




The Formal Neuron: 1943 [MP43]

▸ Basis of Neural Networks
▸ Input: vector x ∈ Rm, i.e. x = {xi}i∈{1,2,...,m}
▸ Neuron output ŷ ∈ R: scalar



The Formal Neuron: 1943 [MP43]

▸ Mapping from x to ŷ :
1. Linear (affine) mapping: s = w⊺x + b
2. Non-linear activation function: f : ŷ = f (s)



The Formal Neuron: Linear Mapping

▸ Linear (affine) mapping: s = w⊺x + b =
m

∑
i=1

wixi + b

▸ w: normal vector to an hyperplane in Rm ⇒ linear boundary
▸ b bias, shift the hyperplane position

2D hyperplane: line 3D hyperplane: plane



The Formal Neuron: Activation Function

▸ ŷ = f (w⊺x + b),
▸ f: activation function

▸ Bio-inspired choice: Step (Heaviside) function: H(z) = {1 if z ≥ 0
0 otherwise

▸ Popular f choices: sigmoid, tanh, ReLU, GELU, ...
▸ Sigmoid: σ(z) = (1 + e−az)−1

▸ a ↑: more similar to step function (step: a →∞)
▸ Sigmoid: linear and saturating regimes



Step function: Connection to Biological Neurons

▸ Formal neuron, step activation H: ŷ = H(w⊺x + b)
▸ ŷ = 1 (activated) ⇔ w⊺x ≥ −b
▸ ŷ = 0 (unactivated) ⇔ w⊺x < −b

▸ Biological Neurons: output activated
⇔ input weighted by synaptic weight ≥ threshold



The Formal neuron: Application to Binary Classification

▸ Binary Classification: label input x as belonging to class 1 or 0
▸ Neuron output with sigmoid:

ŷ = 1
1 + e−a(w⊺x+b)

▸ Sigmoid: probabilistic interpretation ⇒ ŷ ∼ P(1∣x)
▸ Input x classified as 1 if P(1∣x) > 0.5 ⇔ w⊺x + b > 0
▸ Input x classified as 0 if P(1∣x) < 0.5 ⇔ w⊺x + b < 0
⇒ sign(w⊺x + b): linear boundary decision in input space !



The Formal neuron: Toy Example for Binary Classification

▸ 2d example: m = 2, x = {x1, x2} ∈ [−5;5] × [−5;5]
▸ Linear mapping: w = [1;1] and b = −2
▸ Result of linear mapping : s = w⊺x + b



The Formal neuron: Toy Example for Binary Classification

▸ 2d example: m = 2, x = {x1, x2} ∈ [−5;5] × [−5;5]
▸ Linear mapping: w = [1;1] and b = −2
▸ Result of linear mapping : s = w⊺x + b

▸ Sigmoid activation function: ŷ = (1 + e−a(w
⊺x+b))

−1
,

a = 10



The Formal neuron: Toy Example for Binary Classification

▸ 2d example: m = 2, x = {x1, x2} ∈ [−5;5] × [−5;5]
▸ Linear mapping: w = [1;1] and b = −2
▸ Result of linear mapping : s = w⊺x + b

▸ Sigmoid activation function: ŷ = (1 + e−a(w
⊺x+b))

−1
,

a = 1



The Formal neuron: Toy Example for Binary Classification

▸ 2d example: m = 2, x = {x1, x2} ∈ [−5;5] × [−5;5]
▸ Linear mapping: w = [1;1] and b = −2
▸ Result of linear mapping : s = w⊺x + b

▸ Sigmoid activation function: ŷ = (1 + e−a(w
⊺x+b))

−1
,

a = 0.1



From Formal Neuron to Neural Networks

▸ Formal Neuron:
1. A single scalar output
2. Linear decision boundary for binary

classification
▸ Single scalar output: limited for several tasks

▸ Ex: multi-class classification, e.g. MNIST or
CIFAR



Perceptron and Multi-Class Classification

▸ Formal Neuron: limited to binary
classification

▸ Multi-Class Classification: use several
output neurons instead of a single one!
⇒ Perceptron

▸ Input x in Rm

▸ Output neuron ŷ1 is a formal neuron:
▸ Linear (affine) mapping: s1 = w1

⊺x + b1
▸ Non-linear activation function: f :

ŷ1 = f (s1)
▸ Linear mapping parameters:

▸ w1 = {w11, ...,wm1} ∈ Rm

▸ b1 ∈ R



Perceptron and Multi-Class Classification

▸ Input x in Rm

▸ Output neuron ŷk is a formal neuron:
▸ Linear (affine) mapping: sk = wk

⊺x + bk
▸ Non-linear activation function: f :

ŷk = f (sk)
▸ Linear mapping parameters:

▸ wk = {w1k , ...,wmk} ∈ Rm

▸ bk ∈ R



Perceptron and Multi-Class Classification

▸ Input x in Rm (1 ×m), output ŷ : concatenation of K formal neurons
▸ Linear (affine) mapping ∼ matrix multiplication: s = xW + b

▸ W matrix of size m ×K - columns are wk
▸ b: bias vector - size 1 ×K

▸ Element-wise non-linear activation: ŷ = f (s)



Perceptron and Multi-Class Classification

▸ Soft-max Activation:

ŷk = f (sk) =
esk

K

∑
k′=1

esk′

▸ Note that f (sk) depends on the other sk′ ,
the arrow is a functional link

▸ Probabilistic interpretation for multi-class
classification:
▸ Each output neuron ⇔ class
▸ ŷk ∼ P(k ∣x,W)

⇒ Logistic Regression (LR) Model!



2d Toy Example for Multi-Class Classification

▸ x = {x1, x2} ∈ [−5;5] × [−5;5], ŷ : 3 outputs (classes)

Linear mapping for
each class:
sk = wk

⊺x + bk

w1 = [1; 1], b1 = −2 w2 = [0;−1], b2 = 1 w3 = [1;−0.5], b3 = 10

Soft-max output:
P(k ∣x,W)



2d Toy Example for Multi-Class Classification

▸ x = {x1, x2} ∈ [−5;5] × [−5;5], ŷ : 3 outputs (classes)

Soft-max output:
P(k ∣x,W)

w1 = [1; 1], b1 = −2 w2 = [0;−1], b2 = 1 w3 = [1;−0.5], b3 = 10

Class Prediction:
k∗ = arg max

k
P(k ∣x,W)



Beyond Linear Classification

X-OR Problem

▸ Logistic Regression (LR): NN with 1 input layer & 1 output layer
▸ LR: limited to linear decision boundaries
▸ X-OR: NOT 1 and 2 OR NOT 2 AND 1

▸ X-OR: Non linear decision function



Beyond Linear Classification

▸ LR: limited to linear boundaries
▸ Solution: add a layer!

▸ Input x in Rm, e.g. m = 4
▸ Output ŷ in RK (K # classes),

e.g. K = 2
▸ Hidden layer h in RL



Multi-Layer Perceptron

▸ Hidden layer h: x projection to a new
space RL

▸ Neural Net with ≥ 1 hidden layer:
Multi-Layer Perceptron (MLP)

▸ h: intermediate representations of x
for classification ŷ:

▸ h = f (xW1 + b1)
f non-linear activation,
s = hW2 + b2

ŷ = SoftMax(s)
▸ Mapping from x to ŷ: non-linear

boundary!
⇒ non-linear activation f crucial!



Deep Neural Networks

▸ Adding more hidden layers: Deep Neural Networks (DNN) ⇒ Basis of Deep
Learning

▸ Each layer hl projects layer hl−1 into a new space
▸ Gradually learning intermediate representations useful for the task



Conclusion

▸ Deep Neural Networks: applicable to classification problems with non-linear
decision boundaries

▸ Visualize prediction from fixed model parameters
▸ Reverse problem: Supervised Learning



Outline

Training Deep Neural Networks



Training Multi-Layer Perceptron (MLP)

▸ Input x, output y
▸ A parametrized (w) model x⇒ y: fw(xi) = ŷi
▸ Supervised context:

▸ Training set A = {(xi , y∗i )}i∈{1,2,...,N}
▸ Loss function `(ŷi , y∗i ) for each annotated pair (xi , y∗i )
▸ Goal: Minimizing average loss L over training set: L(w) = 1

N ∑
N
i=1 `(ŷi , y∗i )

▸ Assumptions: parameters w ∈ Rd continuous, L differentiable
▸ Gradient ∇w = ∂L

∂w : steepest direction to decrease loss L(w)



MLP Training

▸ Gradient descent algorithm:
▸ Initialyze parameters w
▸ Update: w(t+1) = w(t) − η ∂L

∂w

▸ Until convergence, e.g. ∣∣∇w ∣∣2 ≈ 0



Gradient Descent

Update rule: w(t+1) = w(t) − η ∂L
∂w η learning rate

▸ Convergence ensured ? ⇒ provided a "well chosen" learning rate η



Gradient Descent

Update rule: w(t+1) = w(t) − η ∂L
∂w

▸ Global minimum ?
⇒ convex a) vs non convex b) loss L(w)

a) Convex function a) Non convex function



Supervised Learning: Multi-Class Classification

▸ Logistic Regression for multi-class classification
▸ si = xiW + b
▸ Soft-Max (SM): ŷk ∼ P(k/xi,W,b) = esk

K
∑

k′=1
e
sk′

▸ Supervised loss function: L(W,b) = 1
N

N

∑
i=1
`(ŷi , y∗i )

1. y ∈ {1;2; ...;K}
2. ŷi = arg max

k
P(k/xi ,W,b)

3. `0/1(ŷi , y∗i ) =
⎧⎪⎪⎨⎪⎪⎩

1 if ŷi ≠ y∗i
0 otherwise

: 0/1 loss



Logistic Regression Training Formulation

▸ Input xi , ground truth output supervision y∗i
▸ One hot-encoding for y∗i :

y∗c,i =
⎧⎪⎪⎨⎪⎪⎩

1 if c is the groud truth class for xi
0 otherwise



Logistic Regression Training Formulation

▸ Loss function: multi-class Cross-Entropy (CE) `CE
▸ `CE : Kullback-Leiber divergence between y∗i and ŷi

`CE (̂yi, y
∗
i ) = KL(y∗i , ŷi) = −

K

∑
c=1

y∗c,i log(ŷc,i) = −log(ŷc∗,i)

▸ " KL asymmetric: KL(̂yi, y∗i ) ≠ KL(y∗i , ŷi) "



Logistic Regression Training

▸ LCE(W,b) = 1
N

N

∑
i=1
`CE(ŷi , y∗i ) = − 1

N

N

∑
i=1

log(ŷc∗,i)

▸ `CE smooth convex upper bound of `0/1
⇒ gradient descent optimization

▸ Gradient descent: W(t+1) =W(t) − η ∂LCE
∂W (b(t+1) = b(t) − η ∂LCE

∂b )

▸ MAIN CHALLENGE: computing ∂LCE
∂W = 1

N

N

∑
i=1

∂`CE
∂W ?

⇒ Key Property: chain rule
∂x
∂z
=
∂x
∂y

∂y
∂z

⇒ Backpropagation of gradient error!



Chain Rule

∂`
∂x =

∂`
∂ŷ

∂ŷ
∂x

▸ Logistic regression: ∂`CE
∂W =

∂`CE
∂ŷi

∂ŷi
∂si

∂si
∂W



Logistic Regression Training: Backpropagation

∂`CE
∂W = ∂`CE

∂ŷi
∂ŷi
∂si

∂si
∂W , `CE(ŷi , y∗i ) = −log(ŷc∗,i) ⇒ Update for 1 example:

▸ ∂`CE
∂ŷi

= −1
ŷc∗,i

= −1
ŷi
⊙ δc,c∗

▸ ∂`CE
∂si

= ŷi − y∗i = δ
y
i

▸ ∂`CE
∂W = xi

T δy
i



Logistic Regression Training: Backpropagation

▸ Whole dataset: data matrix X (N ×m), label matrix Ŷ, Y∗ (N ×K)

▸ LCE(W,b) = − 1
N

N

∑
i=1

log(ŷc∗,i), ∂LCE
∂W = ∂LCE

∂Ŷ
∂Ŷ
∂S

∂S
∂W

▸ ∂LCE
∂s = Ŷ −Y∗ = ∆y

▸ ∂LCE
∂W = XT∆y



Perceptron Training: Backpropagation

▸ Perceptron vs Logistic Regression: adding hidden layer (sigmoid)
▸ Goal: Train parameters Wy and Wh (+bias) with Backpropagation

⇒ computing ∂LCE
∂Wy = 1

N

N

∑
i=1

∂`CE
∂Wy and ∂LCE

∂Wh = 1
N

N

∑
i=1

∂`CE
∂Wh

▸ Last hidden layer ∼ Logistic Regression
▸ First hidden layer: ∂`CE

∂Wh = xi
T ∂`CE
∂ui
⇒ computing ∂`CE

∂ui
= δh

i



Perceptron Training: Backpropagation

▸ Computing ∂`CE
∂ui

= δh
i ⇒ use chain rule: ∂`CE

∂ui
= ∂`CE

∂vi
∂vi
∂hi

∂hi
∂ui

▸ ... Leading to: ∂`CE
∂ui

= δh
i = δy

i
TWy ⊙ σ

′
(hi) = δy

i
TWy ⊙ (hi ⊙ (1 − hi))



Deep Neural Network Training: Backpropagation

▸ Multi-Layer Perceptron (MLP): adding more hidden layers
▸ Backpropagation update ∼ Perceptron: assuming ∂L

∂Ul+1
= ∆l+1 known

▸ ∂L
∂Wl+1 = Hl

T ∆l+1

▸ Computing ∂L
∂Ul

= ∆l (= ∆l+1TWl+1 ⊙Hl ⊙ (1 −Hl) sigmoid)

▸ ∂L
∂Wl = Hl−1

T ∆hl



Neural Network Training: Optimization Issues

▸ Classification loss over training set (vectorized w, b
ignored):

LCE(w) = 1
N

N

∑
i=1
`CE(ŷi , y∗i ) = −

1
N

N

∑
i=1

log(ŷc∗,i)

▸ Gradient descent optimization:

w(t+1) = w(t) − η ∂LCE

∂w
(w(t)) = w(t) − η∇(t)w

▸ Gradient ∇(t)w = 1
N

N

∑
i=1

∂`CE (ŷi ,y∗i )
∂w (w(t)) linearly scales

wrt:▸ w dimension
▸ Training set size

⇒ Too slow even for moderate
dimensionality & dataset size!



Stochastic Gradient Descent

▸ Solution: approximate ∇(t)w = 1
N

N

∑
i=1

∂`CE (ŷi ,y∗i )
∂w (w(t)) with subset of examples

⇒ Stochastic Gradient Descent (SGD)
▸ Use a single example (online):

∇(t)w ≈ ∂`CE(ŷi , y
∗
i )

∂w
(w(t))

▸ Mini-batch: use B < N examples:

∇(t)w ≈ 1
B

B

∑
i=1

∂`CE(ŷi , y∗i )
∂w

(w(t))

Full gradient SGD (online) SGD (mini-batch)



Stochastic Gradient Descent

▸ SGD: approximation of the true Gradient ∇w !
▸ Noisy gradient can lead to bad direction, increase loss
▸ BUT: much more parameter updates: online ×N, mini-batch ×N

B▸ Faster convergence, at the core of Deep Learning for large scale datasets

Full gradient SGD (online) SGD (mini-batch)



Optimization: Learning Rate Decay

▸ Gradient descent optimization: w(t+1) = w(t) − η∇(t)w

▸ η setup ? ⇒ open question
▸ Learning Rate Decay: decrease η during training progress

▸ Inverse (time-based) decay: ηt = η0
1+r ⋅t , r decay rate

▸ Exponential decay: ηt = η0 ⋅ e−λt
▸ Step Decay ηt = η0 ⋅ r

t
tu ...

Exponential Decay (η0 = 0.1, λ = 0.1s) Step Decay (η0 = 0.1, r = 0.5, tu = 10)



Generalization and Overfitting

▸ Learning: minimizing classification loss LCE over training set
▸ Training set: sample representing data vs labels distributions
▸ Ultimate goal: train a prediction function with low prediction error on the true

(unknown) data distribution

Ltrain = 4, Ltrain = 9 Ltest = 15, Ltest = 13

⇒ Optimization ≠ Machine Learning!
⇒ Generalization / Overfitting!



Regularization

▸ Regularization: improving generalization, i.e. test (≠ train) performances
▸ Structural regularization: add Prior R(w) in training objective:

L(w) = LCE(w) + αR(w)

▸ L2 regularization: weight decay, R(w) = ∣∣w∣∣2
▸ Commonly used in neural networks
▸ Theoretical justifications, generalization bounds (SVM)

▸ Other possible R(w): L1 regularization, dropout, etc



L2 regularization: interpretation

▸ "Smooth" interpretation of L2 regularization, Cauchy-Schwarz:
⟨w, (x − x′)⟩ ≤ ∣∣w∣∣2∣∣x − x′∣∣2

▸ Controlling L2 norm ∣∣w∣∣2: "small" variation between inputs x and x′

⇒ small variation in neuron prediction ⟨w, x⟩ and ⟨w, x′⟩
⇒ Supports simple, i.e. smoothly varying prediction models



Regularization and hyper-parameters

▸ Neural networks: hyper-parameters to tune:
▸ Training parameters: learning rate, weight decay, learning rate decay, #

epochs, etc
▸ Architectural parameters: number of layers, number neurones,

non-linearity type, etc

▸ Hyper-parameters tuning: ⇒ improve generalization: estimate
performances on a validation set


	Training Deep Neural Networks
	


