Extra: Explainable AI (XAI) for deep visual models
Introduction: Post-hoc explanations

- Let Deep models = black box: how to get post-hoc explanations?

- Differs from explainable by design (modularity-inspired models exhibit some forms of interpretability, which can be enforced at different levels in the design of a driving system)
Post-hoc explanations

- Two approaches to explain such models

<table>
<thead>
<tr>
<th>Global explanations</th>
<th>Local explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain the behavior of a model in general, e.g. across an entire dataset</td>
<td>Given a specific input, justify why the model specifically gives its prediction</td>
</tr>
</tbody>
</table>
Post-hoc global explanations

Prototypes-based methods

- Providing global explanations by selecting and aggregating multiple local explanations, ie find prototypes (specific data instances representing well the data) & criticisms (instances not well represented by the set of prototypes) and see the model predictions on these examples
Local explanations

Given this situation x, the output decision taken by the network is y.
Why?

- Input **saliency** visualization = **input attribution**
- **Counterfactual** interventions = inferring the prediction of a model for imaginary inputs that have not been observed
XAI by Saliency
Local explanations: input attribution

- **Attribution methods**: identify the most relevant parts considered by a neural network for a given class
Local explanations: input attribution

\[X = \begin{bmatrix} x_{1,1} & \cdots & x_{1,w} \\ \vdots & \ddots & \vdots \\ x_{h,1} & \cdots & x_{h,w} \end{bmatrix} \]

\[F = g_l \circ g_{l-1} \circ \cdots \circ g_1 \quad y = \begin{bmatrix} y_1 \\ \vdots \\ y_C \end{bmatrix} \]

\[F(X) = y \]

> Attribution method: identify which subset of variables (pixels) \(X \) that has the greatest impact on a specific output \(y_c \)
Local explanations: input attribution

- It depends on how the "importance" of variables is defined

\[F(X) = y \]

- Gradient-based importance:
 - Vanilla gradient: \(\| \frac{\partial F}{\partial X_i} \| \)
 - Modified gradient: Guided Backpropagation, Deconvolution

- Other popular methods:
 - Grad-CAM: Spatial averaged gradient * value \(\left(\frac{1}{N} \sum n \frac{\partial F}{\partial X_n} \right) X_i \)
Local explanations: Input saliency visualization

<table>
<thead>
<tr>
<th></th>
<th>orig img + gt bb</th>
<th>gradient</th>
<th>guided</th>
<th>contrast excitation</th>
<th>grad-CAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>chocolate sauce</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pekinese</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cliff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>street sign</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Local explanations: Input saliency visualization

Local explanations: Input saliency visualization

Bojarski et al. 2017

Liu et al. 2019
Local explanations: Local approximation

Forward approach (No gradient): explain the behavior of the black-box model in the vicinity of the instance with a simpler model.

Figure 4: Explaining an image classification prediction made by Google’s Inception neural network. The top 3 classes predicted are “Electric Guitar” \((p = 0.32)\), “Acoustic guitar” \((p = 0.24)\) and “Labrador” \((p = 0.21)\).
Local explanations: Input saliency visualization

Useful to analyze and detect **spurious correlations**

(a) Husky classified as wolf (b) Explanation

[ribeiro2016lime]

[Scenario A: Full Information]
- Policy attends to brake indicator
- Brake

[Scenario B: Incomplete Information]
- Policy attends to pedestrian
- Brake

[Causal Confusion in Imitation Learning, S. Levine NeurIPS19]
Interpretability/Explainability vs. Performance

Trade-off between model interpretability and performance, and a representation of the area of improvement where the potential of XAI techniques and tools resides.
XAI by counterfactual analysis
Counterfactual visual explanations (Goyal et al., ICML 2019)

- Using an input image X classified as c, and X' classified as c'
- Find which activations of X should be replaced by activations of X', to be classified as c'
Counterfactual explanations (for classifiers)

DiVE (Rodriguez et al., ICCV 2021)

- Variational autoencoder, to encode images into disentangled latent vectors z
- Optimize a set of perturbations on the latent vector, to switch the decision of the classifier
Generation of counterfactual samples

Original Image I

Semantic mask S_I

Encoder E

Style codes z^I

Counterfactual codes z

Generator G

Counterfactual Explanation I'

Discriminator D

Victim Model M

L_{adv}

$L_{decision}$
Qualitative results (CelebAMask-HQ)

When $y' = 0.5$ (i.e. we aim at border of the decision):

Reconstructed Image
- Male score: 0.99
- Young score: 0.97

Why is X a male and not a female?
- Counterfactual explanation
 - Male score: 0.23

Why is X young and not old?
- Counterfactual explanation
 - Young score: 0.49
Qualitative results (CelebAMask-HQ)

When \(y' = 0.0 \) (i.e. we aim at entirely switching the decision):

Why is X a male and not a female?

Counterfactual explanation
Male score: 0.009

Reconstructed Image
Male score: 0.99
Young score: 0.97

Counterfactual explanation
Young score: 0.002

Why is X young and not old?
Qualitative results (BDD)

Real Image I

$M(I) = \text{Go forward}$

$M(I') = \text{Stop}$

$M(I') = \text{Go forward}$

Countfactual Explanation I'

$M(I) = \text{Go forward}$

$M(I') = \text{Stop}$

$M(I') = \text{Go forward}$

$M(I) = \text{Stop}$
Qualitative comparison (BDD)

Real image
Decision: do not go forward

Counterfactual explanation
Decision: go forward