Vision-Language Models Part I: Representation learning CLIP

Introduction

From zero-shot Transfer to representation learning

Remember: Transfer Learning

		Source Data (not directly related to the task)		
		labelled	unlabeled	
Target Data	labelled	Fine-tuning <i>Multitask Learning</i>	Not considered here	
	unlabeled	Domain adaptation- adversarial training Zero-shot learning	Not considered here	

- Source data: $(x^s, y^s) \rightarrow$ Training data
- Target data: (Ø) usually same domain

Training time :

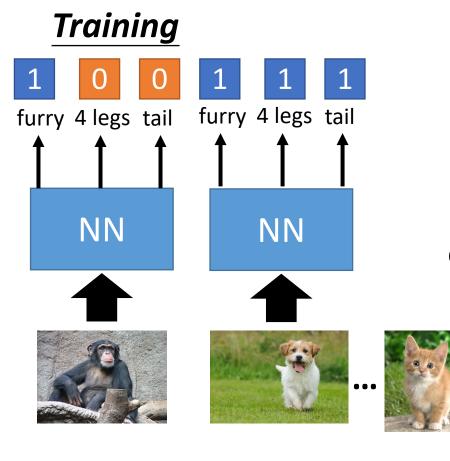
Test time x^t :

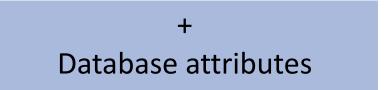
=> Fish class!

Different

tasks

• Representing each class by its attributes

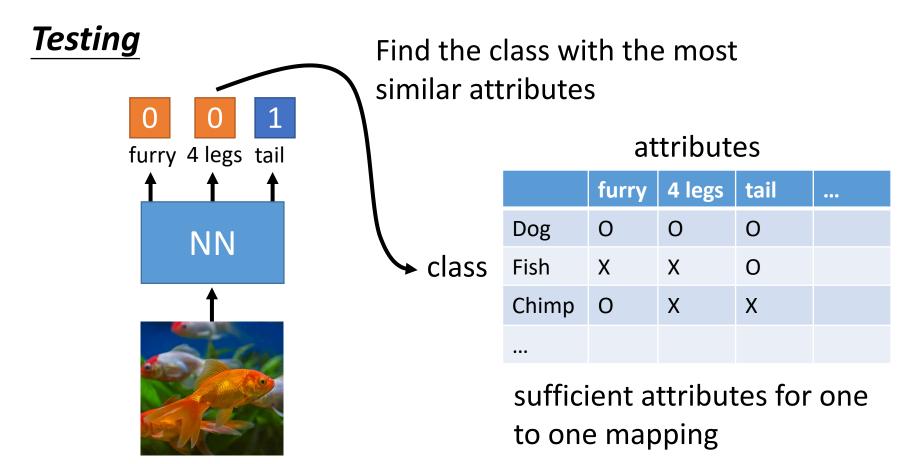




		furry	4 legs	tail	
	Dog	0	0	0	
class	Fish	Х	Х	0	
	Chimp	0	Х	Х	
2					

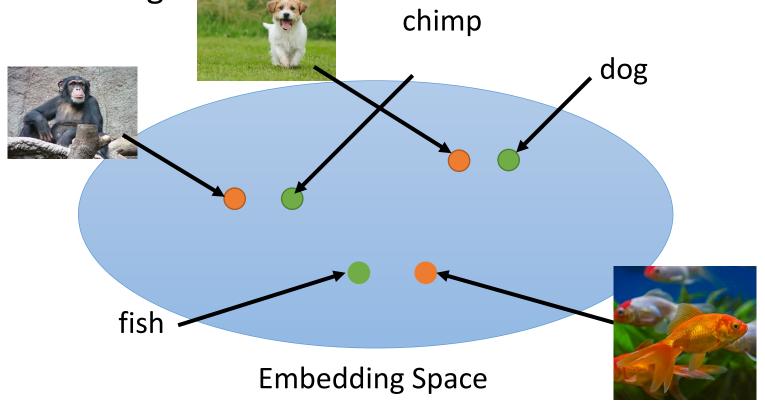
sufficient attributes for one to one mapping

• Representing each class by its attributes



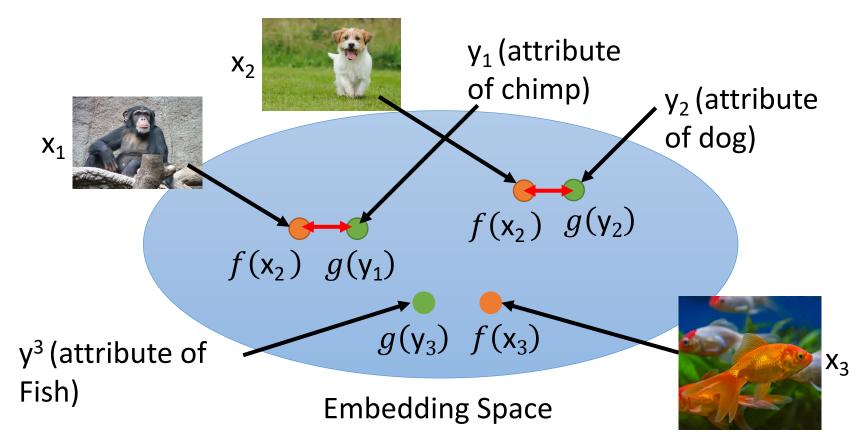
What if we don't have attribute database

 Attribute embedding + class (word name) embedding



f(*) and g(*) can be NN. Training target: $f(x_n)$ and $g(y_n)$ as close as possible

Attribute embedding

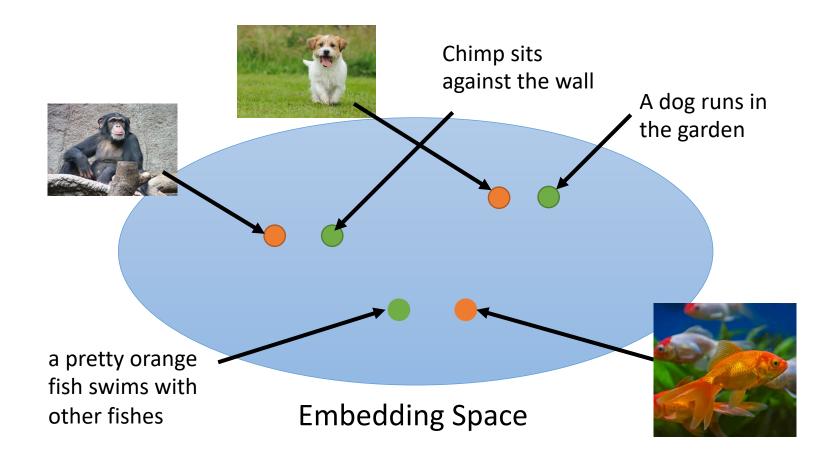


y_i are linked together by a class relationship (e.g. class name embedding as W2v)

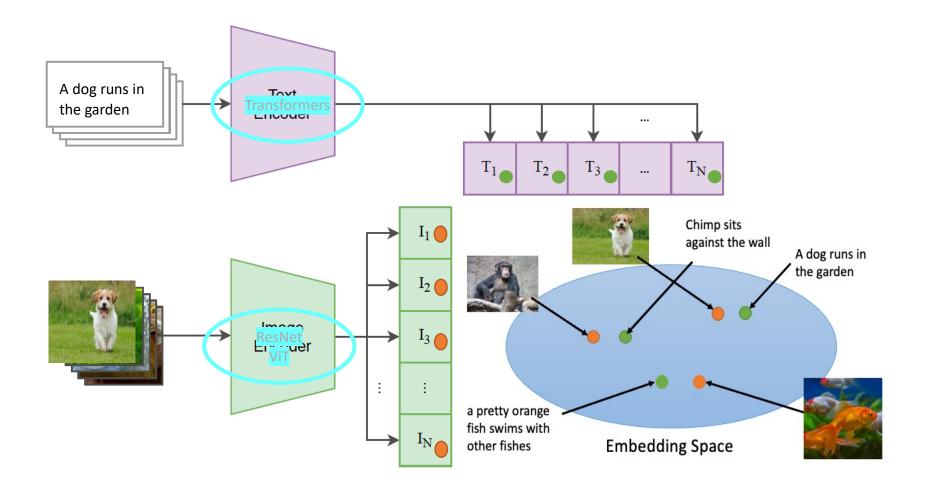
More on Vision-Language: Representation Learning



[Learning transferable visual models from natural language supervision. Radford/Sutskever ICML, 2021]



Dual architecture: Text encoder + Image encoder

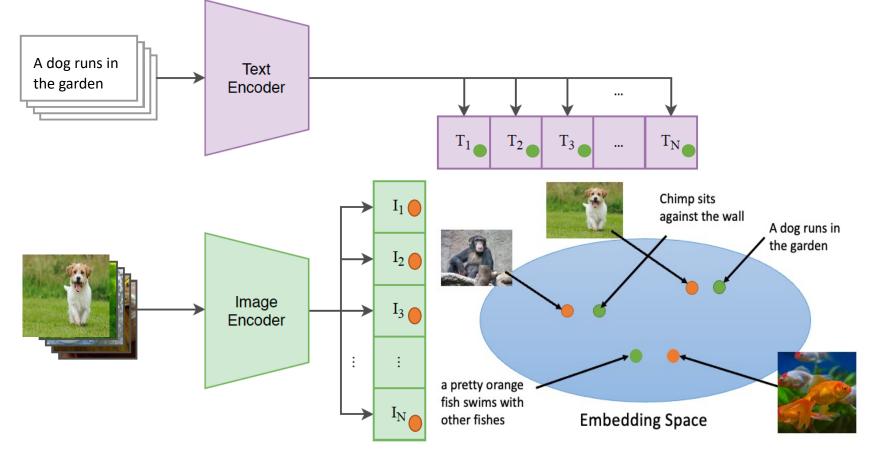


Learning strategy

Training set: $A = \{(\mathbf{I}_n, \mathbf{T}_n)\}_n$ of image/caption pairs (coherent!)

Massive Text+Image =400M pairs to train the model (from the Internet)

Contrastive loss for training: positive pair vs negative one or set

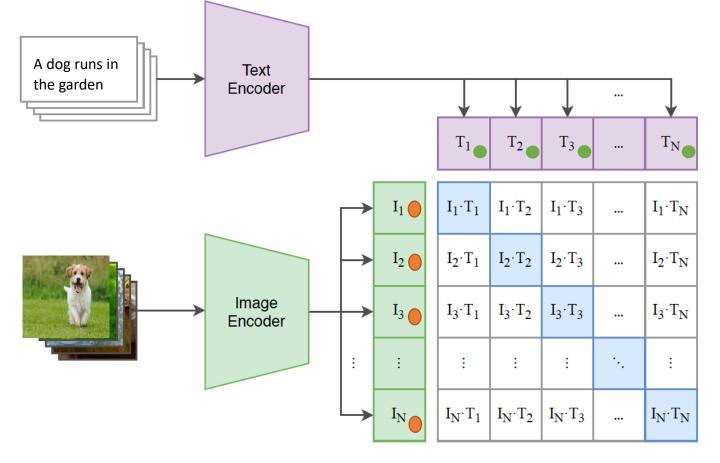


Learning strategy

Training set: $A = \{(\mathbf{I}_n, \mathbf{T}_n)\}_n$ of image/caption pairs (coherent!)

Massive Text+Image =400M pairs to train the model (from the Internet)

Contrastive loss for training: positive pair vs negative one or set



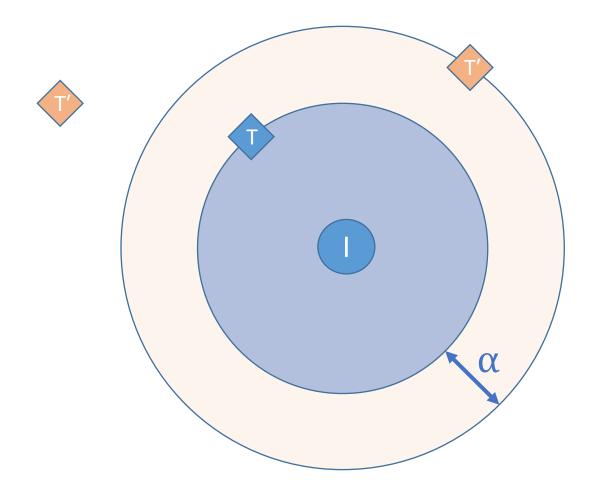
Learning strategy Training set: $A = \{(\mathbf{I}_n, \mathbf{T}_n)\}_n$ of image/caption pairs (coherent!) Massive Text+Image =400M pairs to train the model (from the Internet) Contrastive loss for training: positive pair vs negative pair or more

(contrastive) Triplet loss: A variant of the standard margin based loss (SVM)

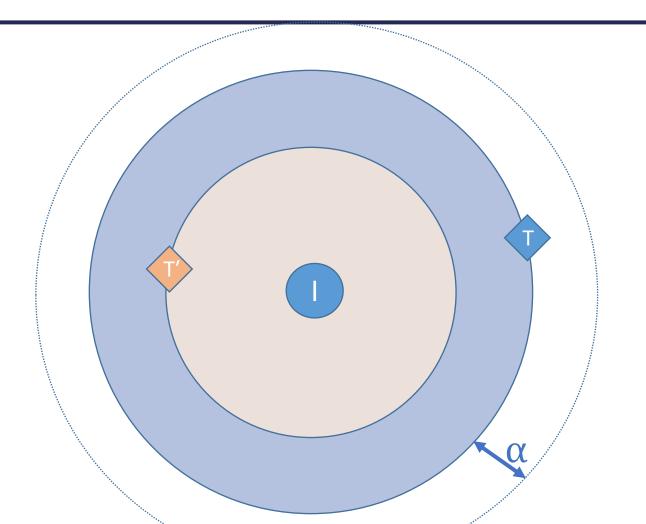
- Triplet (**I**, **T**, **T**') (Batch = 3)
- Anchor: I (E.g image representation)
- Positive: T (E.g associated caption representation)
- Negative: **T**' (E.g contrastive caption representation)
- Margin parameter α

TripletLoss(I, T, T') = max{ $0, \alpha + d(I, T) - d(I, T')$ }

TripletLoss(I, T, T') = max{
$$0, \alpha + d(I, T) - d(I, T')$$
}



TripletLoss(I, T, T') = max{ $0, \alpha + d(I, T) - d(I, T')$ }



Learning strategy: triplet loss

Hard negative margin-based loss:

Loss for a **batch** $\mathcal{B} = \{(\mathbf{I}_n, \mathbf{T}_n)\}_{n \in B}$ of image/sentence pairs:

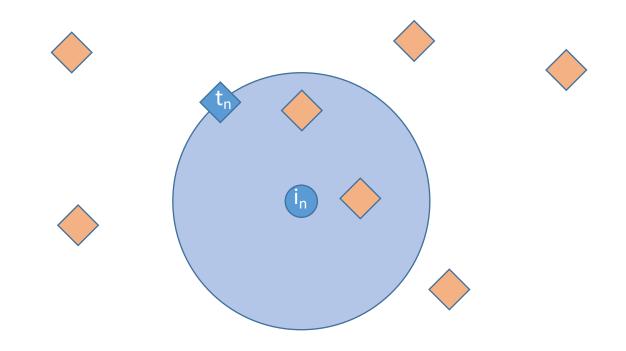
$$\mathcal{L}(\Theta; \mathcal{B}) = \frac{1}{|B|} \sum_{n \in B} \begin{pmatrix} \max_{m \in C_n \cap B} \log(I_n, T_n, T_m) \\ + \max_{m \in D_n \cap B} \log(T_n, I_n, I_m) \end{pmatrix}$$

With C_n (resp. D_n) set of indices of caption (resp. image) unrelated to *n*-th element

Learning strategy: hard negative triplet loss

Mining hard negative contrastive example:

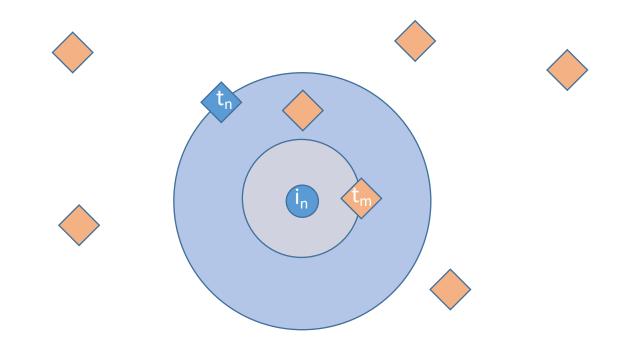
$$\mathcal{L}(\boldsymbol{\Theta}; \mathcal{B}) = \frac{1}{|B|} \sum_{n \in B} \begin{pmatrix} \max_{m \in C_n \cap B} \operatorname{loss}(\boldsymbol{I}_n, \boldsymbol{T}_n, \boldsymbol{T}_m) \\ + \max_{m \in D_n \cap B} \operatorname{loss}(\boldsymbol{T}_n, \boldsymbol{I}_n, \boldsymbol{I}_m) \end{pmatrix}$$



Learning strategy: hard negative triplet loss

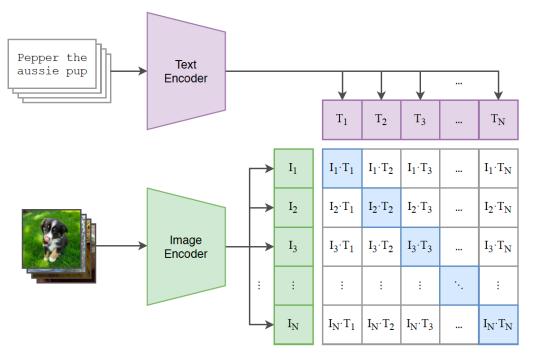
Mining hard negative contrastive example:

$$\mathcal{L}(\boldsymbol{\Theta}; \mathcal{B}) = \frac{1}{|B|} \sum_{n \in B} \begin{pmatrix} \max_{m \in C_n \cap B} \operatorname{loss}(\boldsymbol{I}_n, \boldsymbol{T}_n, \boldsymbol{T}_m) \\ + \max_{m \in D_n \cap B} \operatorname{loss}(\boldsymbol{T}_n, \boldsymbol{I}_n, \boldsymbol{I}_m) \end{pmatrix}$$



Massive Text+Image =400M pairs to train the model (from the Internet)

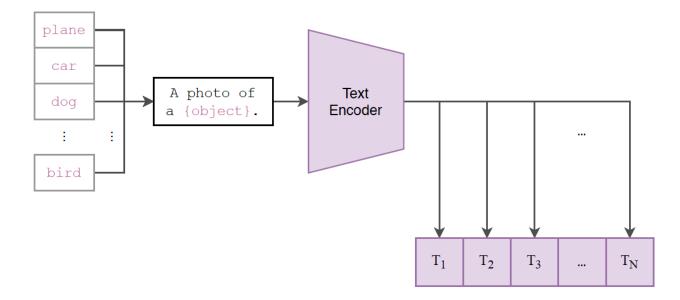
Contrastive loss for training



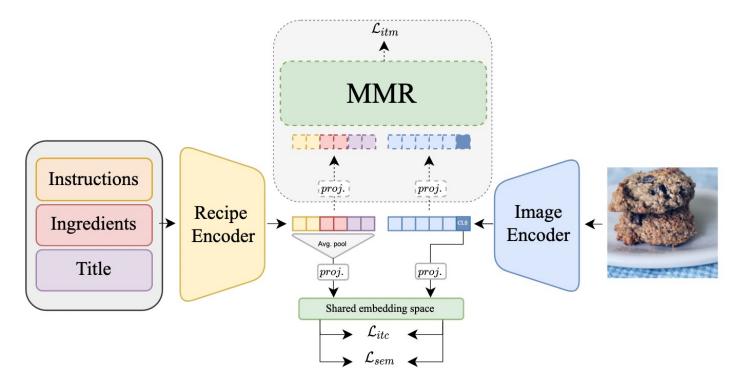
$$\mathcal{L}_{InfoNCE_{CLIP}} = -\sum_{i} \log \left(\frac{\exp(\frac{sim(I_i, T_i)}{\tau})}{\sum_{k=1}^{N} \exp(\frac{sim(I_i, T_k)}{\tau})} \right)$$

Pre-trained encoders = dual encoders (Text/Image)

used for Zero-shot classifier, and other downstream tasks



A lot of variants



Title query	Ingredient query	Instruction query	
	1 cup Unsalted Butter,	Add sugar, cream, peppermint, and food coloring	
Mint Chocolate Chip Frosting.	2 Tablespoons Heavy Cream,	scoop the frosting and place on top of your cupcakes	
	2 drops Green Food Coloring, Chocolate	Source: Chocolate Cupcakes with Mint Chocolate Chip	
	1 broiler-fryer chicken, halved,	Place the halved chicken in a large, shallow container	
Honey-Grilled Chicken.	34 cup butter, melted,	Combine the remaining ingredients, stirring sauce well	
	14 cup honey	Grill chicken, skin side up	
	1/2 cup Kale,	Wash and cut kale off the stems	
The Best Kale Ever.	1 teaspoon Olive Oil,	Heat olive oil on medium heat and add garlic	
	1/4 teaspoons Red Pepper Flakes	Add in kale and red pepper flakes	

Top 5 retrieved images

Vision-Language Models Part II:

VLMs using LLMs

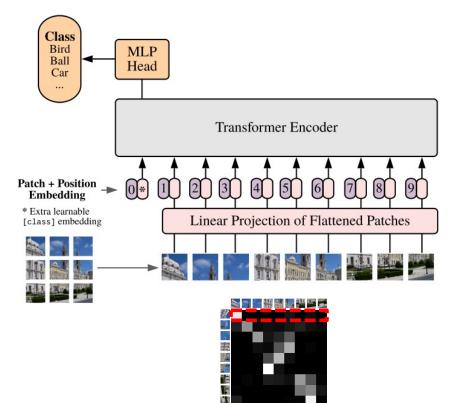
Outline

1. From classification to detection, segmentation, ...

2. Vision-Language Models in the era of LLMs

(Visual) Transformers

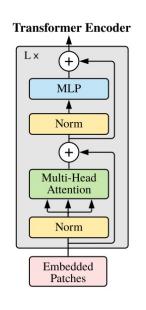
ViT (Vision Transformers) architecture => Self attention encoder modules for classification

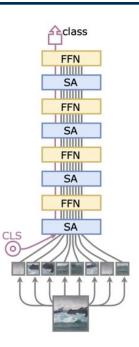


Published as a conference paper at ICLR 2021

AN IMAGE IS WORTH 16x16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy^{*,†}, Lucas Beyer^{*}, Alexander Kolesnikov^{*}, Dirk Weissenborn^{*}, Xiaohua Zhai^{*}, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby^{*,†} ^{*}equal technical contribution, [†]equal advising Google Research, Brain Team {adosovitskiy, neilhoulsby}@google.com





(Visual) Transformers

Class Activation architecture

In ViT class embedding CLS token inserted along with the patch embeddings:

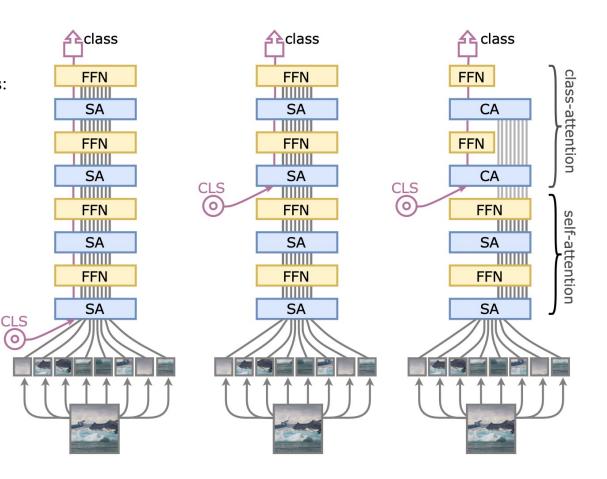
- helping the attention process
- preparing the vector to be fed to the classifier

CaiT freezes the patch embeddings when inserting CLS:

last part of the network (2 layers) dedicated to summarizing the information to be fed to the classifier

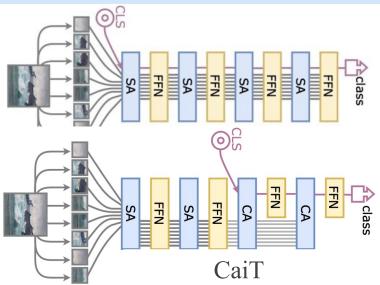
0

save compute



Design output for classification, detection, ...

- CLS token for classification
- CaiT strategy: CLS to decode the embeddings

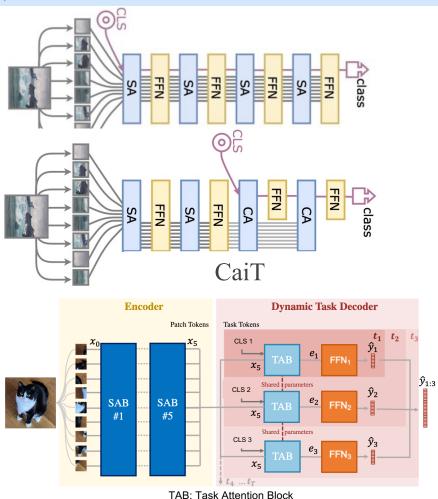


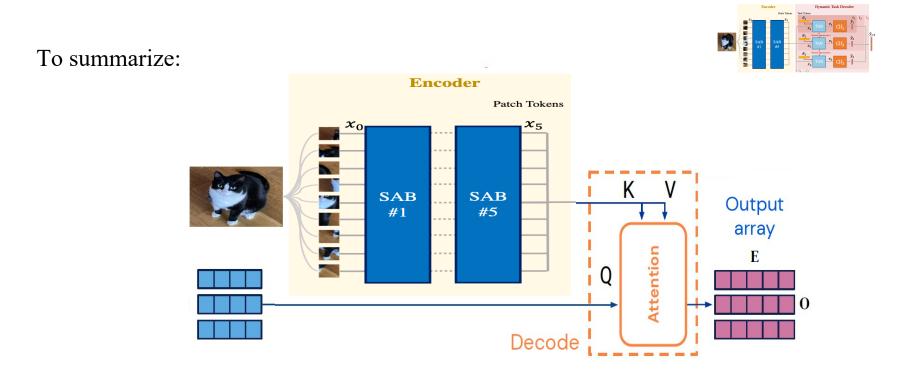
Design output for classification, detection, ...

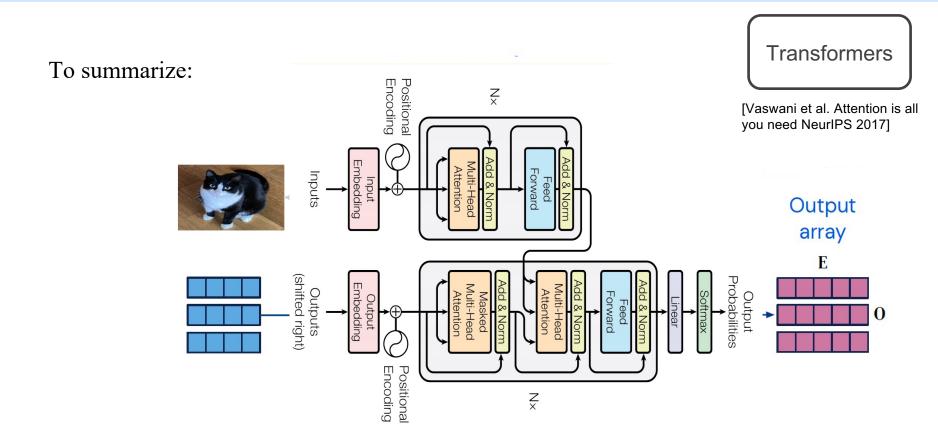
- CLS token for classification
- CaiT strategy: CLS to decode the embeddings

• Extension to incremental classification task learning:

And for other type of output as detection?



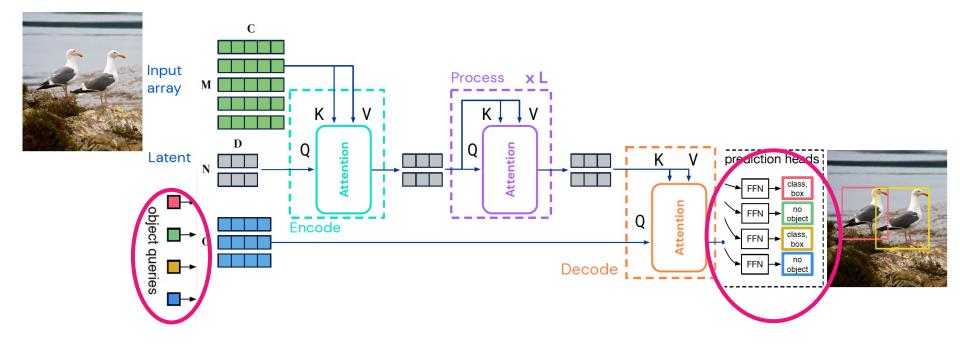




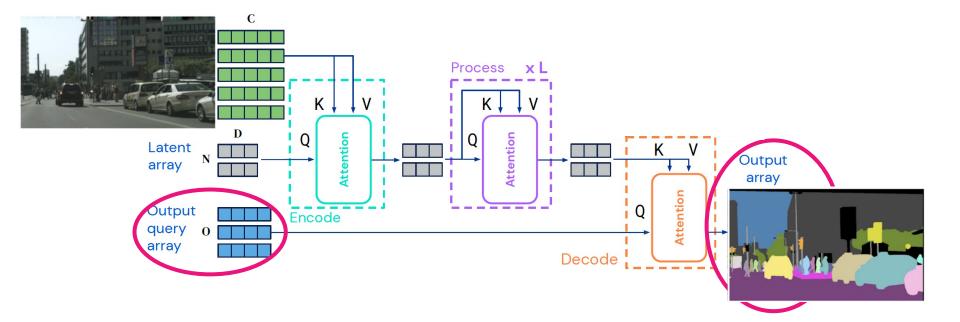
Just to complete the big picture [Perceiver IO A General Architecture for Structured Inputs & Outputs ICLR22]



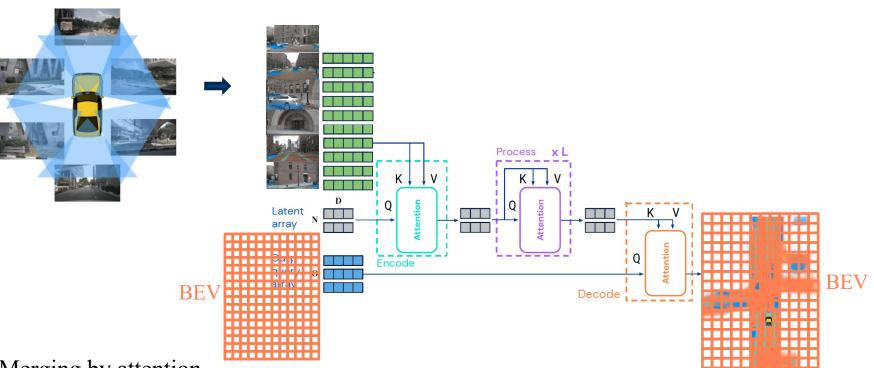
Output query array / Output array defines the downstream task: detection



Output query array / Output array defines the downstream task: segmentation ...



Input array = N cameras

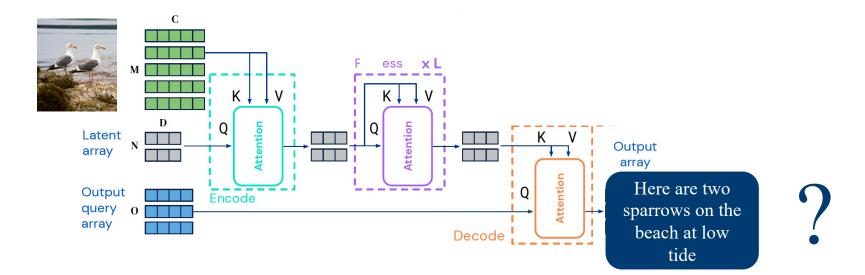


Output array = Bird Eye View (BEV) representation

Merging by attention

Many Foundation models for Autonomous driving based on this framework

From Image to sentences!



Outline

- 1. From classification to detection, segmentation, ...
- 2. Vision-Language Models in the era of LLMs
 - Unimodal models with connection
 - One model for all

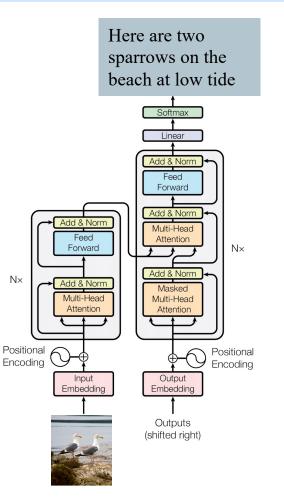
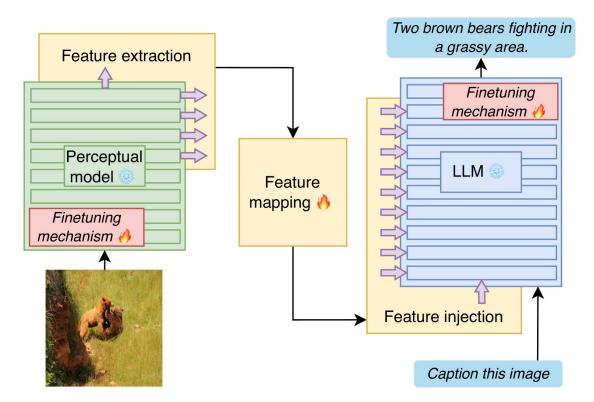
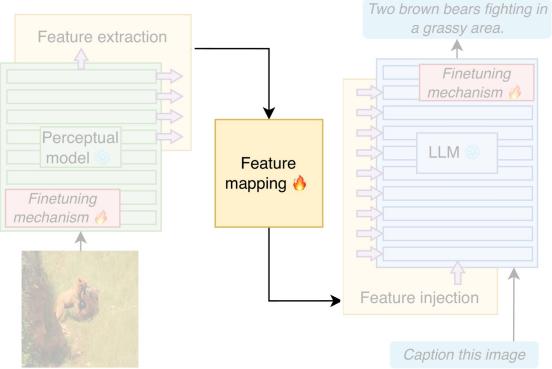


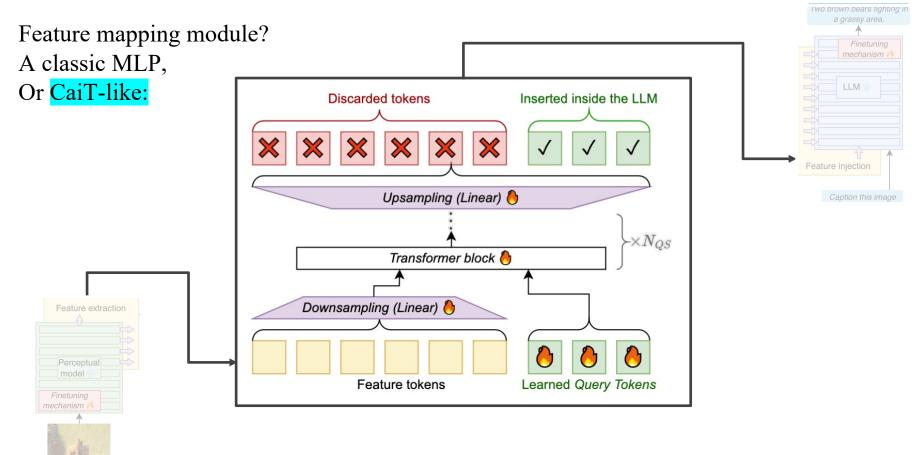
Image as input, textual caption as output



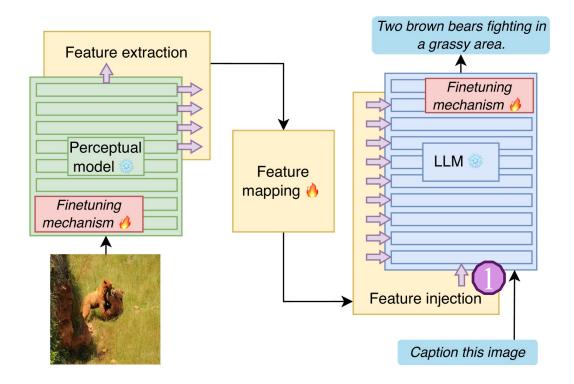
Why this modeling? Because the best LLM ever designed (and the plug&play update if a new LLM is released)

Feature mapping module? A classic MLP, or:

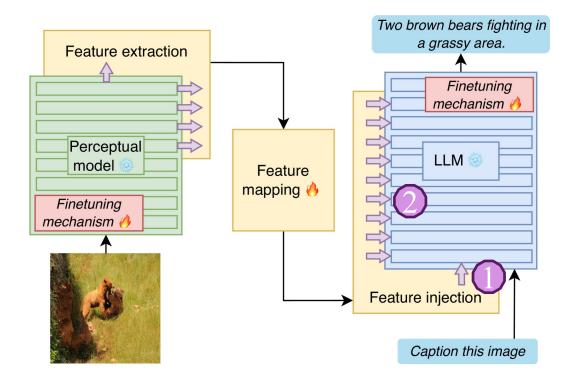




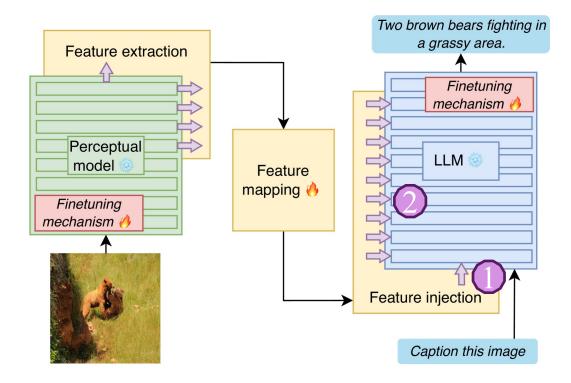
After feature mapping, feature injection!

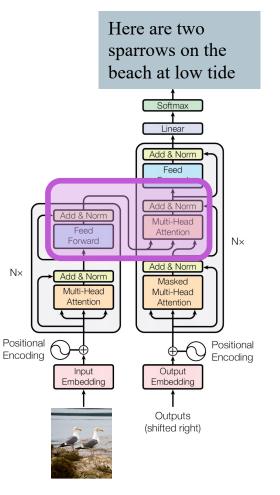


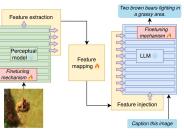
After feature mapping, feature injection!



After feature mapping, feature injection!







Method	Backbones		Adaptation mechanism				
	LLMs	Perceptual Enc.	Feature extraction	Feature mapping	Feature injection	Fine-tuning mechanisms	params.
Flamingo [1]	Chinchilla [33]	NFNet [5]	Tokens from last layer	Perceiver Resampler (Transformer)	GATED XATTN-DENSE (Cross-attention)	_	10B
BLIP-2 [43]	OPT [92], FlanT5 [13]	CLIP [65]	Tokens from last layer	Q-Former	1st layer token injection	-	1.2B
MAGMA [22]	GPT-J 6B [86]	CLIP [65] / NFNet [5]	Tokens from last layer	MLP	1st layer token injection	fine-tuning of perceptual model	243M
MAPL [58]	GPT-J 6B [86]	CLIP-L [65]	Tokens from last layer	$\begin{array}{l} {\rm QPM apper} \\ (d_{\rm embed}{=}256,4 \ {\rm layers}) \end{array}$	1st layer token injection	_	3.4M
PromptFuse [46]	BART [42]	ViT [19]	Tokens from last layer	nothing	-	prompt tuning	15K
LiMBeR [60]	GTP-J 6B [86]	CLIP [65]	Tokens from last layer	Linear projection	1st layer token injection	-	12.5M
eP-ALM [72]	OPT-2.7B/6.7B [92]	ViT [77], AST [27], TimeSformer [4]	CLS tokens from n last layers	(Shared) linear projection	Token injection in intermediate layers	prompt tuning	4.2M
LLaMA-Adapter [25, 91]	LLaMA[82]	CLIP [65]	Tokens from last layer	Linear projection	Token injection in intermediate layers		
Frozen [84]	GPT-like [66]	NFNet [5]	Pooled output tokens	nothing	1st layer token injection	token injection Fine-tune the NFNet	
ClipCap [61]	GPT-2[66]	CLIP [65]	Tokens from last layer	Transformer	1st layer token injection	-	43M
VL-Adapter [79]	BART [42], T5 [67]	CLIP [65]	Tokens from last layer	Linear projection	1st layer token injection	Adapters	5.8M
AnyMAL [62]	Llama 2-70B-chat [83],	CLIP [65], CLAP [23]	Tokens from last layer	Perceiver Resampler, or linear projection	1st layer token injection	LoRA [34]	-
DePALM ^{QP,inner}			Tokens from n last layers	QPMapper	Token injection in intermediate layers		18.1M
DePALM	OPT-6.7B [92],	CLIP-L [65], DINOv2 [63],		di nuppor			17.9M
$\begin{array}{l} DePALM^{R\text{-}rand,L0}, \ DePALM^{R\text{-}linear,L0}, \\ DePALM^{R\text{-}QPMapper,L0}, \ DePALM^{R\text{-}avgpool,L0} \end{array}$	LLaMA [82]	MAViL [36] TimeSformer [4]	Tokens from last layer	$\begin{array}{c} {\rm Linear\ projection}\\ + {\rm Resampler} \end{array}$	1st layer token injection		21M, 88M
${ m DePALM}^{c-{ m attn}}$	-		Tokens from n last layers	Projection + Small Transformer	Gated cross-attention	-	17.9M

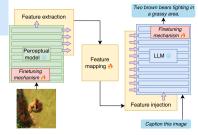
Parameter efficient approaches:

Leave the LLM and backbone frozen,

Train the mapping on (very) limited training sets to obtain very good results

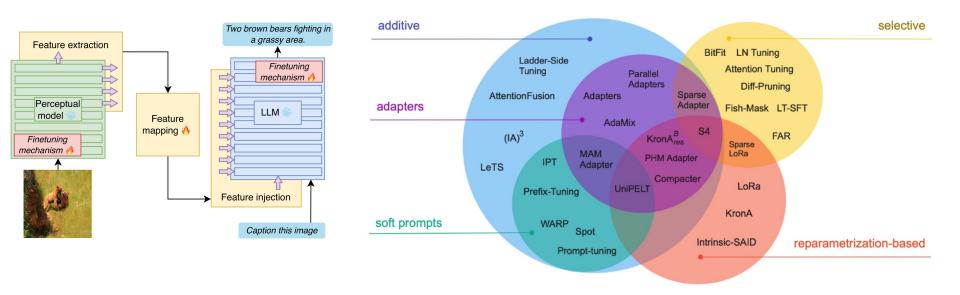
Simple design choices works best! ie. passing all perceptual tokens at the input to the LLM

compress perceptual to a few "summary tokens" 4 times faster to train and on par results



Many things to do on top of (pretrained) foundations models (if/when available) Leverage **unimodal** models to build efficient **multimodal** models works well

Efficient finetuning: parameter efficiency, data efficiency, ...



How to get the best VLM? Relax the **efficiency** constraint 1/ Build a huge multimodal dataset

How to get the best VLM? Relax the **efficiency** constraint 1/ Build a huge multimodal dataset

Image-Text Pairs

Tottenham vs Chelsea Live Streaming

Tottenham Spurs vs Chelsea Live Streaming

Multimodal Document

The match between Tottenham Spurs vs Chelsea will kick off from 16:30 at Tottenham Hotspur Stadium, London.

The derby had been played 54 times and the Blues have dominated the Spurs. Out of 54 matches played, Chelsea has won 28 times and Spurs had only won 7 times. The remaining 19 matches had ended in draw.

However, in recent 5 meetings, Spurs had won 3 times where Chelsea had won the other two times. \ldots

+Add synthetized data ...

Dataset	Images	% unique images	Docs	Tokens	Open
KOSMOS-1	-	-	71M	-	×
MЗW	185M	-	43M	-	X
mmc4-ff	385M	60.6%	79M	34B	1
mmc4	585M	-	103M	43B	1
OBELICS	353M	84.3 %	141M	115B	1

Table 1: General statistics of $\ensuremath{\mathsf{OBELICS}}$ and the current largest alternatives.

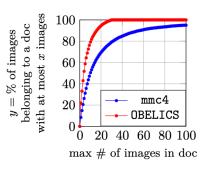
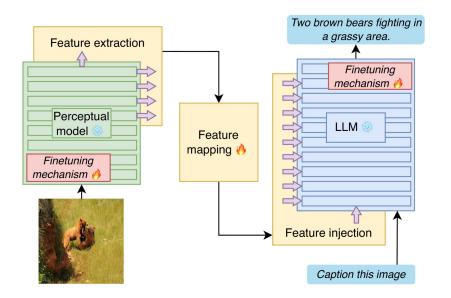


Figure 3: Distribution of images.

How to get the best VLM? Relax the **efficiency** constraint 1/ Build a huge multimodal dataset 2/ Train your best model:



Best architecture?

Vision encoder Feature Mapping to the LLM input space Visual tokens (64 in our standard configuration) interleaved with the input sequence of text embeddings LLM

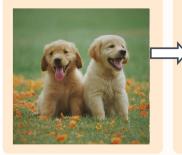
Evaluation very important, not easy for Generative models

Quantitative results:

Qualitative results:

Prompt

Describe the image



The image shows two golden retriever puppies sitting in a field of flowers. They are sitting next to each other, looking at the camera, and appear to be very happy. The puppies are adorable, and their fur is a beautiful golden color. The flowers surrounding them are yellow and add a vibrant touch to the scene.

Idefics2 output

Model	Size	Archi.	# tokens per image	VQAv2	TextVQA	OKVQA	сосо
OpenFlamingo	9B	CA	-	54.8	29.1	41.1	96.3
Idefics1	9B	CA	-	56.4	27.5	47.7	97.0
Flamingo	9B	CA	-	58.0	33.6	50.0	99.0
MM1	7B	FA	144	63.6	46.3	51.4	116.3
Idefics2-base	8B	FA	64	70.3	57.9	54.6	116.0

Model	Size	# tokens per image	MMMU	MathVista	TextVQA	MMBench
LLaVA-NeXT	13 B	2880	36.2/-	35.3	67.1	70.0
DeepSeek-VL	7 B	576	36.6/-	36.1	64.4	73.2
MM1-Chat	7B	720	37.0/35.6	35.9	72.8	72.3
Idefics2	8B	64	43.5/37.9	51.6	70.4	76.8
Idefics2	8B	320	43.0/37.7	51.4	73.0	76.7

Qualitative results:

Prompt

Extract the name, email, current job, and education. Output a JSON format.

YANN KARPATHY

@ yann.karpathy@gmail.com

Accomplished machine learning researcher with over 5 years of specialized experience at Hugging Face, focusing on developing cutting-edge AI technologies. Proven rack record of innovation and leadership in artificial intelligence, seeking to leverage expertise to tackle new challenges in machine learning and AI development.

EXPERIENCE

05/2018 - Current Machine Learning Engineer, Company: Hugging Face Vision Language Models.

EDUCATION

- 2012 2018 Ph.D. in Computer Science Stanford University Advancements in Neural Network Architectures for Image Recognition
- 2010 2012 Master of Science in Artificial Intelligence Massachusetts Institute of Technology Machine Learning Algorithms and Applications

2006 - 2010 Bachelor of Science in Computer Science University of Toronto Data Structures and Algorithm Design

SKILLS

- Proficient in Python, PyTorch, TensorFlow, and Keras
 statistical data analysis and bettensive experience with NLP and computer vision
 Excellent communication and leadership skills
- LANGUAGES

French, English: First Language

Idefics2 output

"name": "Yann Karpathy", "email": "yann.karpathy@gmail.com", "current_job": "Machine Learning Engineer, Hugging Face", "education": [

{

"year": "2012 - 2018", "degree": "Ph.D. in Computer Science", "university": "Stanford University"

"year": "2010 - 2012",

"degree": "Master of Science in Artificial Intelligence", "university": "Massachusetts Institute of Technology"

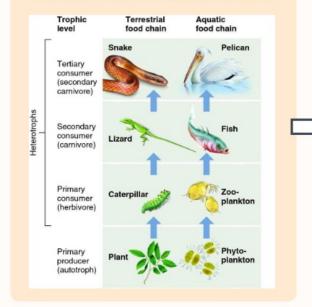
"year": "2006 - 2010",

"degree": "Bachelor of Science in Computer Science", "university": "University of Toronto"

Qualitative results:

Prompt

What happens to fish if pelicans increase?



Idefics2 output

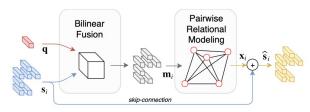
If pelicans increase, they may consume more fish, which could lead to a decrease in the fish population or an imbalance in the ecosystem. This could potentially affect other species that rely on fish for food, such as seals, dolphins, and humans who fish for consumption.

Conclusion -- Vision-Language framework

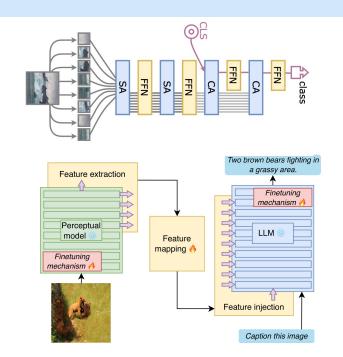
• Architectures/models

Transformers: the end?

Vision-Language interaction/representation



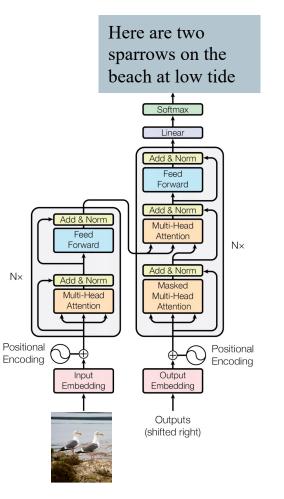
- Learning VLM: data, loss, optim., evaluation, generalization ...
- Monitoring, explainability for VLM



And what models if output different from text only?

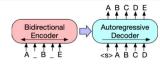
Outline

- 1. From classification to detection, segmentation, ...
- 2. Vision-Language Models in the era of LLMs
 - Unimodal models with connection
 - One model for all



1M4all

One model with: many inputs / many outputs / many tasks



(c) BART: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitrary noise transformations. Here, a document has been corrupted by replacing spans of text with mask symbols. The corrupted document (left) is encoded with a bidirectional model, and then hicklihood of the original document (right) is calculated with an autoregressive decoder. For fine-tuning, an uncorrupted document is input to both the encoder and decoder, and we use representations from the final hidden state of the decoder.



4M: Massively Multimodal Masked Modeling

NeurIPS 2023/24David Mizrahi^{1,2*}Roman Bachmann^{1*}Oğuzhan Fatih Kar¹Teresa Yeo¹Mingfei Gao²Afshin Dehghan²Amir Zamir¹¹Swiss Federal Institute of Technology Lausanne (EPFL)²Apple

