
COURS RDFIA deep Image
https://cord.isir.upmc.fr/teaching-rdfia/

Generative models
Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN
3. GAN architectures
4. Editing

Drawing? => learning from examples

Review: Auto-encoder

As close as possible

NN
Encoder

NN
Decoder

code

NN
Decoder

code
Randomly generate
a vector as code Image ?

Minimize
reconstruction error

Review: Auto-encoder

NN
Decoder

code

2D

-1.5 1.5
−1.5
0

NN
Decoder

1.5
0

NN
Decoder

Review: Auto-encoder

-1.5 1.5

NN
Encoder

NN
Decoder

code

input output

Auto-encoder

VAE

NN
Encoder

input NN
Decoder

output

m1
m2
m3

𝜎!
𝜎"
𝜎#

𝑒#

𝑒!
𝑒"

From a normal
distribution N(0,1)

𝑐#

𝑐!
𝑐"

X

+

Minimize
reconstruction error

𝑐$ = 𝜎$𝑒$ +𝑚$

Auto-Encoding Variational Bayes, https://arxiv.org/abs/1312.6114

Problems of AE/VAE

• It does not really try to simulate real images

NN
Decoder

code

Output As close as
possible

One pixel difference
from the target

One pixel difference
from the target

Realistic Non
Realistic

Problems of AE/VAE

Game scenario:

Player1, Generator, produces samples
Player2, – Its adversary Discriminator, attempts to distinguish real samples
from fake generated ones (produced by Player1) !

Player1 aims at producing Realistic images to fool the Player2

GAN to tackle this pb:

Realistic Non Realistic

GAN: generative adversarial networks

Generative models
Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN

• GAN Algorithm

Adversarial Nets Framework

𝑉(𝐺, 𝐷) = 𝔼%∼'!"#" 𝑙𝑜𝑔𝐷 𝑥 + 𝔼%∼'$ 𝑙𝑜𝑔 1 − 𝐷 𝑥

𝐺∗ = 𝑎𝑟𝑔min
)
max
*

𝑉 𝐺,𝐷

Game scenario:

Player1, Generator G
Player2, Discriminator D

GAN Learning – D and G updates

NN
Generator

v1

Discri-
minator

v1

Real images:

Binary
Classifier

Game scenario:

Player1, Generator G, produces samples
Player2, – Its adversary Discriminator D, attempts
to distinguish real samples from fake generated
ones (produced by Player1) !

Player1 aims at producing Realistic images to fool
the Player2

Fake images:

GAN - Discriminator
NN

Generator
v1

Real images:

Randomly
sample vectors

1 1 1 1

0 0 0 0

Discri-
minator

v1
image 1/0 (real or fake)

Discriminator Optimization on a batch of images:
Use gradient descent to update the parameters in the discriminator,
with a freezed generator

GAN - Generator

Discri-
minator

v1

NN
Generator

v1

Randomly
sample a vector

0.13

Updating the parameters of
generator

The output be classified as
“real” (as close to 1 as
possible)

Generator + Discriminator
= a network

Optimization:
Use gradient descent to update the parameters
in the generator, with a freezed discriminator

1.0

v2

GAN Learning – D and G updates

NN
Generator

v1

Discri-
minator

v1

NN
Generator

v3

Discri-
minator

v3

NN
Generator

v2

Discri-
minator

v2

Real images:

… NN
Generator

vt

Game over:
Winner==Player1

Generator G
producing fully
Realistic images

that fool the
Player2

GAN algorithm

𝑉 = 𝔼%∼'!"#" 𝑙𝑜𝑔𝐷 𝑥 + 𝔼%∼'$ 𝑙𝑜𝑔 1 − 𝐷 𝑥

𝐺∗ = 𝑎𝑟𝑔min
)
max
*

𝑉 𝐺,𝐷

One example GAN

Source of images: https://zhuanlan.zhihu.com/p/24767059

DCGAN: https://github.com/carpedm20/DCGAN-tensorflow

GAN

100 rounds

GAN

1000 rounds

GAN

20,000 rounds

GAN

50,000 rounds

Generative models
Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN

• GAN Algorithm
• KL vs. Jensen Shannon Divergence

𝑉(𝐺, 𝐷) = 𝔼%∼'!"#" 𝑙𝑜𝑔𝐷 𝑥 + 𝔼%∼'$ 𝑙𝑜𝑔 1 − 𝐷 𝑥

𝐺∗ = 𝑎𝑟𝑔min
)
max
*

𝑉 𝐺,𝐷

Which measure to evaluate how 𝑃! 𝑥; 𝜃 is close to
𝑃"#$# 𝑥 	in Maximum Likelihood optimization?

• Given a data distribution 𝑃+,-, 𝑥
• We have a distribution 𝑃) 𝑥; 𝜃 parameterized by 𝜃
• E.g. 𝑃) 𝑥; 𝜃 is a Gaussian Mixture Model, 𝜃 are means

and variances of the Gaussians
• We want to find 𝜃 such that 𝑃) 𝑥; 𝜃 close to 𝑃+,-, 𝑥

Sample 𝑥!, 𝑥", … , 𝑥. from 𝑃+,-, 𝑥
We can compute 𝑃) 𝑥$; 𝜃
Likelihood of generating the samples

𝐿 =C
$/!

.

𝑃) 𝑥$; 𝜃

Find 𝜃∗ maximizing the likelihood

𝜃∗ = 𝑎𝑟𝑔max
0
C
$/!

.

𝑃) 𝑥$; 𝜃 = 𝑎𝑟𝑔max
0
𝑙𝑜𝑔C

$/!

.

𝑃) 𝑥$; 𝜃

= 𝑎𝑟𝑔max
0
D
$/!

.

𝑙𝑜𝑔𝑃) 𝑥$; 𝜃

≈ 𝑎𝑟𝑔max
0
𝔼%~'!"#"[𝑙𝑜𝑔𝑃) 𝑥; 𝜃]	

= 𝑎𝑟𝑔max
0

I
%

𝑃+,-, 𝑥 𝑙𝑜𝑔𝑃) 𝑥; 𝜃 𝑑𝑥	−I
%

𝑃+,-, 𝑥 𝑙𝑜𝑔𝑃+,-, 𝑥 𝑑𝑥	

= 𝑎𝑟𝑔min
0
𝐾𝐿 𝑃+,-, 𝑥 ||𝑃) 𝑥; 𝜃 	

𝑥!, 𝑥", … , 𝑥. from 𝑃+,-, 𝑥

Which measure to evaluate how 𝑃! 𝑥; 𝜃 is close to
𝑃"#$# 𝑥 	in Maximum Likelihood optimization?

In Maximum Likelihood it is a KLD Kullback Leibler Divergence

𝐾𝐿(𝑃||𝑄) =)
!

𝑃 𝑥 𝑙𝑜𝑔
𝑃 𝑥
𝑄 𝑥

𝑑𝑥 	

If 𝑃! 𝑥; 𝜃 is a coming with a NN

Credits: https://blog.openai.com/generative-models/

𝑃! 𝑥; 𝜃 = '
%

𝑃&'()' 𝑧 𝐼 ! % *+ 𝑑𝑧

𝐺 𝑧 = 𝑥
𝑃+,-, 𝑥𝑃) 𝑥; 𝜃

It is difficult to
compute the likelihood.

𝑥

Basic Idea of GAN: the 2 players G-D game

• Generator G
• G is a function, input z, output x
• Given a prior distribution Pprior(z), a probability

distribution PG(x) is defined by function G (and
Pprior)

• Discriminator D
• D is a function, input x, output scalar
• Evaluate the “difference” between PG(x) and

Pdata(x)
• Global objective function V(G,D)

𝜃∗ = 𝐺∗ = 𝑎𝑟𝑔min
!
max
-

𝑉 𝐺, 𝐷

Hard to learn by maximum likelihood

Basic Idea

𝐺. 𝐺/ 𝐺0

𝑉 𝐺. , 𝐷 𝑉 𝐺/ , 𝐷 𝑉 𝐺0 , 𝐷

𝐷 𝐷 𝐷

𝑉 = 𝔼+∼2!"#" 𝑙𝑜𝑔𝐷 𝑥 + 𝔼+∼2$ 𝑙𝑜𝑔 1 − 𝐷 𝑥

Given a generator G, max
-

𝑉 𝐺, 𝐷 evaluate the
“difference” between 𝑃! and 𝑃"#$#
Pick the G defining 𝑃! most similar to 𝑃"#$#

𝐺∗ = 𝑎𝑟𝑔min
!
max
-

𝑉 𝐺, 𝐷

max
"

𝑉 𝐺, 𝐷

• Given G, what is the optimal D* maximizing

• Given x, the optimal D* maximizing

𝑉 = 𝔼%∼'!"#" 𝑙𝑜𝑔𝐷 𝑥 + 𝔼%∼'$ 𝑙𝑜𝑔 1 − 𝐷 𝑥

𝑃"#$# 𝑥 𝑙𝑜𝑔𝐷 𝑥 + 𝑃! 𝑥 𝑙𝑜𝑔 1 − 𝐷 𝑥

= I
%

𝑃+,-, 𝑥 𝑙𝑜𝑔𝐷 𝑥 𝑑𝑥 + I
%

𝑃) 𝑥 𝑙𝑜𝑔 1 − 𝐷 𝑥 𝑑𝑥

= I
%

𝑃+,-, 𝑥 𝑙𝑜𝑔𝐷 𝑥 + 𝑃) 𝑥 𝑙𝑜𝑔 1 − 𝐷 𝑥 𝑑𝑥

𝐺∗ = 𝑎𝑟𝑔min
!
max
-

𝑉 𝐺, 𝐷

Assume that D(x) can have any value here

max
"

𝑉 𝐺, 𝐷

• Given x, the optimal D* maximizing

• Find D* maximizing: f 𝐷 = a𝑙𝑜𝑔(𝐷) + 𝑏𝑙𝑜𝑔 1 − 𝐷

𝑃"#$# 𝑥 𝑙𝑜𝑔𝐷 𝑥 + 𝑃! 𝑥 𝑙𝑜𝑔 1 − 𝐷 𝑥

𝑑f 𝐷
𝑑𝐷

= 𝑎×
1
𝐷
+ 𝑏×

1
1 − 𝐷

× −1 = 0

𝑎×
1
𝐷∗

= 𝑏×
1

1 − 𝐷∗
𝑎× 1 − 𝐷∗ = 𝑏×𝐷∗

𝑎 − 𝑎𝐷∗ = 𝑏𝐷∗

𝐷∗ =
𝑎

𝑎 + 𝑏 𝐷∗ 𝑥 =
𝑃+,-, 𝑥

𝑃+,-, 𝑥 + 𝑃) 𝑥

𝐺∗ = 𝑎𝑟𝑔min
!
max
-

𝑉 𝐺, 𝐷

a D b D

0 < < 1

max
"

𝑉 𝐺, 𝐷

𝑉 𝐺. , 𝐷 𝑉 𝐺/ , 𝐷 𝑉 𝐺0 , 𝐷

𝐷 𝐷 𝐷

𝐺∗ = 𝑎𝑟𝑔min
!
max
-

𝑉 𝐺, 𝐷

𝐷!∗ 𝑥 =
𝑃+,-, 𝑥

𝑃+,-, 𝑥 + 𝑃)% 𝑥
𝐷"∗ 𝑥 =

𝑃+,-, 𝑥
𝑃+,-, 𝑥 + 𝑃)& 𝑥

𝑉 𝐺! , 𝐷!∗

“difference” between
𝑃)% and 𝑃+,-,

max
"

𝑉 𝐺, 𝐷

= 𝔼%∼'!"#" 𝑙𝑜𝑔
𝑃+,-, 𝑥

𝑃+,-, 𝑥 + 𝑃) 𝑥

+𝔼%∼'$ 𝑙𝑜𝑔
𝑃) 𝑥

𝑃+,-, 𝑥 + 𝑃) 𝑥

= I
%

𝑃+,-, 𝑥 𝑙𝑜𝑔
𝑃+,-, 𝑥

𝑃+,-, 𝑥 + 𝑃) 𝑥
𝑑𝑥

max
*

𝑉 𝐺,𝐷

+I
%

𝑃) 𝑥 𝑙𝑜𝑔
𝑃) 𝑥

𝑃+,-, 𝑥 + 𝑃) 𝑥
𝑑𝑥

2

2

1
2

1
2

=> +2𝑙𝑜𝑔
1
2

= − 2𝑙𝑜𝑔2

𝐷∗ 𝑥 =
𝑃+,-, 𝑥

𝑃+,-, 𝑥 + 𝑃) 𝑥
= 𝑉 𝐺,𝐷∗

𝑉 = 𝔼%∼'!"#" 𝑙𝑜𝑔𝐷 𝑥

+𝔼%∼'$ 𝑙𝑜𝑔 1 − 𝐷 𝑥

max
"

𝑉 𝐺, 𝐷

= −2log2 + KL P2343 x ||
P2343 x + P5 x

2

= −2𝑙𝑜𝑔2 + 2𝐽𝑆𝐷 𝑃+,-, 𝑥 ||𝑃) 𝑥 Jensen-Shannon divergence

= −2𝑙𝑜𝑔2 + I
%

𝑃+,-, 𝑥 𝑙𝑜𝑔
𝑃+,-, 𝑥

𝑃+,-, 𝑥 + 𝑃) 𝑥 /2
𝑑𝑥

+I
%

𝑃) 𝑥 𝑙𝑜𝑔
𝑃) 𝑥

𝑃+,-, 𝑥 + 𝑃) 𝑥 /2
𝑑𝑥

+KL P5 x ||
P2343 x + P5 x

2

max
*

𝑉 𝐺,𝐷 𝐷∗ 𝑥 =
𝑃+,-, 𝑥

𝑃+,-, 𝑥 + 𝑃) 𝑥
= 𝑉 𝐺,𝐷∗

JSD(P||𝑄) = !
"
KL 𝑃||𝑀 + !

"
KL 𝑄||𝑀

M= !
"
𝑃 + 𝑄

In the end ……

• Generator G, Discriminator D
• Looking for G* such that
• Given G, max

-
𝑉 𝐺, 𝐷

• What is the optimal G?

= −2𝑙𝑜𝑔2 + 2𝐽𝑆𝐷 𝑃"#$# 𝑥 ||𝑃! 𝑥

𝑃! 𝑥 = 𝑃"#$# 𝑥
with/using the JS(𝑃! , 𝑃"#$#) Divergence

𝑉 = 𝔼%∼'!"#" 𝑙𝑜𝑔𝐷 𝑥

+𝔼%∼'$ 𝑙𝑜𝑔 1 − 𝐷 𝑥

0 < < log 2

𝐺∗ = 𝑎𝑟𝑔min
!
max
-

𝑉 𝐺, 𝐷

(In Maximum Likelihood it is a KL Divergence)

Generative models
Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN
3. GAN architectures

Drawing? => learning from examples

Recall Algo GAN

Functions G and D are NN
Question:
Which architectures for G and D?

Generative models
Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN
3. GAN architectures

1. Basics

Basic Archi for G and D and expe

Frechet inception distance using 2 Gaussian
(data,gen) over inception features:

GAN architectures

• How to improve result quality?
• Spatial resolution

ÞCascade of GAN
• Object quality

=> Progressive growing of spatial resolution in G

Generative models
Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN
3. GAN architectures

1. Basics
2. LaPGAN

Generative models
Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN
3. GAN architectures

1. Basics
2. LaPGAN
3. DCGAN

Progressive growing of spatial
resolution in G: DCGAN
Upsampling step by step
Combine with convolutional layers

DCGAN results - Faces

Generative models
Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN
3. GAN architectures

1. Basics
2. LaPGAN
3. DCGAN
4. ProGAN

Progressive growing of GANs [ICLR 2018]

Combine idea of LAPGAN (several output reso) and
DCGAN (archi prog growing)
1. First, start with training 4x4 output images.
2. When this training has converged, add a new block to

generate 8x8 output images.
3. Etc.

Progressive growing of GANs [ICLR 2018]
Gradual addition of new blocks
Starting with more weight on the (upsampled) output of the previous
block, and then add more and more weights to the output of the
current block
All weights trainable during the whole process
Discriminator = mirror image of generator

Progressive growing of GANs [ICLR 2018]

Generative models
Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN
3. GAN architectures

1. Basics
2. LaPGAN
3. DCGAN
4. ProGAN
5. MSG-GAN

MSG-GAN: Multi-Scale Gradients for Generative
Adversarial Networks [CVPR 2020]

Main Idea:
• ProGAN both use progressive growing, but although this gives

stability, it introduces many complicated training parameters
associated with each new network.

• Training cannot be done “out of the box”, have to adjust parameters
for each new dataset.

→ Train all at once without complicated adding on layers

MSG-GAN: Multi-Scale Gradients for Generative
Adversarial Networks [CVPR 2020]

MSG-GAN: results – Random generated CelebA-HQ
Faces at resolution 1024x1024

Generative models
Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN
3. GAN architectures

1. Basics
2. LaPGAN
3. DCGAN
4. ProGAN
5. MSG-GAN
6. StyleGAN

StyleGAN: A Style-Based Generator Architecture for
Generative Adversarial Networks [Karras CVPR 2019]

Still progressive growing architecture but with new refinement block based
on: Arbitrary Style Transfer in Real-time with Adaptive Instance
Normalization (AdaIN)

StyleGAN Network Architecture

Building up the Model

Results -- faces

Results -- cars

Generative models
Outline

1. Preview: Auto-Encoders, VAE
2. Generative models with GAN
3. GAN architectures
4. Editing

GAN editing

Artithmetics in latent
space: vector mean,
addition, substraction

Editing by manipulation in the latent space of z
Image I = G(z)
Editing: changing z to z’ and the new image is I’ = G(z’)

DCGAN examples

GAN editing
Linear interpolation
in latent space

Gan Editing
Latent space analysis for GAN editing with
StyleGAN

Female/male

young

GAN editing
Latent space analysis
for GAN editing with
StyleGAN

Two sets of images were generated from their respective latent
codes (sources A and B); the rest of the images were generated by
copying a specified subset of styles from source B and taking the
rest from source A. Copying the styles corresponding to coarse
spatial resolutions (4x4– 8x8) brings high-level aspects such as
pose, general hair style, face shape, and eyeglasses from source B,
while all colors (eyes, hair, lighting) and finer facial features
resemble A. If we instead copy the styles of middle resolutions
(16x16– 32x32) from B, we inherit smaller scale facial features, hair
style, eyes open/closed from B, while the pose, general face shape,
and eyeglasses from A are preserved.

