COURS RDFIA deep Image

Matthieu Cord
Sorbonne University
Course Outline

1. **Computer Vision and ML basics:** Visual (local) feature detection and description, Bag of Word Image representation, Linear classification (SVM)

2. Introduction to Neural Networks (NNs)

3. **Machine Learning basics (2):** Risk, Classification, Datasets, benchmarks and evaluation

4. **Neural Nets for Image Classification**

5. Vision Transformers

6. Transfer learning and domain adaptation

7. Segmentation and Detection

8. Generative models with GANs

9. Generative models with diffusion

10. **Large VL models:** CLIP, StableDiffusion, Flamingo

11. Control (to be checked) -- Explainable AI, Fairness

12/13 Bayesian deep learning

14 Robustness
Outline
Convolutional Nets for visual classification

1. Recap MLP
2. Convolutional Neural Networks
Recap MLP
MLP example: brute force connection

First Pb: Scalability

Large images => extremely large number of trainable parameters
MLP example: brute force connection

2d Pb: Stability of the representation

Expectation:
- Small deformation in the input space
 => similar representations
- Large (or unexpected) transfo in the input space
 => very dissimilar representations

Representations:
MLP example: brute force connection

Stability: Invariance/Robustness to (local) shifting, scaling, and other forms of (small) distortions?
MLP example: brute force connection

Little or no invariance to shifting, scaling, and other forms of distortion
MLP example: brute force connection

154 input change from 2 shift left
77 : black to white
77 : white to black

@LeCun
MLP example: brute force connection

Scaling and other forms of distortions => same pb
Conclusion of MLP on raw data

Brute force connection of images as input of MLP NOT a good idea

- No Invariance/Robustness of the representation because topology of the input data completely ignored
- Nb of weights grows largely with the size of the input image

How keep spatial topology?
How to limit the weight number?
Outline
Convolutional Nets for visual classification

1. Recap MLP
2. Convolutional Neural Networks
How to limit the weight numbers?

1/ Locally connected neural networks

- **Sparse connectivity**: a hidden unit is only connected to a local patch (weights connected to the patch are called filter or kernel)
- Inspired by biological systems, where a cell is sensitive to a small sub-region of the input space, called a receptive field. Many cells are tiled to cover the entire visual field.
How to limit the weight numbers?

2/ Shared Weights

- Hidden nodes at different locations share the same weights
 - greatly reduces the number of parameters to learn
- Keep spatial information in a **2D feature map** (hidden layer map)

⇒ Computing responses at hidden nodes equivalent to convoluting input image with a linear filter (learned)
⇒ A learned filter as a feature detector
Recap (1D/2D) convolution

1D discrete convolution of input signal \(x[n] \), with filter impulse response \(h[n] \), and output \(y[n] \):

\[
y[n] = x[n] \ast h[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k]
\]

2D discrete convolution of input signal \(x[m,n] \), with filter impulse response \(h[m,n] \) (kernel), and output \(y[m,n] \):

\[
y[m, n] = x[m, n] \ast h[m, n] = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} x[i, j] \cdot h[m-i, n-j]
\]

Example with impulse response (kernel) 3x3, and it's values are a, b, c, d,...:

(0,0) located in the center of the kernel

\[
y[1, 1] = \sum_{j=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} x[i, j] \cdot h[1-i, 1-j]
\]

\[
= x[0, 0] \cdot h[1, 1] + x[1, 0] \cdot h[0, 1] + x[2, 0] \cdot h[-1, 1] + x[0, 1] \cdot h[1, 0] + x[1, 1] \cdot h[0, 0] + x[2, 1] \cdot h[-1, 0] + x[0, 2] \cdot h[1, -1] + x[1, 2] \cdot h[0, -1] + x[2, 2] \cdot h[-1, -1]
\]
Ex. of convolution operator

Share the same parameters across different locations:
Convolutions with learned kernels
1 filter \Rightarrow 1 feature map (corresponding to 1 visual pattern)
To detect spatial distributions of multiple visual patterns: Multiple filters
M filters \Rightarrow M feature maps! Get richer description

E.g.: 1000x1000 image
100 Filters
Filter size: 10x10
10K parameters

Learn multiple filters.

Not a big deal!
Many filters \Rightarrow still few parameters
From one to many filters

M filters \Rightarrow M feature maps

Rq: not many weights but many neurons! \Rightarrow memory issues will appear
What does replicating the feature detectors achieve?

- Equivariant activities (Hinton Ex): Replicated features do not make the neural activities invariant to translation. The activities are equivariant.

Map representation by one filter

[Diagram: Image 1 \rightarrow Translated Image]

⇒ How to get invariance to 2D spatial transformation of the input?
Getting (more) local Invariance

(local) spatial **POOLING** of the outputs of replicated feature detectors:

- Averaging neighboring replicated detectors to give a single output to the next level
- Max pooling: Taking the maximum in a neighboring

Get a small amount of translational invariance at each level

Reducing the number of inputs to the next layer of feature extraction

\[
y_{ij} = \frac{1}{4}(x_{2i,2j} + x_{2i+1,2j} + x_{2i,2j+1} + x_{2i+1,2j+1})
\]

=> Stability OK (at least for local shift) for Convolutional Net!
To sum up:

- **M filters**
- **M feature maps**

Diagram:

- **Convol.** → **Pooling**
Color images: 3D kernels for filtering

$m \times n \times d$ parameters per filter
Idem for any layer i to layer $i+1$
LCN: Local Contrast Normalization

Normalization within a neighborhood along both spatial and feature dimensions

\[h_{i+1, x, y, k} = \frac{h_{i, x, y, k} - m_{i, N(x, y, k)}}{\sigma_{i, N(x, y, k)}} \]

\[=> \text{Very important for training large nets to carefully consider normalization within mini-batches [S. Ioffe, C. Szegedy 2015]} \]
1 stage of convolutional neural networks

Example with only two filters.

Ranzato CVPR’13
A hidden unit in the first hidden layer is influenced by a small neighborhood (equal to size of filter).

Ranzato CVPR’13
1 stage of convolutional neural networks

A hidden unit after the pooling layer is influenced by a larger neighborhood (it depends on filter sizes and the sizes of pooling regions)

Ranzato CVPR’13
Full ConvNet architecture
To sum up: Full ConvNet architecture
To sum up: Full ConvNet architecture

ConvNet (CNN): feed-forward network with

-- ability to extract topological properties from image
-- designed to recognize visual patterns

Working directly from pixel images with (no/minimal) preprocessing

Trained with back-propagation
Outline

Convolutional Nets for visual classification

1. Recap MLP
2. Convolutional Neural Networks
3. Examples: LeNet5, AlexNet
Example: LeNet5

Introduced by Y. LeCun

Raw image of 32×32 pixels as input
Example: LeNet5

- C1, C3, C5: Convolutional layer
- 5 × 5 Convolution matrix
- S2, S4: Subsampling layer = Pooling + stride s=2
 => Subsampling by factor 2
- F6: Fully connected layer
LeNet5

All the units of the layers up to F6 have a sigmoidal activation function
LeNet5

About 187,000 connections
About 14,000 trainable weights
LeNet5 (@LeCun)
LeNet5 (@LeCun)
AlexNet 2012

- Same model as LeCun’98 but:
 - Bigger model (8 layers)
 - More data (10^6 vs 10^3 images)
 - GPU implementation (50x speedup over CPU)
 - Better regularization (DropOut)
AlexNet 2012

Same type of convnet with
• Filtering (convolution)
• Non-Linearity
• Pooling
8 layers but 224x224 input images => much bigger model:
• 650,000 neurons
• 60,000,000 weights!
More data for supervised training

ImageNet 2012: the (deep) revolution

• 1.2 million labeled images
• 1000 classes
• Mono-class
• TOP5
Learning the AlexNet

• Basics:
 • SGD, Backprop
 • Cross Validation
 • Grid search

• “New”
 • Huge computational resources (GPU)
 • Huge training set (1 million images)
 • Data augmentation - Pre-processing
 • Dropout
 • ReLu
 • Contrast normalization
Data Augmentation

lots of jittering, mirroring, and color perturbation of the original images generated on the fly to increase the size of the training set

Crop, flip,.. in train AND in test
Dropout: an efficient way to average many large neural nets

For each training example, randomly omit each hidden unit with probability 0.5

Due to sharing of weights, model strongly regularized

Pulls the weights towards what other models want.

Better than L2 and L1 regularization that pull weights towards zero

@Hinton, NIPS 2012
Dropout: what do we do at test time?

Option 1:

Sample many different architectures and take the geometric mean of their output distributions

Option 2: (Faster way)

Use all the hidden units
but after halving their outgoing weights

Rq: In case of single hidden layer, this is equivalent to the geometric mean of the predictions of all models

For multiple layers, it’s a pretty good approximation and its fast
How well does dropout work?

Significantly improve generalization:
For very deep nets, or at least when there are huge fully connected layers (e.g., AlexNet first FC layer, VGG next, ...)
Less useful for fully convolutional nets

Useful to prevent feature co-adaptation (feature only helpful when other specific features present)

Later in course
⇒ Dropout as a Bayesian Approximation
⇒ Representing Model Uncertainty in Deep Learning
Ablation study

1. Number of layers
2. Tapping off features at each layer
3. Transfo Robustness vs layers
Architecture of Krizhevsky et al.

- 8 layers total
- Trained on Imagenet dataset [Deng et al. CVPR’09]
- 18.2% top-5 error
- Our reimplementaion: 18.1% top-5 error
Architecture of Krizhevsky et al.

- Remove top fully connected layer
 - Layer 7

- Drop 16 million parameters

- Only 1.1% drop in performance!
Architecture of Krizhevsky et al.

- Remove both fully connected layers
 - Layer 6 & 7
- Drop ~50 million parameters
- 5.7% drop in performance
Architecture of Krizhevsky et al.

- Now try removing upper feature extractor layers & fully connected:
 - Layers 3, 4, 6, 7

- Now only 4 layers

- 33.5% drop in performance

→ Depth of network is key
Translation (Vertical)

Output

Layer 1

Layer 7
Scale Invariance

Layer 1

Layer 7

Output
Rotation Invariance

Layer 1

Output

Layer 7
Deep ConvNets for image classification

- **AlexNet** 8 layers, 62M parameters

Alex Krizhevsky, Ilya Sutskever and Geoffrey Hinton
ImageNet Classification with Deep Convolutional Neural Networks.
In *NIPS*, 2012.
Extra
Comparison BoW / deep CNN

- **Input image**
- **Convolution**
- **Sub-sampling**
- **Coding**
- **Pooling**
- **Feature extraction (e.g. SIFT)**
- **Local gradient coding**
- **Pooling**
- **Feature coding**
- **Max-pooling**
- **Visual codes**
- **Image signature**
- **Classifier**
- **Fully-connected weights**
- **Class labels**
Comparison BoW / CNN deep

1. Regular grid + gradient detection (SIFT) => bank of 8 linear filters (convolution) + Winner Take All (inter-maps) => 8 maps
2. Local histogram SIFT => spatial local sum pooling inside maps on a fixed grid 4x4 => 16x8=128 (smaller) maps
3. BoW Coding = projection on M vectors (visual dico elts) => a bank of M linear filters of size 4x4x8 (=1x1x128 convolution) => M maps
4. BoW Pooling => global pooling on each map => M scalar values = 1 vector representation BoW (extension: SPM)
5. Classification (SVM) => Fully connected layers

BoW = Conv1+pooling(loc)+Conv2+pooling(global)+Fconnected
• Handcrafted+unsupervised vs. end-to-end supervision
• Light deep vs. very deep

Feature extraction (e.g. SIFT) → Feature coding → Max-pooling → Classifier

Input image → Local gradient coding → Pooling → Visual codes → Image signature → Class label
Deep vs shallow in Computer Vision

- CV work(ed) a lot on handcrafted local features
 - BoVW (Bag of Visual Words and extensions FisherVectors, BossaNova …)
 - BoVW not so shallow but not end-to-end supervised learning
- CNN: end-to-end learning on a **handcrafted** architecture! [Chatfield BMVC 2014]
 - Why 8 layers? why 3x3 at the 5th layer without polling? … => ad-hoc architecture
Zero-padding in convolutional neural network

To avoid shrinking the spatial extent of the network rapidly

[Diagram of a convolutional neural network with layers labeled C1: 6x28x28, S2: 6x14x14, C3: 16x10x10, S4: 16x5x5, C5: 120, F6: 84, RBF output: 10]
No Padding / Padding

No padding 5x5 => 3x3

Padding 5x5 => 5x5

Stride 2 conv

More in this link
More in getting local Invariance

Invariance to local translation (small shift) OK with pooling
Is convolution equivariant/invariant to changes in scale or rotation?
 No such invariance with linear filters
Possible extension:
 Pooling OVER outputs of separately parameterized convolutions
 Become possible to LEARN invariance to rotation (or other)
 Example (Bengio et al. Deep Learning 2014):
 By learning to have each filter be a different rotation of the “5” template +
 pooling over outputs => invariance to rotation of the “5”

“This is in contrast to translation invariance, which is usually achieved by
hard-coding the net to pool over shifted versions of a single learned filter”