Beyond ImageNet

1. Fully Convolutional Networks (FCNs)
2. Supervised Segmentation with Deep ConvNets
Outline

Beyond ImageNet

1. Fully Convolutional Networks (FCNs)
2. Supervised Segmentation with Deep ConvNets
From ImageNet to complex scenes

- ImageNet: huge dataset (1.2M training images) with labels ... but centered objects

- How to apply/adapt/modify learning strategies to deal with:

 ImageNet

 VOC 2012

 MS COCO
From ImageNet to complex scenes?

• Working on datasets with complex scenes (large and cluttered background), not centered objects, variable size, ...

VOC07/12 MIT67 15 Scene COCO VOC12 Action

• Select relevant regions \rightarrow better prediction

• Full annotations expensive \Rightarrow training with weak supervision
How to adapt VGG16 archi. for large/complex images?

Main work of my PhD student Thibaut Durand
Thibaut Durand, Nicolas Thome, and Matthieu Cord
WELDON: Weakly supervised learning of deep convolutional neural networks
In CVPR, 2016.

Thibaut Durand, Taylor Mordan, Nicolas Thome, and Matthieu Cord
WILDCAT: Weakly Supervised Learning of Deep ConvNets for Image Classification, Pointwise Localization and Segmentation.
In CVPR, 2017.
Naïve approach: brut transfer (next Section)

- Resize the image
Sliding window \Rightarrow convolutional layers
Sliding window \Rightarrow convolutional layers

- Fully connected as convolutional layer (here 4096 conv. filters $7 \times 7 \times 512$)
Sliding window \Rightarrow convolutional layers

$$h = \frac{h'}{32} - 6 \quad w = \frac{w'}{32} - 6$$

- $h' \times w' \times 3$
- $h' \times w' \times 64$
- $\frac{h'}{2} \times \frac{w'}{2} \times 128$
- $\frac{h'}{4} \times \frac{w'}{4} \times 256$
- $\frac{h'}{8} \times \frac{w'}{8} \times 512$
- $\frac{h'}{16} \times \frac{w'}{16} \times 512$
- $h \times w \times 4096$

- Convolution + ReLU
- Max pooling
Transfer – Pooling – Classification

- Image-based strategy
- Region-based strategy

Feature extraction network

Input dimension: $h \times w$

Output dimension: 1×1
Image-based strategy

- Global Average Pooling (GoogLeNet, ResNet)

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba
Learning Deep Features for Discriminative Localization.
In CVPR, 2016.
Region-based strategy

- **Deep MIL**

 ![Diagram](image)

Maxime Oquab, Léon Bottou, Ivan Laptev and Josef Sivic
In *CVPR*, 2015.

- **WELDON and ProNet [Sun, CVPR16]**

 ![Diagram](image)

Thibaut Durand, Nicolas Thome, and Matthieu Cord
WELDON: Weakly Supervised Learning of Deep ConvNets.
In *CVPR*, 2016.
Pixel contribution to the classification
Pixel contribution to the classification

Class Activation Mapping

\[w_1 * + w_2 * + \ldots + w_n * = \text{Class Activation Map (Australian terrier)} \]
Pooling schemes

- Max [Oquab, CVPR15]
 \[y^c = \max_{i,j} z^c_{ij} \]

- GAP [Zhou, CVPR16]
 \[y^c = \frac{1}{N} \sum_{i,j} z^c_{ij} \]

 \[y^c = \frac{1}{\beta} \log \left(\frac{1}{N} \sum_{i,j} \exp(\beta \cdot z^c_{ij}) \right) \]
Max pooling limitation

- Classifying only with the max scoring region

- Loss of contextual information
Max pooling limitation

- Classifying only with the max scoring region

- Loss of contextual information
WELDON: max+min pooling

- h^+: presence of the class \rightarrow high h^+
- h^-: localized evidence of the absence of class

original image

bedroom

airport inside
dining room
Region-based strategy

• CAM for WELDON

\[h = \frac{h'}{32} - 6 \quad w = \frac{w'}{32} - 6 \]

- convolution + ReLU
- max pooling
- convolution
- k-max + k-min pooling

bedroom

dining room
- Generalization to K models per class
- Catch multiple class-related modalities
WILDCAT Architecture
Thibaut Durand, Taylor Mordan, Nicolas Thome, and Matthieu Cord
WILDCAT: Weakly Supervised Learning of Deep ConvNets for Image Classification, Pointwise Localization and Segmentation.
In CVPR, 2017.
Class activation maps

bus

cat

horse

aeroplane

bottle

bicycle
Class activation maps

bicycle

bird

motorbike

person

sheep

bird
Class activation maps

cow

motorbike

horse

person

car

person
Visual recognition task: localization

<table>
<thead>
<tr>
<th>Method</th>
<th>VOC 2012</th>
<th>MS COCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep MIL</td>
<td>74.5</td>
<td>41.2</td>
</tr>
<tr>
<td>ProNet</td>
<td>77.7</td>
<td>46.4</td>
</tr>
<tr>
<td>WSLocalization</td>
<td>79.7</td>
<td>49.2</td>
</tr>
</tbody>
</table>
In preview Segmentation

- **WSL segmentation framework**
 - Learning with image-level labels (presence/absence of the class)
 - Difficult task: no information about location and extent of objects

- **Localized features in spatial maps**

- **Deep + fully connected CRFs**
In preview Segmentation
Beyond ImageNet

1. Fully Convolutional Networks (FCNs)
2. Supervised Segmentation with Deep ConvNets
 1. F-CN Fully Convolutional Network
 2. DeepLab approach for supervised segmentation
 3. Deconvolution Networks
Segmentation: definitions
Def1: **Semantic Segmentation**

Label each pixel with a category label
Object Detection

Detect every instance of the category and localize it with a bounding box.
Def2: **Instance** segmentation

Simultaneous Detection and Segmentation
Detect and segment every instance of the category in the image
Supervised Segmentation with Deep ConvNets

1. F-CN Fully Convolutional Network
2. DeepLab approach for supervised segmentation
3. Deconvolution Networks
Supervised Segmentation with Deep ConvNets

F-CN Fully Convolutional Network

- Fully-convolutional network: classify each 'pixel'
- Upsampling output (bilinear interpolation + deconvolution)
- Network architecture: AlexNet, VGG16, GoogleNet
- Loss: soft-max per pixel
Supervised Segmentation with Deep ConvNets

F-CN Fully Convolutional Network

Learning process

1. Model pretrained on ImageNet
2. Decapitate each net by discarding the final classifier layer
3. Convert all fully-connected layers to convolutions
4. Append $n^1 1 \times 1$ convolutions
5. Fine-tuning all layers by backpropagation

$^1n=$number of classes
Supervised Segmentation with Deep ConvNets

F-CN Fully Convolutional Network

- Problem: max pooling and striding reduces spatial resolution
- Dense prediction: combines feature hierarchies
- Initialized with the parameters of coarse net
- Fine-tuning all layers by backpropagation

Solution of the FCN approach

FCN-32s-fixed: only the last layer is fine-tuned
Supervised Segmentation with Deep ConvNets

1. F-CN Fully Convolutional Network
2. DeepLab approach for supervised segmentation
3. Deconvolution Networks
Supervised Segmentation with Deep ConvNets

DeepLab (v123) approach for supervised segmentation

Problem of the spatial resolution reduction

Solution of the DeepLab approach

1. Learn CNN for dense prediction tasks (Atrous)
2. Improve the localization of object boundaries with fully-connected CRF \(\text{[?] (FC-CRF)} \)
Supervised Segmentation with Deep ConvNets

DeepLab approach: **Atrous filtering** algo

- Remove the down-sampling from the last pooling layers.
- Up-sample the original filter by a factor of the **strides**:

 Atrous convolution for 1-D signal:
 \[
 y[i] = \sum_{k=1}^{K} x[i + r \cdot k] w[k]
 \]

 - *x[i]*: 1-D input signal
 - *w[k]*: filter of length *K*
 - *r*: rate parameter corresponds to the stride with which we sample the input signal.
 - *y[i]*: output of atrous convolution.

- **Note:** standard convolution is a special case for *rate* *r*=1.
Supervised Segmentation with Deep ConvNets

Classical filtering/pooling/downsampling

DeepLab approach: **Atrous filtering** algo

Downsampling +

Convolution
kernel = 3
stride = 1
pad = 1

NO downsampling

Convolution
kernel = 3
stride = 1
pad = 2
rate = 2
(insert 1 zero)
Supervised Segmentation with Deep ConvNets

DeepLab approach: **Atrous filtering** algo

Filters field-of-view
- **Small** field-of-view \rightarrow accurate localization
- **Large** field-of-view \rightarrow context assimilation
- ‘Holes’: Introduce zeros between filter values.
- **Effective filter size increases** (enlarge the **field-of-view** of filter): $k \times k$ filter to $k_e = k + (k - 1)(r - 1)$

- However, we take into account **only** the **non-zero** filter values:
 - ✓ Number of filter parameters is the same.
 - ✓ Number of operations per position is the same.
Supervised Segmentation with Deep ConvNets

DeepLab approach: **Atrous filtering** algo
DeepLab: Fully-Connected CRF

- Problem: poor object delineation (spatial and appearance consistency neglected)
- Solution: fully-connected CRF accounts for contextual information in the image

\[
E(y) = \sum_{i} \theta_{i}(y_{i}) + \sum_{i,j} \theta_{ij}(y_{i}, y_{j})
\]

- Unary term: output of FCN (upscaled)
- Pairwise term: penalizes similar pixels having different labels
Supervised Segmentation with Deep ConvNets

- DeepLab V3+ [ECCV 2018]
Supervised Segmentation with Deep ConvNets

1. F-CN Fully Convolutional Network
2. DeepLab approach for supervised segmentation
3. Deconvolution Networks
Supervised Segmentation with Deep ConvNets

Deconvolution Network

- Learn a multi-layer deconvolution network
- Network is composed of two parts:
 1. Convolution: feature extractor
 2. Deconvolution: shape generator that produces object segmentation from the feature extracted
- Deconvolution net is a mirrored version of the convolution net

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network for semantic segmentation. In ICCV, 2015. [paper]
Supervised Segmentation with Deep ConvNets

Deconvolution Network

Unpooling

- Perform the reverse operation of pooling
- Reconstruct the original size of activations
- Useful to reconstruct the structure of input object
- Output: sparse activation map
Supervised Segmentation with Deep ConvNets

Deconvolution Network

Deconvolution

- Connect single input activation to a multiple activations
- Learned filters correspond to bases to reconstruct shape of an input object
- Output: enlarged and dense activation map
Supervised Segmentation with Deep ConvNets

Deconvolution Net: hourglass structure + unpooling switch variables
Supervised Segmentation with Deep ConvNets

Deconvolution Net + shortcut connection
Supervised Segmentation with Deep ConvNets

U-Net: Hourglass/U shape Net + shortcut connection by feature copies

Very popular in medical
Works well with low training data

Fig. 2. Overlap-tile strategy for seamless segmentation of arbitrary large images (here segmentation of neuronal structures in EM stacks). Prediction of the segmentation in the yellow area, requires image data within the blue area as input. Missing input data is extrapolated by mirroring

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations.

http://deeplearning.net/tutorial/unet.html
Extra: Datasets
PASCAL VOC 12

- Train 1464 images / Val 1449 images / Test 1456 images
- 21 classes: aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted plant, sheep, sofa, train, tv/monitor + background
- Evaluation: intersection-over-union metric
- Webpage: http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
COCO

- Train 80k images / Val 20k images
- 91 classes, 11 super-categories:

 ![Image of classes]

- 3 challenges: detection, instance segmentation, captioning
- Webpage: http://mscoco.org [paper]
Extra: Weakly Supervised Segmentation
Supervised Image Segmentation Methods

Full supervision

- Precise annotation 😊
- Expensive and time consuming to obtain
 - "79s per label per image" [RBFL15] 😞
- Bottleneck for learning models at large scale 😞
Weakly Supervised Image Segmentation Methods

Weak supervision

- Reduce supervision: class labels (or tags) 😞 😞
- Cheap to obtain
 - "1s per label per image" [RBFL15] 😊
- Scalable to large number of categories 😊

✅ background
❌ aeroplane
❌ cat
✅ chair
❌ dog
❌ person
❌ sheep
✅ table
❌ tvmonitor
Weakly supervised segmentation with CNN

Standard learning algorithms

- Maximize the likelihood of the observed training data

Problem

- Require full knowledge of the ground truth labeling
 - not available in the weakly supervised setting 😞

Solutions

1. Generation of segmentation mask

 George Papandreou, Liang-Chieh Chen, Kevin Murphy, and Alan L. Yuille.

2. Modified loss function: CNN optimized for classification

 Pedro O. Pinheiro and Ronan Collobert.
Generation of segmentation mask

Idea: adaptive bias

- Generated segmentation mask and train fully-supervised CNN
- Adaptive bias into the multi-instance learning framework
 - Boost classes known to be present
 - Suppress all others
Segmentation Results

@Y. LeCun
Segmentation Results

@Y. LeCun
Segmentation Results

@Y. LeCun => Mask-R-CNN