

COURS RDFIA deep Image

https://cord.isir.upmc.fr/teaching-rdfia/

Matthieu Cord Sorbonne University

Course Outline

- 1. Computer Vision and ML basics: visual (local) feature detection and description, Bag of Word Image representation, Linear classification (SVM)
- 2. Introduction to Neural Networks (NNs)
- 3. Machine Learning basics (2): Risk, Classification, Datasets, benchmarks and evaluation
- 4. Neural Nets for Image Classification
- 5. Vision Transformers
- 6. Transfer learning and domain adaptation
- 7. Segmentation and Detection
- 8. Generative models with GANs
- 9. Generative models with diffusion
- 10. Large VL models: CLIP, <u>StableDiffusion</u>, Flamingo
- 11. Control (to be checked) -- Explainable AI, Fairness
- 12/13 Bayesian deep learning
- 14 Robustness

Evaluations: Control (30%) + <u>Practicals</u> (3 reports; 70%) can <u>be modified</u> by 10% <u>between</u> the 2 <u>evaluations</u>

The Formal Neuron: 1943 [MP43]

- Basis of Neural Networks
- Input: vector $\mathbf{x} \in \mathbb{R}^m$, *i.e.* $\mathbf{x} = \{x_i\}_{i \in \{1,2,\ldots,m\}}$
- Neuron output $\hat{y} \in \mathbb{R}$: scalar

The Formal Neuron: 1943 [MP43]

- Mapping from x to \hat{y} :

 - 1. Linear (affine) mapping: $s = w^{T}x + b$ 2. Non-linear activation function: $f: \hat{y} = f(s)$

The Formal Neuron: Linear Mapping

- Linear (affine) mapping: $s = w^{\mathsf{T}} x + b = \sum_{i=1}^{m} w_i x_i + b$
 - w: normal vector to an hyperplane in $\mathbb{R}^m \Rightarrow$ linear boundary
 - b bias, shift the hyperplane position

The Formal Neuron: Activation Function

- $\hat{y} = f(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b),$
- f: activation function
 - ▶ Bio-inspired choice: Step (Heaviside) function: $H(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{otherwise} \end{cases}$

- Popular f choices: sigmoid, tanh, ReLU, GELU, ...
- Sigmoid: $\sigma(z) = (1 + e^{-az})^{-1}$

- ▶ $a \uparrow$: more similar to step function (step: $a \to \infty$)
- Sigmoid: linear and saturating regimes

Step function: Connection to Biological Neurons

- Formal neuron, step activation H: $\hat{y} = H(w^T x + b)$
 - $\hat{y} = 1$ (activated) $\Leftrightarrow w^{\mathsf{T}} \times \geq -b$
 - $\hat{y} = 0$ (unactivated) $\Leftrightarrow w^{\mathsf{T}} \times \langle -b \rangle$
- Biological Neurons: output activated
 - \Leftrightarrow input weighted by synaptic weight \geq threshold

The Formal neuron: Application to Binary Classification

- Binary Classification: label input x as belonging to class 1 or 0
- Neuron output with sigmoid:

$$\hat{y} = \frac{1}{1 + e^{-a(\mathbf{w}^{\mathsf{T}} \mathbf{x} + b)}}$$

- Sigmoid: probabilistic interpretation $\Rightarrow \hat{y} \sim P(1|x)$
 - Input x classified as 1 if $P(1|x) > 0.5 \Leftrightarrow w^{T}x + b > 0$
 - Input x classified as 0 if P(1|x) < 0.5 ⇔ w^Tx + b < 0 ⇒ sign(w^Tx + b): linear boundary decision in input space !

- 2d example: $m = 2, x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5]$
- Linear mapping: w = [1; 1] and b = -2
- Result of linear mapping : $s = w^T x + b$

- 2d example: $m = 2, x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5]$
- Linear mapping: w = [1; 1] and b = -2
- Result of linear mapping : $s = w^T x + b$
- Sigmoid activation function: $\hat{y} = (1 + e^{-a(w^{\top}x+b)})^{-1}$, a = 10

- 2d example: $m = 2, x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5]$
- Linear mapping: w = [1; 1] and b = -2
- Result of linear mapping : $s = w^T x + b$
- Sigmoid activation function: $\hat{y} = (1 + e^{-a(w^{\top}x+b)})^{-1}$, a = 1

- 2d example: $m = 2, x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5]$
- Linear mapping: w = [1; 1] and b = -2
- Result of linear mapping : $s = w^T x + b$
- Sigmoid activation function: $\hat{y} = (1 + e^{-a(w^{T}x+b)})^{-1}$, a = 0.1

From Formal Neuron to Neural Networks

- Formal Neuron:
 - 1. A single scalar output
 - 2. Linear decision boundary for binary classification
- Single scalar output: limited for several tasks
 - Ex: multi-class classification, e.g. MNIST or CIFAR

- Formal Neuron: limited to binary classification
- Multi-Class Classification: use several output neurons instead of a single one!
 ⇒ Perceptron
- Input x in \mathbb{R}^m
- Output neuron $\hat{y_1}$ is a formal neuron:
 - Linear (affine) mapping: $s_1 = w_1^T x + b_1$
 - Non-linear activation function: f: ŷ₁ = f(s₁)
- Linear mapping parameters:

•
$$w_1 = \{w_{11}, ..., w_{m1}\} \in \mathbb{R}^m$$

• $b_1 \in \mathbb{R}$

- Input x in \mathbb{R}^m
- Output neuron $\hat{y_k}$ is a formal neuron:
 - Linear (affine) mapping: $s_k = w_k^T x + b_k$
 - Non-linear activation function: f: $\hat{y}_k = f(s_k)$
- Linear mapping parameters:

•
$$\mathbf{w}_{\mathbf{k}} = \{w_{\mathbf{1}k}, \dots, w_{mk}\} \in \mathbb{R}^{n}$$

 $b_k \in \mathbb{R}$

- ▶ Input x in \mathbb{R}^m (1 × m), output \hat{y} : concatenation of K formal neurons
- Linear (affine) mapping ~ matrix multiplication: s = xW + b
 - W matrix of size $m \times K$ columns are w_k
 - b: bias vector size $1 \times K$
- Element-wise non-linear activation: $\hat{y} = f(s)$

Soft-max Activation:

$$\hat{y_k} = f(s_k) = \frac{e^{s_k}}{\sum\limits_{k'=1}^{K} e^{s_{k'}}}$$

- Note that f(s_k) depends on the other s_{k'}, the arrow is a functional link
- Probabilistic interpretation for multi-class classification:
 - ► Each output neuron ⇔ class
 - $\hat{y_k} \sim P(k|\mathbf{x}, \mathbf{W})$

\Rightarrow Logistic Regression (LR) Model!

2d Toy Example for Multi-Class Classification

2d Toy Example for Multi-Class Classification

Class Prediction: $k^* = \underset{k}{\operatorname{arg\,max}} P(k|\mathbf{x}, \mathbf{W})$

Beyond Linear Classification

X-OR Problem

- Logistic Regression (LR): NN with 1 input layer & 1 output layer
- LR: limited to linear decision boundaries
- X-OR: NOT 1 and 2 OR NOT 2 AND 1
 - X-OR: Non linear decision function

Beyond Linear Classification

- LR: limited to linear boundaries
- Solution: add a layer!

- Input x in \mathbb{R}^m , e.g. m = 4
- Output \hat{y} in \mathbb{R}^{K} (K # classes), e.g. K = 2
- Hidden layer h in \mathbb{R}^{L}

Multi-Layer Perceptron

- ► Hidden layer h: x projection to a new space ℝ^L
- Neural Net with ≥ 1 hidden layer: Multi-Layer Perceptron (MLP)
- h: intermediate representations of x for classification ŷ:

- h = f (xW₁ + b₁) f non-linear activation, s = hW₂ + b₂ ŷ = SoftMax(s)
- Mapping from x to ŷ: non-linear boundary!
 - \Rightarrow non-linear activation f crucial!

Deep Neural Networks

- Adding more hidden layers: Deep Neural Networks (DNN) ⇒ Basis of Deep Learning
- Each layer h' projects layer h'^{-1} into a new space
- Gradually learning intermediate representations useful for the task

Conclusion

 Deep Neural Networks: applicable to classification problems with non-linear decision boundaries

- Visualize prediction from fixed model parameters
- Reverse problem: Supervised Learning

Outline

Training Deep Neural Networks

Training Multi-Layer Perceptron (MLP)

- Input x, output y
- A parametrized (w) model $x \Rightarrow y$: $f_w(x_i) = \hat{y_i}$
- Supervised context:
 - Training set $\mathcal{A} = \{(x_i, y_i^*)\}_{i \in \{1, 2, \dots, N\}}$
 - Loss function $\ell(\hat{y}_i, y_i^*)$ for each annotated pair (x_i, y_i^*)
 - Goal: Minimizing average loss \mathcal{L} over training set: $\mathcal{L}(w) = \frac{1}{N} \sum_{i=1}^{N} \ell(\hat{y}_i, y_i^*)$
- Assumptions: parameters $w \in \mathbb{R}^d$ continuous, \mathcal{L} differentiable
- Gradient $\nabla_{w} = \frac{\partial \mathcal{L}}{\partial w}$: steepest direction to decrease loss $\mathcal{L}(w)$

MLP Training

Gradient descent algorithm:

- Initialyze parameters w
- Vpdate: $w^{(t+1)} = w^{(t)} \eta \frac{\partial \mathcal{L}}{\partial w}$

• Until convergence, *e.g.*
$$\|\nabla_{\mathbf{w}}\|^2 \approx 0$$

Gradient Descent

Update rule: $w^{(t+1)} = w^{(t)} - \eta \frac{\partial \mathcal{L}}{\partial w}$

η learning rate

• Convergence ensured ? \Rightarrow provided a "well chosen" learning rate η

Gradient Descent

Update rule: $w^{(t+1)} = w^{(t)} - \eta \frac{\partial \mathcal{L}}{\partial w}$

Global minimum ?

 \Rightarrow convex a) vs non convex b) loss $\mathcal{L}(w)$

Supervised Learning: Multi-Class Classification

- Logistic Regression for multi-class classification
- $s_i = x_i W + b$
- ► Soft-Max (SM): $\hat{y_k} \sim P(k/x_i, W, b) = \frac{e^{s_k}}{\sum\limits_{k'=1}^{K} e^{s_{k'}}}$
- Supervised loss function: $\mathcal{L}(W, b) = \frac{1}{N} \sum_{i=1}^{N} \ell(\hat{y}_i, y_i^*)$

1.
$$y \in \{1; 2; ...; K\}$$

2. $\hat{y_i} = \arg \max_k P(k/x_i, W, b)$
3. $\ell_{0/1}(\hat{y_i}, y_i^*) = \begin{cases} 1 & \text{if } \hat{y_i} \neq y_i^* \\ 0 & \text{otherwise} \end{cases}$: **0/1 loss**

Logistic Regression Training Formulation

- Input x_i, ground truth output supervision y^{*}_i
- One hot-encoding for y^{*}_i:

$$y_{c,i}^{*} = \begin{cases} 1 & \text{if c is the groud truth class for } x_i \\ 0 & \text{otherwise} \end{cases}$$

Logistic Regression Training Formulation

1

- Loss function: multi-class Cross-Entropy (CE) ℓ_{CE}
- ℓ_{CE} : Kullback-Leiber divergence between y_i^* and \hat{y}_i

$$\ell_{CE}(\hat{y}_{i}, y_{i}^{*}) = KL(y_{i}^{*}, \hat{y}_{i}) = -\sum_{c=1}^{K} y_{c,i}^{*} log(\hat{y}_{c,i}) = -log(\hat{y}_{c^{*},i})$$

• \land KL asymmetric: $KL(\hat{y}_i, y_i^*) \neq KL(y_i^*, \hat{y}_i)$ \land

 $\textit{KL}(\mathbf{y}^*_{\mathbf{i}}, \mathbf{\hat{y}}_{\mathbf{i}}) = -log(\hat{y}_{c^*,i}) = -log(0.8) \approx 0.22$

Logistic Regression Training

•
$$\mathcal{L}_{CE}(W, b) = \frac{1}{N} \sum_{i=1}^{N} \ell_{CE}(\hat{y}_i, y_i^*) = -\frac{1}{N} \sum_{i=1}^{N} log(\hat{y}_{c^*, i})$$

- ℓ_{CE} smooth convex upper bound of $\ell_{0/1}$ \Rightarrow gradient descent optimization
- ► Gradient descent: $W^{(t+1)} = W^{(t)} \eta \frac{\partial \mathcal{L}_{CE}}{\partial W} \quad (b^{(t+1)} = b^{(t)} \eta \frac{\partial \mathcal{L}_{CE}}{\partial b})$
- MAIN CHALLENGE: computing $\frac{\partial \mathcal{L}_{CE}}{\partial W} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell_{CE}}{\partial W}$?

$$\Rightarrow \frac{\text{Key Property:}}{z} \text{ chain rule } \frac{\partial x}{\partial z} = \frac{\partial x}{\partial y} \frac{\partial y}{\partial z}$$

⇒ Backpropagation of gradient error!

Chain Rule

Logistic Regression Training: Backpropagation

0.0 0.0.0

$$\frac{\partial \ell_{CE}}{\partial W} = \frac{\partial \ell_{CE}}{\partial \hat{y}_{i}} \frac{\partial \hat{y}_{i}}{\partial \mathbf{s}_{i}} \frac{\partial \hat{s}_{i}}{\partial W}, \ \ell_{CE}(\hat{y}_{i}, y_{i}^{*}) = -log(\hat{y}_{c^{*}, i}) \Rightarrow \text{Update for 1 example:}$$

$$\frac{\partial \ell_{CE}}{\partial \hat{y}_{i}} = \frac{-1}{\hat{y}_{c^{*}, i}} = \frac{-1}{\hat{y}_{i}} \odot \delta_{c, c^{*}}$$

$$\frac{\partial \ell_{CE}}{\partial \mathbf{s}_{i}} = \hat{y}_{i} - y_{i}^{*} = \delta_{i}^{y}$$

$$\frac{\partial \ell_{CE}}{\partial W} = \times_{i}^{T} \delta_{i}^{y}$$

$$X_{i} \qquad (1, K) \qquad (1,$$

$$\xrightarrow{\mathbf{A}_{i}} \mathbf{W} \xrightarrow{\mathbf{A}_{i}} \mathbf{Y}_{i}$$

$$(1,m) \qquad \mathbf{W} \xrightarrow{\mathbf{A}_{i}} \mathbf{M} \xrightarrow{$$

Logistic Regression Training: Backpropagation

• Whole dataset: data matrix X ($N \times m$), label matrix \hat{Y} , Y^* ($N \times K$)

$$\blacktriangleright \mathcal{L}_{CE}(\mathsf{W},\mathsf{b}) = -\frac{1}{N} \sum_{i=1}^{N} log(\hat{y}_{c^*,i}), \ \frac{\partial \mathcal{L}_{CE}}{\partial \mathsf{W}} = \frac{\partial \mathcal{L}_{CE}}{\partial \hat{\mathsf{Y}}} \frac{\partial \hat{\mathsf{Y}}}{\partial \mathsf{S}} \frac{\partial \mathsf{S}}{\partial \mathsf{W}}$$

$$\frac{\partial \mathcal{L}_{CE}}{\partial \mathbf{s}} = \hat{\mathbf{Y}} - \mathbf{Y}^* = \mathbf{\Delta}^{\mathbf{y}}$$

$$\frac{\partial \mathcal{L}_{CE}}{\partial W} = X^T \Delta^y$$

Perceptron Training: Backpropagation

- Perceptron vs Logistic Regression: adding hidden layer (sigmoid)
- ▶ **Goal:** Train parameters W^y and W^h (+bias) with Backpropagation

- Last hidden layer ~ Logistic Regression
- ► First hidden layer: $\frac{\partial \ell_{CE}}{\partial W^h} = x_i^T \frac{\partial \ell_{CE}}{\partial u_i} \Rightarrow \text{computing } \frac{\partial \ell_{CE}}{\partial u_i} = \delta_i^h$

Perceptron Training: Backpropagation

► Computing
$$\frac{\partial \ell_{CE}}{\partial u_i} = \delta_i^h \Rightarrow$$
 use chain rule: $\frac{\partial \ell_{CE}}{\partial u_i} = \frac{\partial \ell_{CE}}{\partial v_i} \frac{\partial v_i}{\partial h_i} \frac{\partial h_i}{\partial u_i}$
► ... Leading to: $\frac{\partial \ell_{CE}}{\partial u_i} = \delta_i^h = \delta_i^{y^T} W^y \odot \sigma'(h_i) = \delta_i^{y^T} W^y \odot (h_i \odot (1 - h_i))$

Deep Neural Network Training: Backpropagation

- Multi-Layer Perceptron (MLP): adding more hidden layers
- ▶ Backpropagation update ~ Perceptron: assuming $\frac{\partial \mathcal{L}}{\partial U_{l+1}} = \Delta^{l+1}$ known

$$\begin{array}{c} \begin{array}{c} \frac{\partial \mathcal{L}}{\partial W^{l+1}} = {H_{l}}^{T} \Delta^{l+1} \\ \end{array} \\ \hline \begin{array}{c} \text{Computing } \frac{\partial \mathcal{L}}{\partial U_{l}} = \Delta^{l} \\ \frac{\partial \mathcal{L}}{\partial W^{l}} = {H_{l-1}}^{T} \Delta^{h_{l}} \end{array} \end{array} (= \Delta^{l+1}^{T} W^{l+1} \odot H_{l} \odot (1 - H_{l}) \text{ sigmoid}) \end{array}$$

Neural Network Training: Optimization Issues

Classification loss over training set (vectorized w, b) ignored):

$$\mathcal{L}_{CE}(\mathsf{w}) = \frac{1}{N} \sum_{i=1}^{N} \ell_{CE}(\hat{y}_{i}, y_{i}^{*}) = -\frac{1}{N} \sum_{i=1}^{N} log(\hat{y}_{c^{*}, i})$$

Gradient descent optimization:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \frac{\partial \mathcal{L}_{CE}}{\partial \mathbf{w}} \left(\mathbf{w}^{(t)} \right) = \mathbf{w}^{(t)} - \eta \nabla_{\mathbf{w}}^{(t)}$$

► Gradient
$$\nabla_{\mathsf{w}}^{(t)} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell_{CE}(\hat{y}_i; y_i^*)}{\partial \mathsf{w}} \left(\mathsf{w}^{(t)}\right)$$
 linearly scales

wrt: w dimension

Training set size

 \Rightarrow Too slow even for moderate dimensionality & dataset size!

Stochastic Gradient Descent

- <u>Solution</u>: approximate $\nabla_{w}^{(t)} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell_{CE}(\hat{y}_{i}, y_{i}^{*})}{\partial w} (w^{(t)})$ with subset of examples
 - \Rightarrow Stochastic Gradient Descent (SGD)
 - Use a single example (online):

$$\nabla_{\mathsf{w}}^{(t)} \approx \frac{\partial \ell_{CE}(\hat{\mathsf{y}}_{i},\mathsf{y}_{i}^{*})}{\partial \mathsf{w}} \left(\mathsf{w}^{(t)}\right)$$

Mini-batch: use B < N examples:</p>

$$\nabla_{\mathsf{w}}^{(t)} \approx \frac{1}{B} \sum_{i=1}^{B} \frac{\partial \ell_{CE}(\hat{y_i}, y_i^*)}{\partial \mathsf{w}} \left(\mathsf{w}^{(t)}\right)$$

Stochastic Gradient Descent

▶ SGD: approximation of the true Gradient ∇_w !

- Noisy gradient can lead to bad direction, increase loss
- BUT: much more parameter updates: online ×N, mini-batch × N/P
- Faster convergence, at the core of Deep Learning for large scale datasets

Full gradient

SGD (online)

SGD (mini-batch)

Optimization: Learning Rate Decay

- Gradient descent optimization: $w^{(t+1)} = w^{(t)} \eta \nabla_w^{(t)}$
- η setup ? \Rightarrow open question
- Learning Rate Decay: decrease η during training progress
 - ▶ Inverse (time-based) decay: $\eta_t = \frac{\eta_0}{1+r \cdot t}$, r decay rate
 - Exponential decay: $\eta_t = \eta_0 \cdot e^{-\lambda t}$

Step Decay
$$\eta_t = \eta_0 \cdot r^{\frac{L}{t_u}}$$
...

Generalization and Overfitting

- ▶ Learning: minimizing classification loss *L*_{CE} over training set
 - Training set: sample representing data vs labels distributions
 - Ultimate goal: train a prediction function with low prediction error on the true (unknown) data distribution

 \Rightarrow Optimization \neq Machine Learning! \Rightarrow Generalization / Overfitting!

Regularization

- Regularization: improving generalization, *i.e.* test (*≠ train*) performances
- Structural regularization: add **Prior** R(w) in training objective:

$$\mathcal{L}(\mathsf{w}) = \mathcal{L}_{CE}(\mathsf{w}) + \alpha R(\mathsf{w})$$

- L^2 regularization: weight decay, $R(w) = ||w||^2$
 - Commonly used in neural networks
 - Theoretical justifications, generalization bounds (SVM)
- Other possible R(w): L^1 regularization, dropout, *etc*

L^2 regularization: interpretation

- ▶ "Smooth" interpretation of L^2 regularization, Cauchy-Schwarz: $\langle w, (x - x') \rangle \le ||w||^2 ||x - x'||^2$
- ▶ Controlling L^2 norm $||w||^2$: "small" variation between inputs x and x' ⇒ small variation in neuron prediction $\langle w, x \rangle$ and $\langle w, x' \rangle$
 - \Rightarrow Supports simple, *i.e.* smoothly varying prediction models

Regularization and hyper-parameters

- Neural networks: hyper-parameters to tune:
 - Training parameters: learning rate, weight decay, learning rate decay, # epochs, etc
 - Architectural parameters: number of layers, number neurones, non-linearity type, etc
- ► Hyper-parameters tuning: ⇒ improve generalization: estimate performances on a validation set

