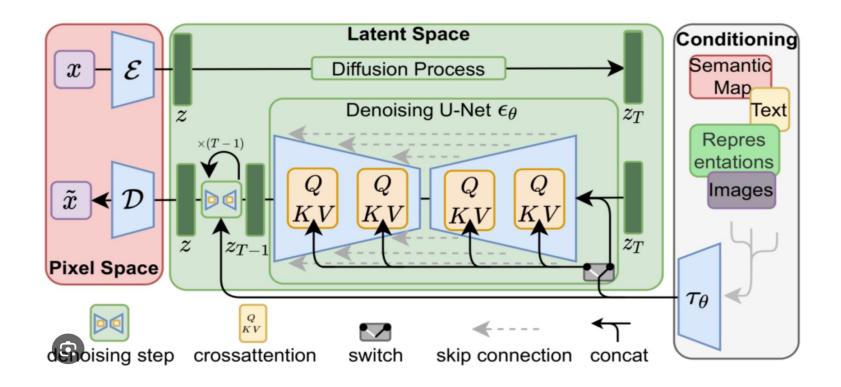


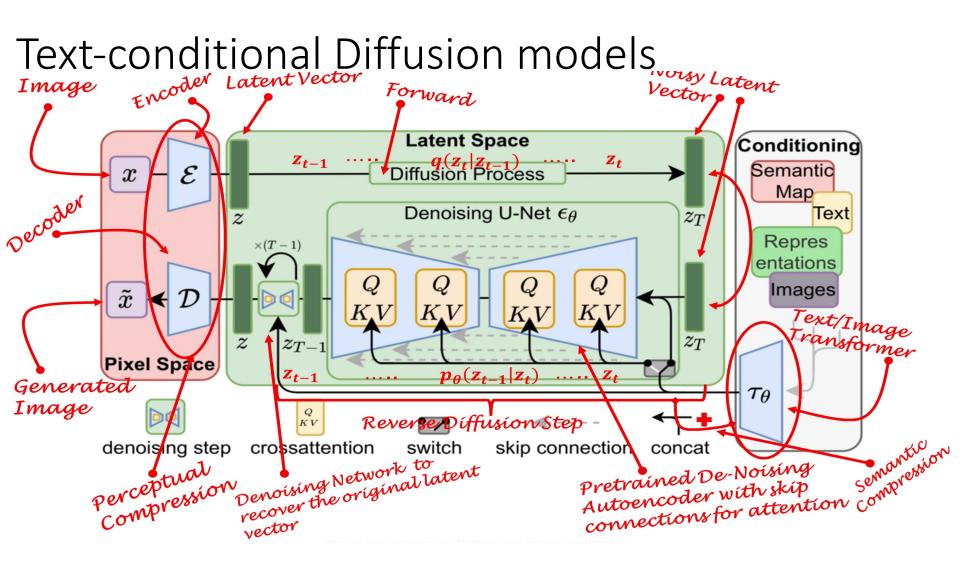
•Sampling:



Denoising Diffusion Probabilistic Models, Jonathan Ho, Ajay Jain, Pieter Abbeel, NeurIPS 2020

## Text-conditional Diffusion models





## Image Generation using Diffusion Models



Sprouts in the shape of text 'Imagen' coming out of a fairytale book



A photo of a Shiba Inu dog with a backpack riding a bike. It is wearing sunglasses and a beach hat.



A high contrast portrait of a very happy fuzzy panda dressed as a chef in a high end kitchen making dough. There is a painting of flowers on the wall behind him.



A cute corgi lives in a house made out of sushi.

Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding, Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J Fleet, Mohammad Norouzi, NeurIPS 2022

# Generation using Diffusion Models

And the (next) big thing is ...

Text to Video

