Transfer learning and Domain adaptation

Vision & Language

Transfer from ImageNet (source)

Transfer as generic features

Brut Deep features (learned from ImageNet)

(== a learned embedding from Image to vector representation)

Retrieval

Transfer learning (from source to target)

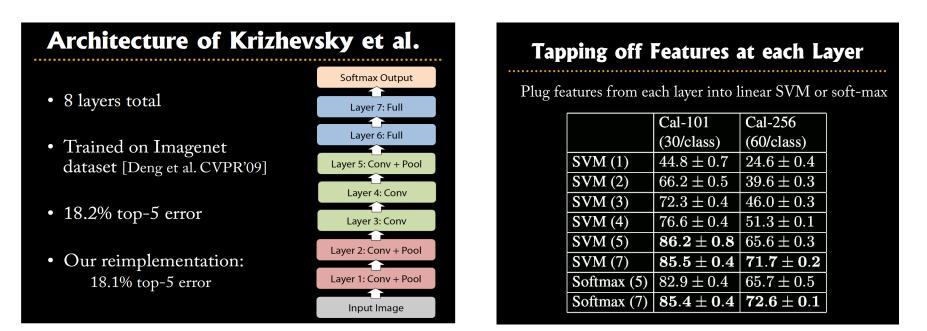
- Frozen features + SVM => solution to small datasets Frozen features + Deep
- Fine tuning not easy in that case (small datasets)

Transfer from source(=ImageNet task) to target task

Source: ImageNet (dataset + 100 classes) => AlexNet trained

Target: new dataset Cal-101 and new classification task with 101 classes =>Chopped

AlexNet (layer i) + SVM trained on



=> Results better than SoA CV methods on Cal-101!

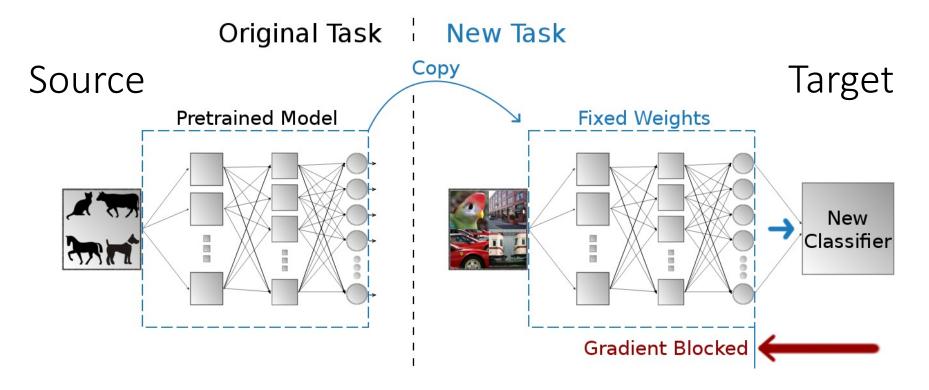
Transfer: fine-tuning of a deep model on target task

Train a deep (AlexNet) on source (ImageNet) Keep the deep params. for target and complete with a small deep on top (fully trained on target task)

Fine-tune the whole model on target data

Challenge: only limited target data, careful about overfitting

Solution: Freeze the gradient's update for AlexNet part

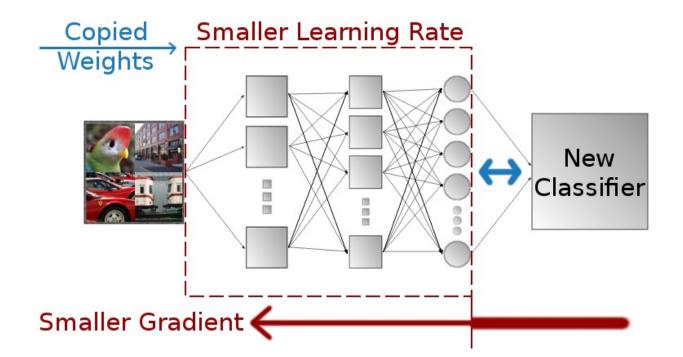


Transfer: fine-tuning of a deep model on target task

Train a deep (AlexNet) on source (ImageNet) Keep the deep params. for target and complete with a small deep on top (fully trained on target task)

Fine-tune the whole model on target data

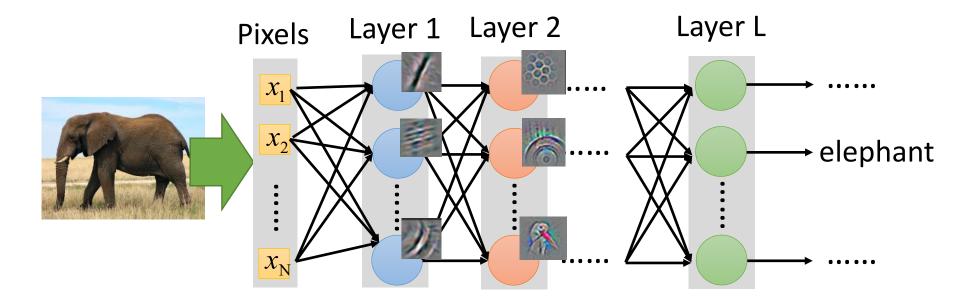
Challenge: only limited target data, careful about overfitting Solution: Freeze the gradient's update for AlexNet part Other solution: use smaller gradient's update for AlexNet part



Transfer: which parts of the deep?

Which layer(s) can be transferred (copied)?

- Speech: usually copy the last few layers
- Image: usually copy the first few layers



Transfer: which supervision?

- Task description
 - Source data: (x^s, y^s) \leftarrow A large amount
 - Target data: (x^t, y^t) (Very) little

Rq: Few/One-shot learning: only a few/one examples in target domain

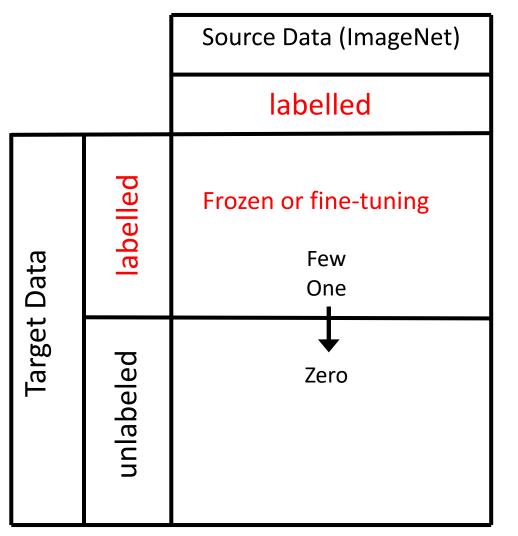
Many different contexts:

In vision: from large dataset (ImageNet) to small datasets **VOC2007**

In speech: (supervised) speaker adaption

- Source data: audio data and transcriptions from many speakers
- Target data: audio data and its transcriptions of specific user

More on transfer framework



Main purposes: Similar visual domain? Same tasks (ie class)?

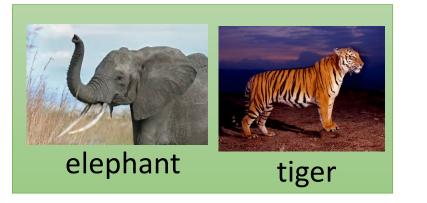
Similar domain: ImageNet task => Dog/Cat task

Data not directly related to the task considered

ImageNet: Similar domain, different task (1000 classes but NOT Dog and Cat classes)

General Framework for Transfer Learning

Data *not directly related to* the task considered



Similar domain, completely different tasks

dog

Different domains, same task

General Framework for Transfer Learning

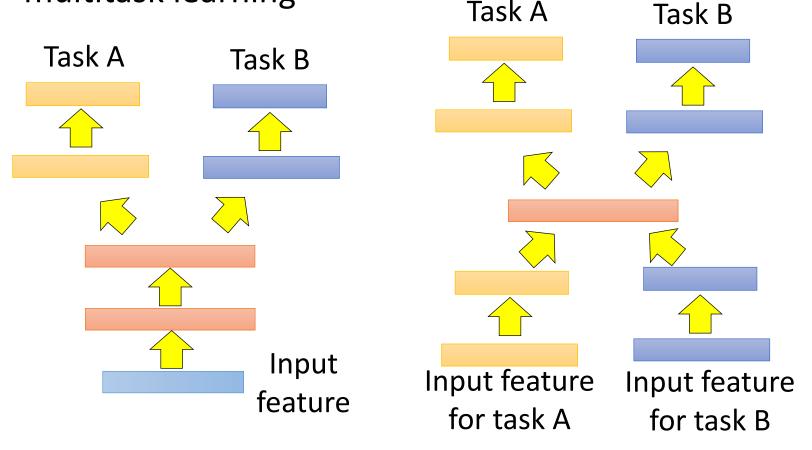
		Source Data (not directly related to the task)		
		labelled	unlabeled	
Target Data	labelled	Fine-tuning <i>Multitask Learning</i>	Self-supervised Self-taught learning Not considered here	
	unlabeled	Domain-adversarial training Zero-shot learning	Self-taught Clustering	

General Framework for Transfer Learning

		Source Data (not directly related to the task)		
		labelled	unlabeled	
Target Data	labelled	Fine-tuning <i>Multitask Learning</i>	Not considered here	
	unlabeled		Not considered here	

Multitask Learning

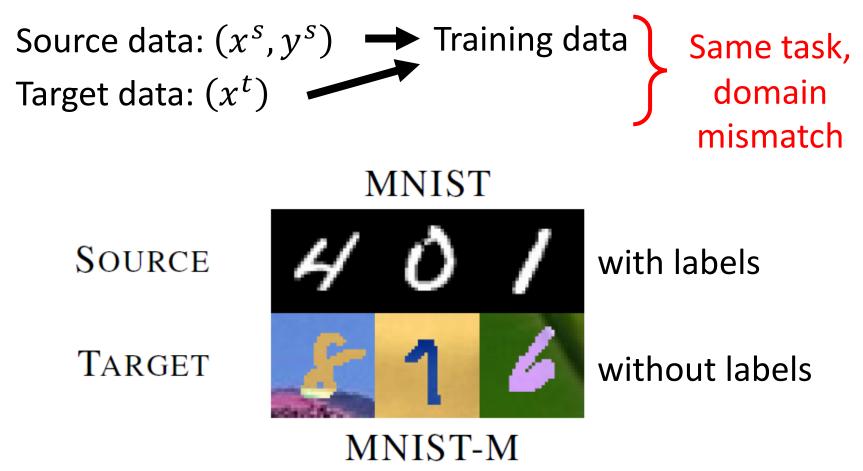
 The multi-layer structure makes NN suitable for multitask learning
 Task A Task B



Transfer Learning - Overview

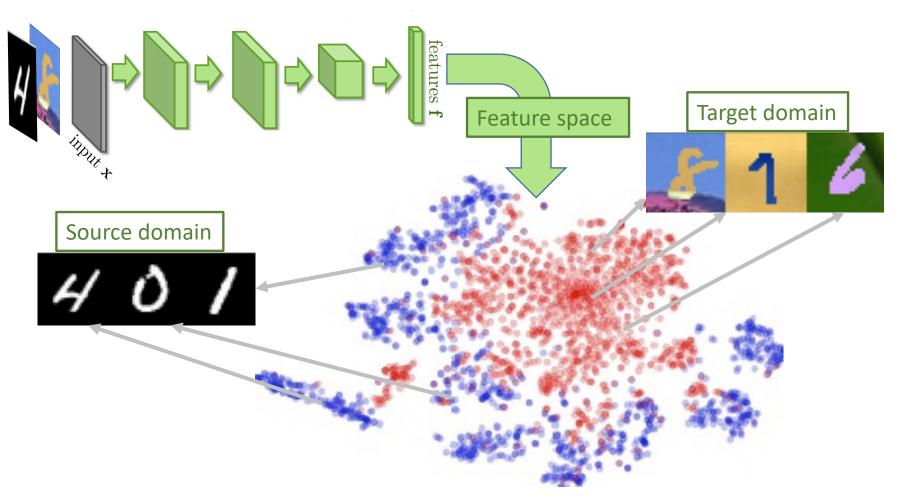
		Source Data (not directly related to the task)		
		labelled	unlabeled	
Target Data	labelled	Fine-tuning Multitask Learning	Not considered here	
	unlabeled	Domain adaptation- adversarial training	Not considered here	

Unsupervised Domain Adaptation (UDA)



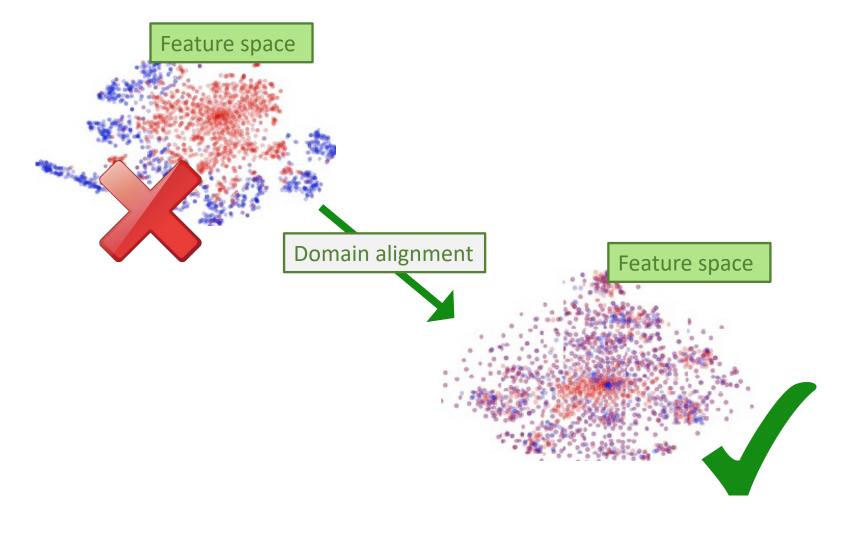
Final test on target domain!

Unsupervised Domain adaptation (UDA): objectives



Main principle: diminish the domain shift in the learned features, encourage domain confusion

UDA strategy: align both domains



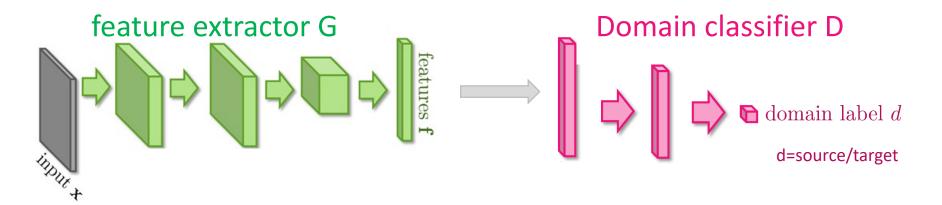
UDA strategy: 1/ domain-adversarial training

Add to the feature generator (G) a domain classifier (discriminant D) for which labels are available!

Learn G and D:

G tries to align domains

D tries to identify domains



Rq: Similar to GAN (coming soon)

UDA strategy: 1/ domain-adversarial training 2/ classification task (same for source and target here)

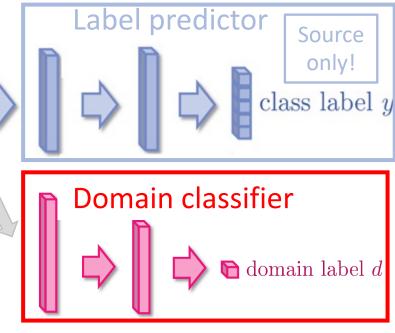
Maximize label classification accuracy + minimize domain classification accuracy

feature extractor

Not only cheat the domain classifier, but satisfying label classifier at the same time

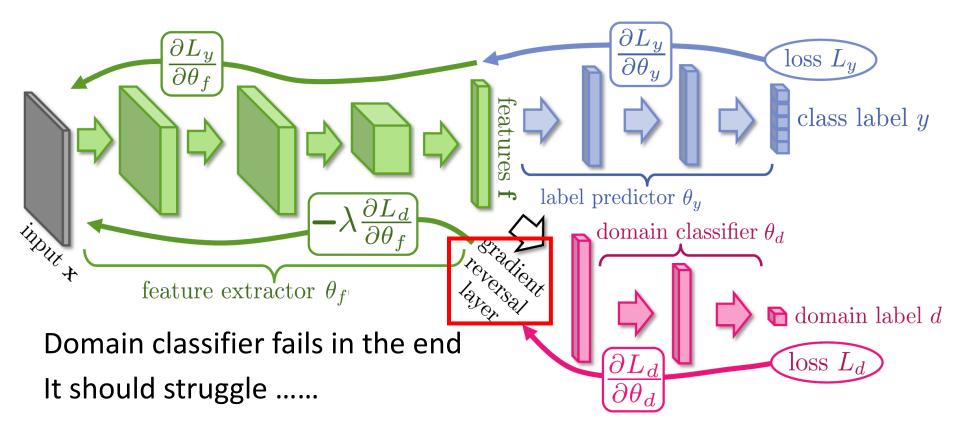
input +

Maximize label classification accuracy



Maximize domain classification accuracy

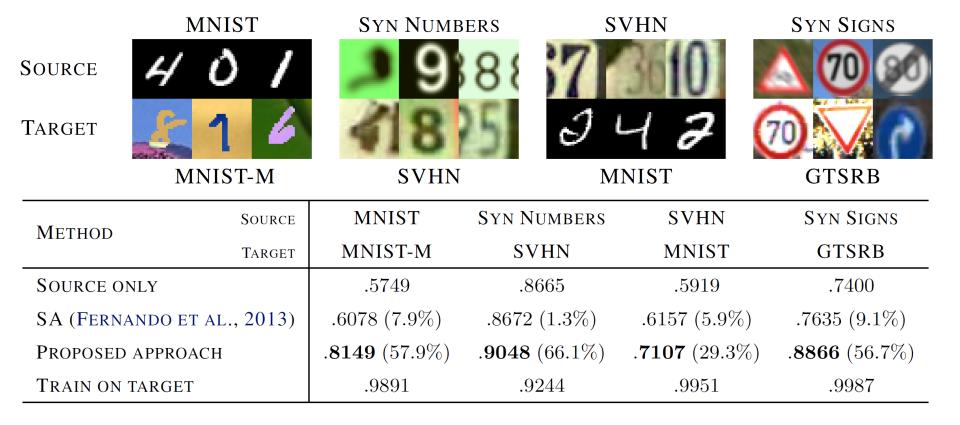
UDA strategy: joint learning



Yaroslav Ganin, Victor Lempitsky, Unsupervised Domain Adaptation by Backpropagation, ICML, 2015

Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Domain-Adversarial Training of Neural Networks, JMLR, 2016

Domain-adversarial training

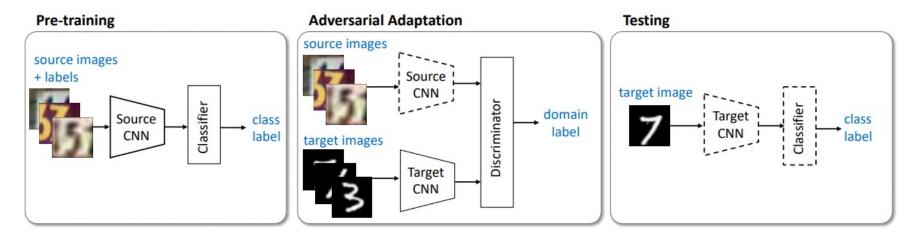


Yaroslav Ganin, Victor Lempitsky, Unsupervised Domain Adaptation by Backpropagation, ICML, 2015

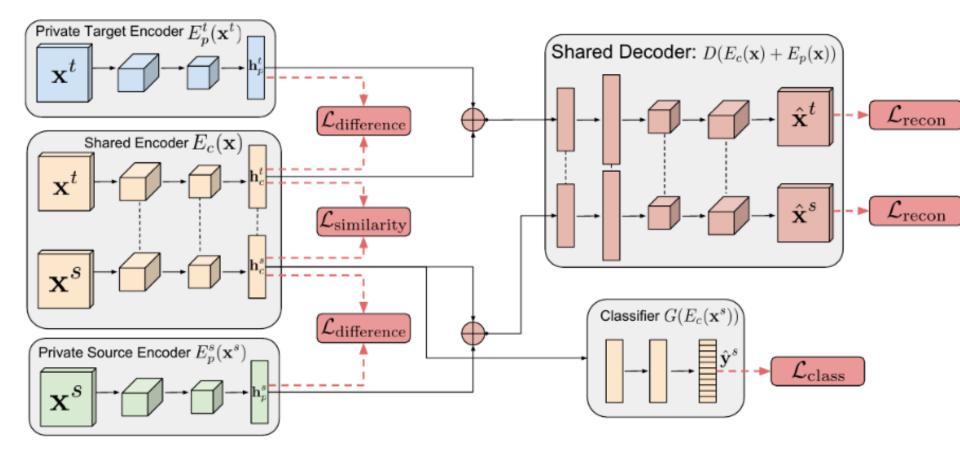
Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Domain-Adversarial Training of Neural Networks, JMLR, 2016

Main principle: diminish the domain shift in the learned features, encourage domain confusion

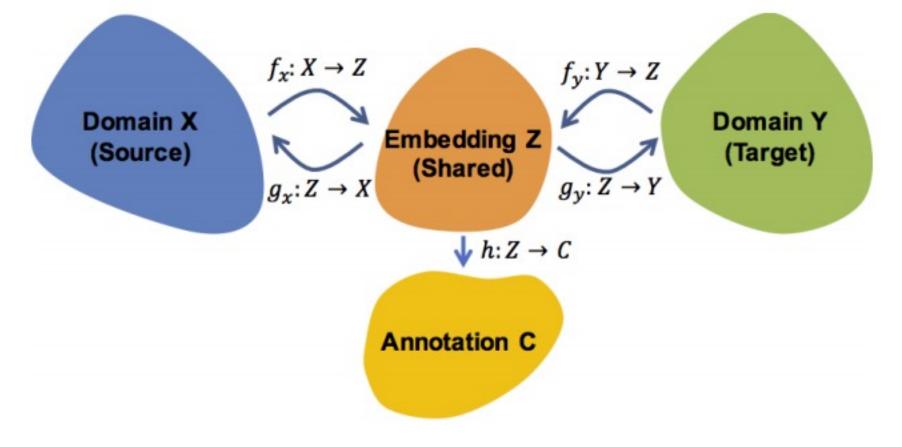
Another example: Adversarial Discriminative Domain Adaptation [Tzeng et al. 2017]



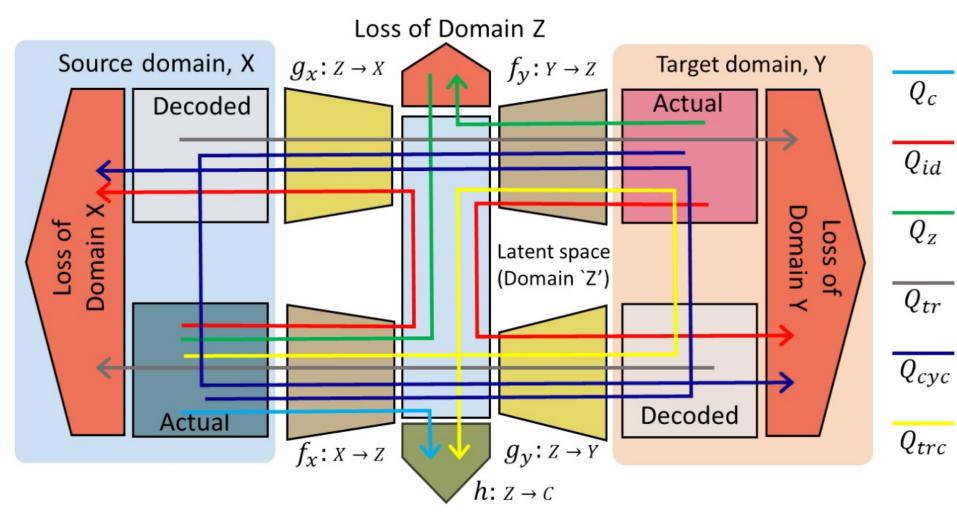
Other architecture



Other architecture: Image translation for Domain adaptation [Murez 2017]

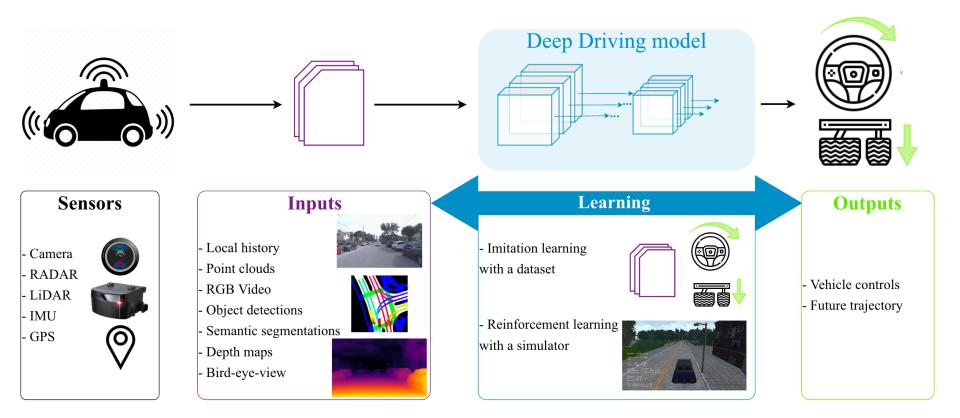


Other architecture: Image translation for Domain adaptation [Murez 2017]



Use-Case: Domain adaptation for Autonomous driving

Context: Neural network-based autonomous driving system framework



Challenges for perception

Multi-sensor perception

- Sensor fusion; Camera, radar and Lidar
- 3D dynamic understanding
- 3D object detection; Motion forecast; Intention prediction Frugal learning
- Training with limited data or supervision; Domain adaptation Reliability
- Robustness; Uncertainty estimation; Failure prediction
 Explainability
- Decision interpretation; Post-hoc or by-design

Different, though *related* input data distributions

Source domain → Target domain

Different, though *related* input data distributions

Source domain → Target domain

Different, though *related* input data distributions

Source domain → Target domain

Different, though *related* input data distributions

Source domain → Target domain

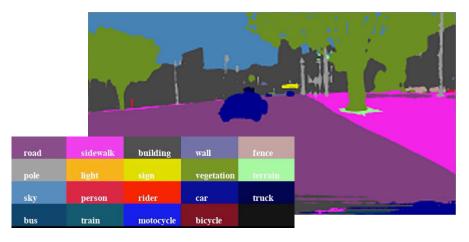
Different, though *related* input data distributions

Source domain → Target domain

• Synthetic vs. real

Domain gap for VISUAL SEGMENTATION

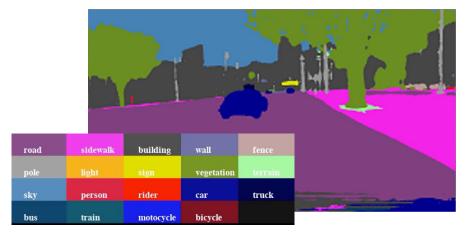
Different, though *related* input data distributions Source domain → Target domain

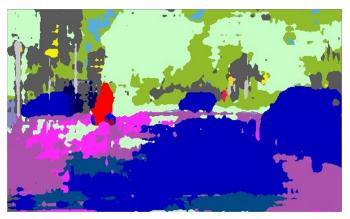


• Synthetic vs. real

Different, though *related* input data distributions

Source domain → Target domain

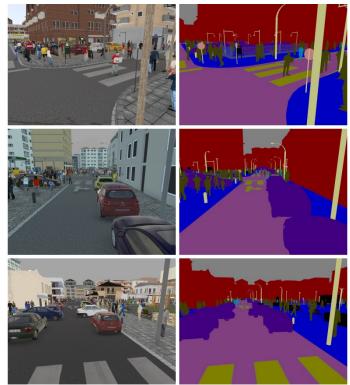




• Synthetic vs. real

Unsupervised Domain Adaptation (UDA)

Labelled source domain data

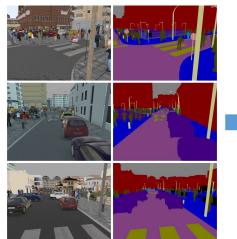


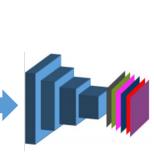
Sky Building Road Sidewalk Fence Vegetation Pole Car Sign Pedestrian Cyclist

Unlabelled target domain data

Unsupervised Domain Adaptation (UDA)

Source labelled data





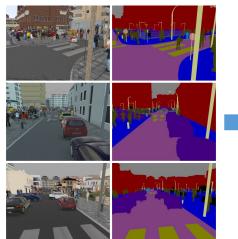
learned segmentation model

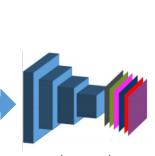
angle id

Target

Unsupervised Domain Adaptation (UDA) TRAIN TEST

Source labelled data

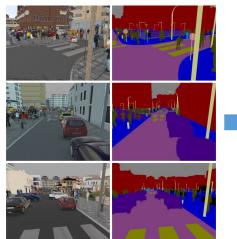


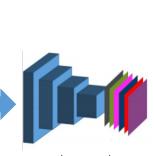


learned segmentation model

Unsupervised Domain Adaptation (UDA) TRAIN

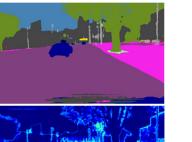
Source labelled data





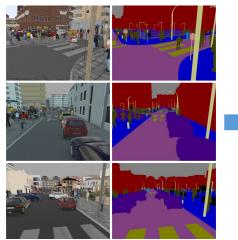
learned segmentation model

TEST

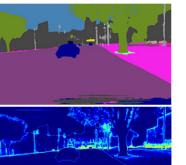


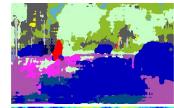
Unsupervised Domain Adaptation (UDA) TRAIN TEST

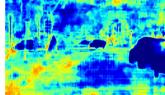
Source labelled data



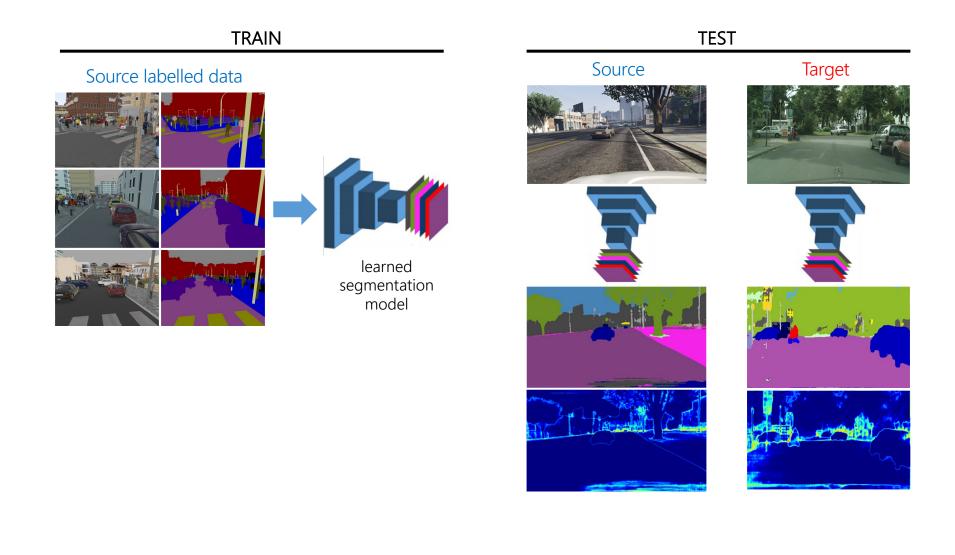
learned segmentation model



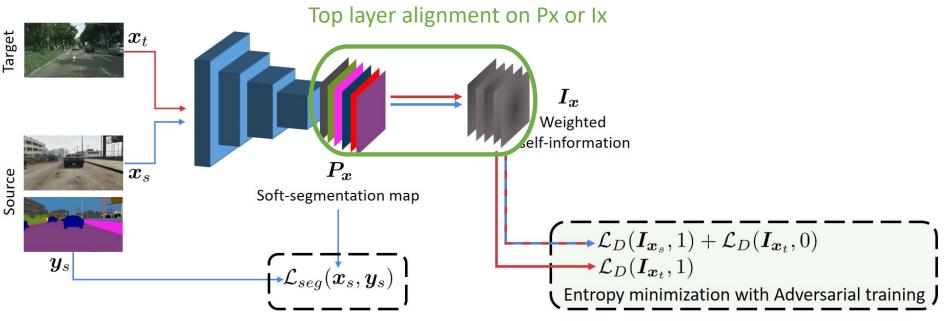




Expected results with UDA training



Unsupervised Domain Adaptation (UDA)



Qualitative results

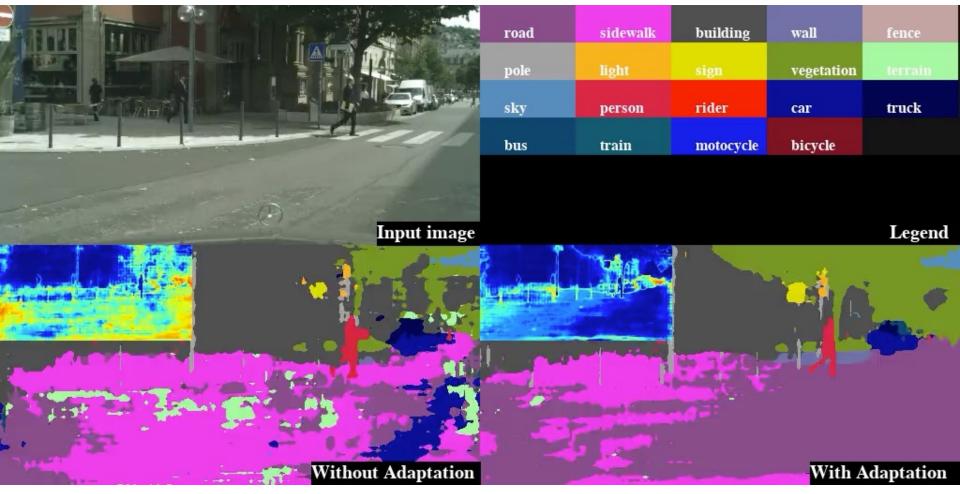
input image

without UDA

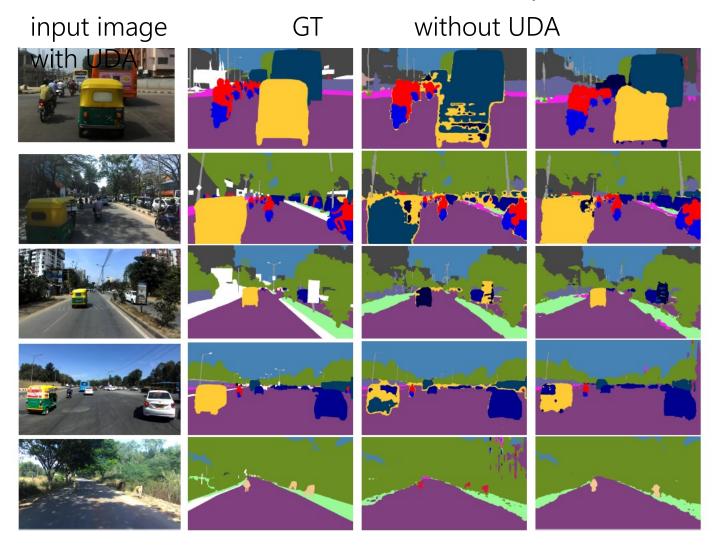
with UDA

road	sidewalk	building	wall	fence
pole	light	sign	vegetation	terrain
sky	person	rider	car	truck
bus	train	motocycle	bicycle	

UDA Results (with Adversarial Entropy)



Extension: Zero shot + Domain adaptation



Private target classes: tuk-tuk, animal. Some shared classes: truck, road, side walk, car, person, motorbike, tree, building.

Transfer Learning - Overview

		Source Data (not directly related to the task)		
		labelled	unlabeled	
Data	Fine-tuning Multitask Learning		Not considered here	
Target	unlabeled	Domain adaptation- adversarial training Zero-shot learning	Not considered here	

- Source data: $(x^s, y^s) \rightarrow$ Training data
- Target data: (Ø) usually same domain

Training time :

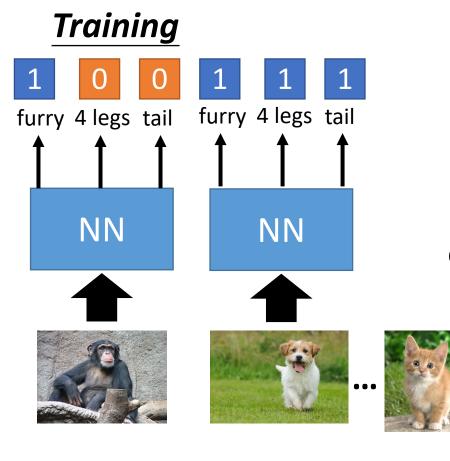
Test time x^t :

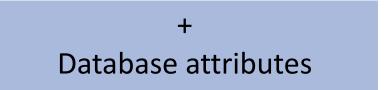
=> Fish class!

Different

tasks

• Representing each class by its attributes

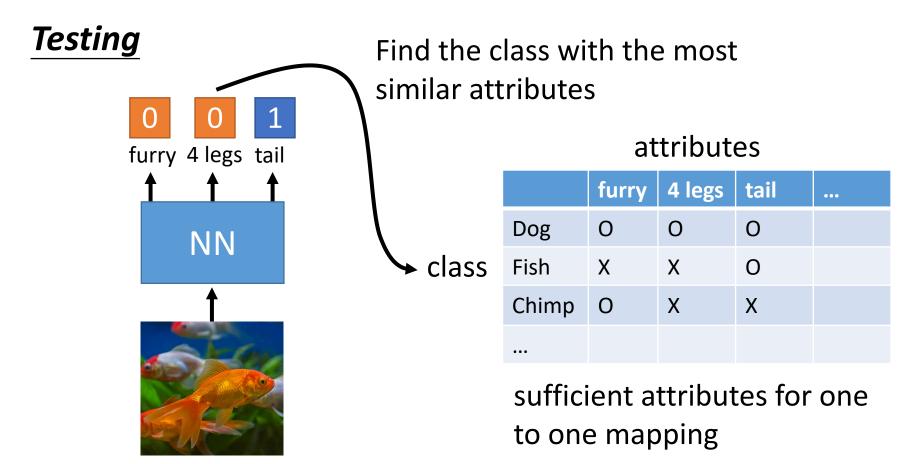




		furry	4 legs	tail	
class	Dog	0	0	0	
	Fish	Х	Х	0	
	Chimp	0	Х	Х	
2					

sufficient attributes for one to one mapping

• Representing each class by its attributes

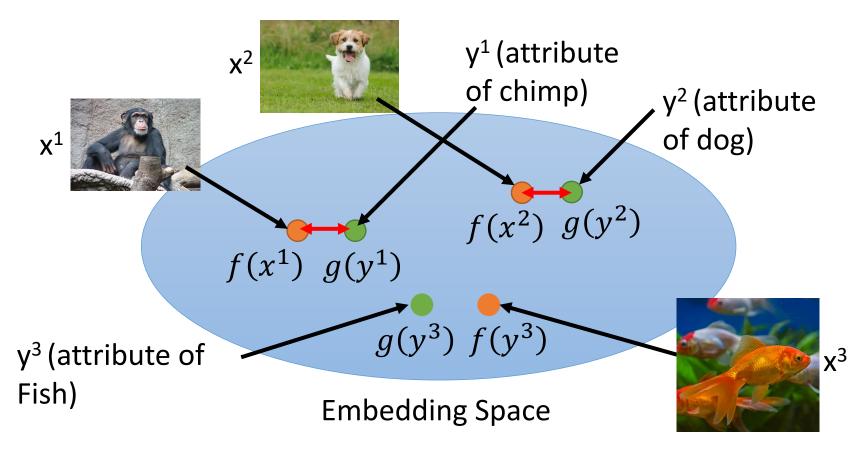


What if we don't have attribute database

 Attribute embedding + class (word name) embedding

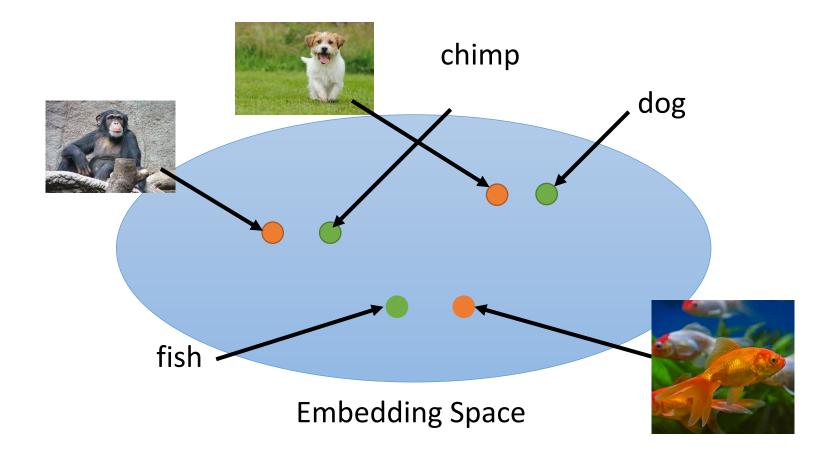
f(*) and g(*) can be NN. Training target: $f(x^n)$ and $g(y^n)$ as close as possible

Attribute embedding

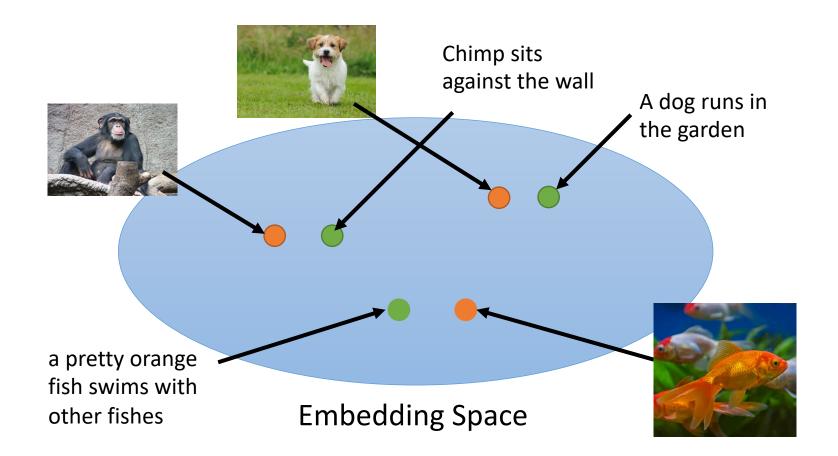


yⁱ are linked together by a class relationship (e.g. class name embedding as W2v)

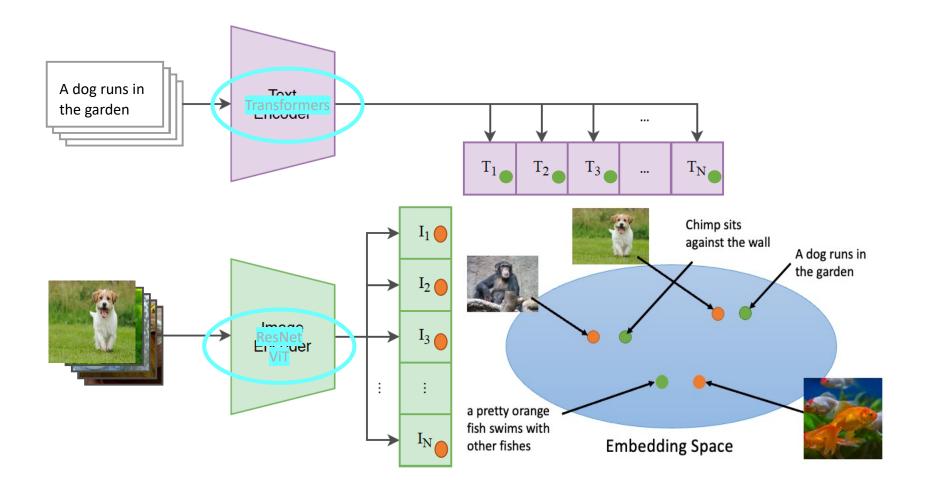
More on Vision-Language



[Learning transferable visual models from natural language supervision. Radford/Sutskever ICML, 2021]



Dual architecture: Text encoder + Image encoder

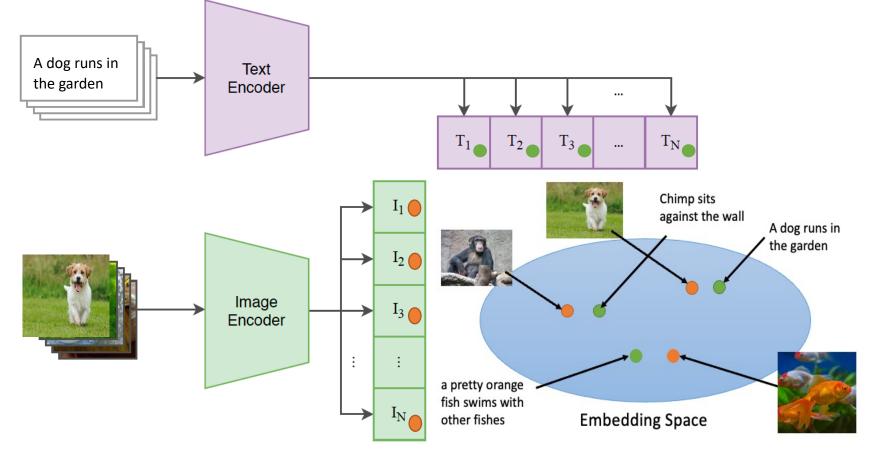


Learning strategy

Training set: $A = \{(\mathbf{I}_n, \mathbf{T}_n)\}_n$ of image/caption pairs (coherent!)

Massive Text+Image =400M pairs to train the model (from the Internet)

Contrastive loss for training: positive pair vs negative one or set

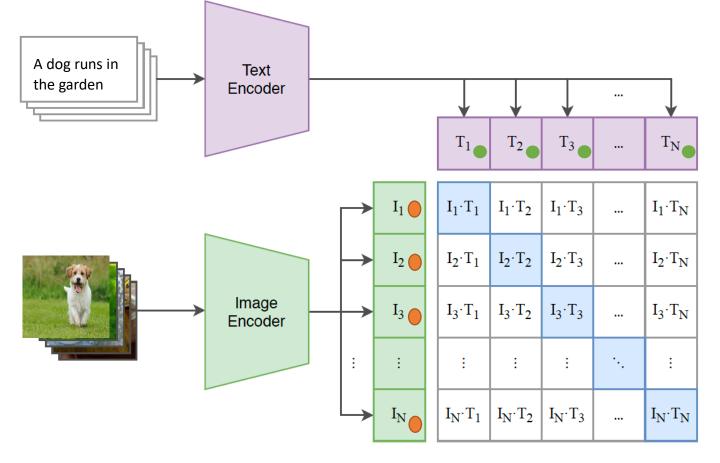


Learning strategy

Training set: $A = \{(\mathbf{I}_n, \mathbf{T}_n)\}_n$ of image/caption pairs (coherent!)

Massive Text+Image =400M pairs to train the model (from the Internet)

Contrastive loss for training: positive pair vs negative one or set



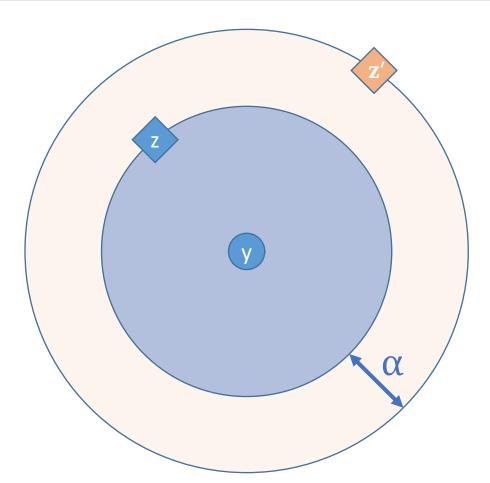
Learning strategy Training set: $A = \{(\mathbf{I}_n, \mathbf{T}_n)\}_n$ of image/caption pairs (coherent!) Massive Text+Image =400M pairs to train the model (from the Internet) Contrastive loss for training: positive pair vs negative pair or more

(contrastive) Triplet loss: A variant of the standard margin based loss (SVM)

- Triplet (y, z, z')
- Anchor: **y** (E.g image representation)
- Positive: z (E.g associated caption representation)
- Negative: z' (E.g contrastive caption representation)
- Margin parameter α

$$loss(y, z, z') = max\{0, \alpha - < y, z > + < y, z' > \}$$

$$loss(\mathbf{y}, \mathbf{z}, \mathbf{z}') = max\{0, \alpha + d(\mathbf{y}, \mathbf{z}) - d(\mathbf{y}, \mathbf{z}')\}$$



Learning strategy: triplet loss

Hard negative margin-based loss:

Loss for a **batch** $\mathcal{B} = \{(\mathbf{I}_n, \mathbf{T}_n)\}_{n \in B}$ of image/sentence pairs:

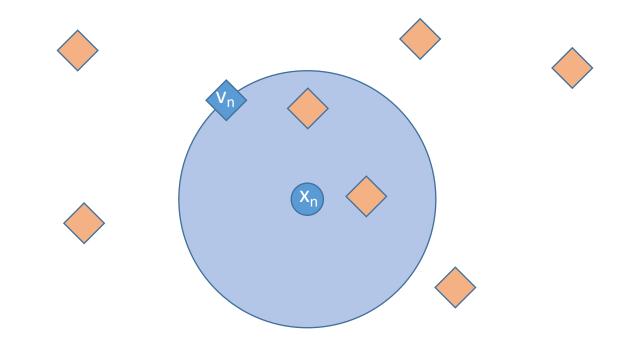
$$\mathcal{L}(\boldsymbol{\Theta}; \mathcal{B}) = \frac{1}{|B|} \sum_{n \in B} \begin{pmatrix} \max_{m \in C_n \cap B} \operatorname{loss}(\mathbf{x}_n, \mathbf{v}_n, \mathbf{v}_m) \\ + \max_{m \in D_n \cap B} \operatorname{loss}(\mathbf{v}_n, \mathbf{x}_n, \mathbf{x}_m) \end{pmatrix}$$

With C_n (resp. D_n) set of indices of caption (resp. image) unrelated to *n*-th element

Learning strategy: hard negative triplet loss

Mining hard negative contrastive example:

$$\mathcal{L}(\boldsymbol{\Theta}; \mathcal{B}) = \frac{1}{|B|} \sum_{n \in B} \begin{pmatrix} \max_{m \in C_n \cap B} \operatorname{loss}(\mathbf{x}_n, \mathbf{v}_n, \mathbf{v}_m) \\ + \max_{m \in D_n \cap B} \operatorname{loss}(\mathbf{v}_n, \mathbf{x}_n, \mathbf{x}_m) \end{pmatrix}$$



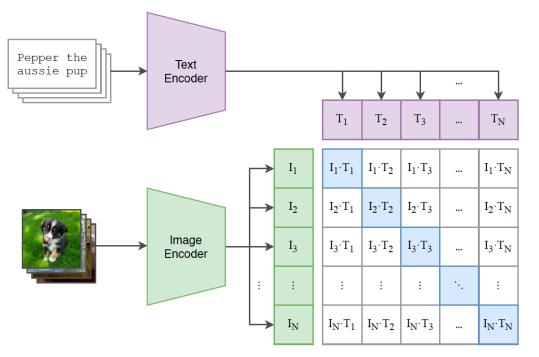
Learning strategy: hard negative triplet loss

Mining hard negative contrastive example:

$$\mathcal{L}(\boldsymbol{\Theta}; \mathcal{B}) = \frac{1}{|B|} \sum_{n \in B} \begin{pmatrix} \max_{m \in C_n \cap B} \operatorname{loss}(\mathbf{x}_n, \mathbf{v}_n, \mathbf{v}_m) \\ + \max_{m \in D_n \cap B} \operatorname{loss}(\mathbf{v}_n, \mathbf{x}_n, \mathbf{x}_m) \end{pmatrix}$$

Massive Text+Image =400M pairs to train the model (from the Internet)

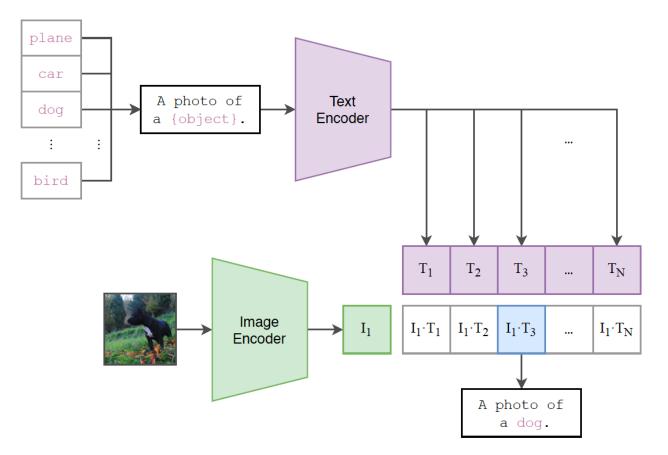
Contrastive loss for training



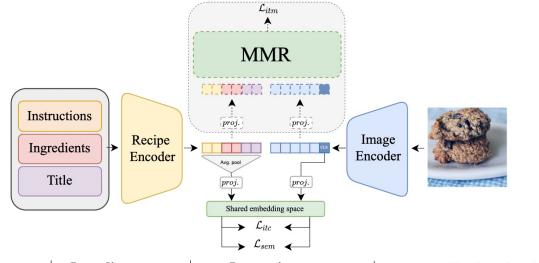
$$\mathcal{L}_{InfoNCE_{CLIP}} = -\sum_{i} \log \left(\frac{\exp(\frac{sim(I_i, T_i)}{\tau})}{\sum_{k=1}^{N} \exp(\frac{sim(I_i, T_k)}{\tau})} \right)$$

Pre-trained encoders = dual encoders (Text/Image)

used for Zero-shot classifier, and other downstream tasks



A lot of variants



Title query	Ingredient query	Instruction query	Top 5 retrieved images
Mint Chocolate Chip Frosting.	1 cup Unsalted Butter,	Add sugar, cream, peppermint, and food coloring	
	2 Tablespoons Heavy Cream,	scoop the frosting and place on top of your cupcakes	
	2 drops Green Food Coloring, Chocolate	Source: Chocolate Cupcakes with Mint Chocolate Chip	
Honey-Grilled Chicken.	1 broiler-fryer chicken, halved,	Place the halved chicken in a large, shallow container	
	34 cup butter, melted,	Combine the remaining ingredients, stirring sauce well	
	14 cup honey	Grill chicken, skin side up	
The Best Kale Ever.	1/2 cup Kale,	Wash and cut kale off the stems	
	1 teaspoon Olive Oil,	Heat olive oil on medium heat and add garlic	
	1/4 teaspoons Red Pepper Flakes	Add in kale and red pepper flakes	