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Auto-Encoding Variational Bayes, https://arxiv.org/abs/1312.6114



Problems of AE/VAE

• It does not really try to simulate real images
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Problems of AE/VAE

Game scenario: 

Player1, Generator, produces samples 
Player2, – Its adversary Discriminator, attempts to distinguish real samples 
from fake generated ones (produced by Player1) ! 

Player1 aims at producing Realistic images to fool the Player2

GAN to tackle this pb:

Realistic Non Realistic

GAN: generative adversarial networks
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1. Preview: Auto-Encoders, VAE
2. Generative models with GAN

• GAN Algorithm



Adversarial Nets Framework

𝑉(𝐺, 𝐷) = 𝔼%∼'!"#" 𝑙𝑜𝑔𝐷 𝑥 + 𝔼%∼'$ 𝑙𝑜𝑔 1 − 𝐷 𝑥

𝐺∗ = 𝑎𝑟𝑔min
)
max
*

𝑉 𝐺,𝐷

Game scenario: 

Player1, Generator G
Player2, Discriminator D



GAN Learning – D and G updates
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Real images:

Binary 
Classifier

Game scenario: 

Player1, Generator G, produces samples 
Player2, – Its adversary Discriminator D, attempts 
to distinguish real samples from fake generated 
ones (produced by Player1) ! 

Player1 aims at producing Realistic images to fool 
the Player2

Fake images:



GAN - Discriminator
NN

Generator
v1

Real images:

Randomly 
sample  vectors

1 1 1 1

0 0 0 0

Discri-
minator

v1
image 1/0 (real or fake)

Discriminator Optimization on a batch of images:
Use gradient descent to update the parameters in the discriminator, 
with a freezed generator



GAN - Generator
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Updating the parameters of 
generator 

The output be classified as 
“real” (as close to 1 as 
possible)

Generator + Discriminator 
= a network

Optimization:
Use gradient descent to update the parameters 
in the generator, with a freezed discriminator
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GAN Learning – D and G updates
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GAN algorithm

𝑉 = 𝔼%∼'!"#" 𝑙𝑜𝑔𝐷 𝑥 + 𝔼%∼'$ 𝑙𝑜𝑔 1 − 𝐷 𝑥

𝐺∗ = 𝑎𝑟𝑔min
)
max
*

𝑉 𝐺,𝐷



One example GAN

Source of images: https://zhuanlan.zhihu.com/p/24767059

DCGAN: https://github.com/carpedm20/DCGAN-tensorflow



GAN

100 rounds



GAN

1000 rounds



GAN

20,000 rounds



GAN

50,000 rounds



Generative models
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1. Preview: Auto-Encoders, VAE
2. Generative models with GAN

• GAN Algorithm
• KL vs. Jensen Shannon Divergence

𝑉(𝐺, 𝐷) = 𝔼%∼'!"#" 𝑙𝑜𝑔𝐷 𝑥 + 𝔼%∼'$ 𝑙𝑜𝑔 1 − 𝐷 𝑥

𝐺∗ = 𝑎𝑟𝑔min
)
max
*

𝑉 𝐺,𝐷



Which measure to evaluate how 𝑃! 𝑥; 𝜃 is close to 
𝑃"#$# 𝑥 	in Maximum Likelihood optimization?

• Given a data distribution 𝑃+,-, 𝑥
• We have a distribution 𝑃) 𝑥; 𝜃 parameterized by 𝜃
• E.g. 𝑃) 𝑥; 𝜃 is a Gaussian Mixture Model, 𝜃 are means 

and variances of the Gaussians
• We want to find 𝜃 such that 𝑃) 𝑥; 𝜃 close to 𝑃+,-, 𝑥

Sample 𝑥!, 𝑥", … , 𝑥.  from 𝑃+,-, 𝑥   
We can compute 𝑃) 𝑥$; 𝜃  
Likelihood of generating the samples

𝐿 =C
$/!

.

𝑃) 𝑥$; 𝜃

Find 𝜃∗ maximizing the likelihood



𝜃∗ = 𝑎𝑟𝑔max
0
C
$/!

.

𝑃) 𝑥$; 𝜃 = 𝑎𝑟𝑔max
0
𝑙𝑜𝑔C

$/!

.

𝑃) 𝑥$; 𝜃

= 𝑎𝑟𝑔max
0
D
$/!

.

𝑙𝑜𝑔𝑃) 𝑥$; 𝜃

≈ 𝑎𝑟𝑔max
0
𝔼%~'!"#"[𝑙𝑜𝑔𝑃) 𝑥; 𝜃 ]	

= 𝑎𝑟𝑔max
0

I
%

𝑃+,-, 𝑥 𝑙𝑜𝑔𝑃) 𝑥; 𝜃 𝑑𝑥	−I
%

𝑃+,-, 𝑥 𝑙𝑜𝑔𝑃+,-, 𝑥 𝑑𝑥	

= 𝑎𝑟𝑔min
0
𝐾𝐿 𝑃+,-, 𝑥 ||𝑃) 𝑥; 𝜃 	

𝑥!, 𝑥", … , 𝑥.  from 𝑃+,-, 𝑥

Which measure to evaluate how 𝑃! 𝑥; 𝜃 is close to 
𝑃"#$# 𝑥 	in Maximum Likelihood optimization?

In Maximum Likelihood it is a KLD Kullback Leibler Divergence

𝐾𝐿(𝑃||𝑄) = )
!

𝑃 𝑥 𝑙𝑜𝑔
𝑃 𝑥
𝑄 𝑥

𝑑𝑥 	



If 𝑃! 𝑥; 𝜃 is a coming with a NN

Credits: https://blog.openai.com/generative-models/

𝑃! 𝑥; 𝜃 = '
%

𝑃&'()' 𝑧 𝐼 ! % *+ 𝑑𝑧

𝐺 𝑧 = 𝑥
𝑃+,-, 𝑥𝑃) 𝑥; 𝜃

It is difficult to 
compute the likelihood.

𝑥



Basic Idea of GAN: the 2 players G-D game

• Generator G
• G is a function, input z, output x 
• Given a prior distribution Pprior(z), a probability 

distribution PG(x) is defined by function G (and 
Pprior)

• Discriminator D
• D is a function, input x, output scalar
• Evaluate the “difference” between PG(x) and 

Pdata(x)
• Global objective function V(G,D)

𝜃∗ = 𝐺∗ = 𝑎𝑟𝑔min
!
max
-

𝑉 𝐺, 𝐷

Hard to learn by maximum likelihood



Basic Idea

𝐺. 𝐺/ 𝐺0

𝑉 𝐺. , 𝐷 𝑉 𝐺/ , 𝐷 𝑉 𝐺0 , 𝐷

𝐷 𝐷 𝐷

𝑉 = 𝔼+∼2!"#" 𝑙𝑜𝑔𝐷 𝑥 + 𝔼+∼2$ 𝑙𝑜𝑔 1 − 𝐷 𝑥

Given a generator G, max
-

𝑉 𝐺, 𝐷  evaluate the 
“difference” between 𝑃! and 𝑃"#$#
Pick the G defining 𝑃!  most similar to 𝑃"#$#   

𝐺∗ = 𝑎𝑟𝑔min
!
max
-

𝑉 𝐺, 𝐷



max
"

𝑉 𝐺, 𝐷

• Given G, what is the optimal D* maximizing

• Given x, the optimal D* maximizing

𝑉 = 𝔼%∼'!"#" 𝑙𝑜𝑔𝐷 𝑥 + 𝔼%∼'$ 𝑙𝑜𝑔 1 − 𝐷 𝑥

𝑃"#$# 𝑥 𝑙𝑜𝑔𝐷 𝑥 + 𝑃! 𝑥 𝑙𝑜𝑔 1 − 𝐷 𝑥

= I
%

𝑃+,-, 𝑥 𝑙𝑜𝑔𝐷 𝑥 𝑑𝑥 + I
%

𝑃) 𝑥 𝑙𝑜𝑔 1 − 𝐷 𝑥 𝑑𝑥

= I
%

𝑃+,-, 𝑥 𝑙𝑜𝑔𝐷 𝑥 + 𝑃) 𝑥 𝑙𝑜𝑔 1 − 𝐷 𝑥 𝑑𝑥

𝐺∗ = 𝑎𝑟𝑔min
!
max
-

𝑉 𝐺, 𝐷

Assume that D(x) can have any value here



max
"

𝑉 𝐺, 𝐷

• Given x, the optimal D* maximizing

• Find D* maximizing: f 𝐷 = a𝑙𝑜𝑔(𝐷) + 𝑏𝑙𝑜𝑔 1 − 𝐷

𝑃"#$# 𝑥 𝑙𝑜𝑔𝐷 𝑥 + 𝑃! 𝑥 𝑙𝑜𝑔 1 − 𝐷 𝑥

𝑑f 𝐷
𝑑𝐷

= 𝑎×
1
𝐷
+ 𝑏×

1
1 − 𝐷

× −1 = 0

𝑎×
1
𝐷∗

= 𝑏×
1

1 − 𝐷∗
𝑎× 1 − 𝐷∗ = 𝑏×𝐷∗

𝑎 − 𝑎𝐷∗ = 𝑏𝐷∗

𝐷∗ =
𝑎

𝑎 + 𝑏 𝐷∗ 𝑥 =
𝑃+,-, 𝑥

𝑃+,-, 𝑥 + 𝑃) 𝑥

𝐺∗ = 𝑎𝑟𝑔min
!
max
-

𝑉 𝐺, 𝐷

a D b D

0 < < 1



max
"

𝑉 𝐺, 𝐷

𝑉 𝐺. , 𝐷 𝑉 𝐺/ , 𝐷 𝑉 𝐺0 , 𝐷

𝐷 𝐷 𝐷

𝐺∗ = 𝑎𝑟𝑔min
!
max
-

𝑉 𝐺, 𝐷

𝐷!∗ 𝑥 =
𝑃+,-, 𝑥

𝑃+,-, 𝑥 + 𝑃)% 𝑥
𝐷"∗ 𝑥 =

𝑃+,-, 𝑥
𝑃+,-, 𝑥 + 𝑃)& 𝑥

𝑉 𝐺! , 𝐷!∗

“difference” between 
𝑃)% and 𝑃+,-,



max
"

𝑉 𝐺, 𝐷

= 𝔼%∼'!"#" 𝑙𝑜𝑔
𝑃+,-, 𝑥

𝑃+,-, 𝑥 + 𝑃) 𝑥

+𝔼%∼'$ 𝑙𝑜𝑔
𝑃) 𝑥

𝑃+,-, 𝑥 + 𝑃) 𝑥

= I
%

𝑃+,-, 𝑥 𝑙𝑜𝑔
𝑃+,-, 𝑥

𝑃+,-, 𝑥 + 𝑃) 𝑥
𝑑𝑥

max
*

𝑉 𝐺,𝐷

+I
%

𝑃) 𝑥 𝑙𝑜𝑔
𝑃) 𝑥

𝑃+,-, 𝑥 + 𝑃) 𝑥
𝑑𝑥

2

2

1
2

1
2

=> +2𝑙𝑜𝑔
1
2

= − 2𝑙𝑜𝑔2

𝐷∗ 𝑥 =
𝑃+,-, 𝑥

𝑃+,-, 𝑥 + 𝑃) 𝑥
= 𝑉 𝐺,𝐷∗

𝑉 = 𝔼%∼'!"#" 𝑙𝑜𝑔𝐷 𝑥

+𝔼%∼'$ 𝑙𝑜𝑔 1 − 𝐷 𝑥



max
"

𝑉 𝐺, 𝐷

= −2log2 + KL P2343 x ||
P2343 x + P5 x

2

= −2𝑙𝑜𝑔2 + 2𝐽𝑆𝐷 𝑃+,-, 𝑥 ||𝑃) 𝑥 Jensen-Shannon divergence

= −2𝑙𝑜𝑔2 + I
%

𝑃+,-, 𝑥 𝑙𝑜𝑔
𝑃+,-, 𝑥

𝑃+,-, 𝑥 + 𝑃) 𝑥 /2
𝑑𝑥

+I
%

𝑃) 𝑥 𝑙𝑜𝑔
𝑃) 𝑥

𝑃+,-, 𝑥 + 𝑃) 𝑥 /2
𝑑𝑥

+KL P5 x ||
P2343 x + P5 x

2

max
*

𝑉 𝐺,𝐷 𝐷∗ 𝑥 =
𝑃+,-, 𝑥

𝑃+,-, 𝑥 + 𝑃) 𝑥
= 𝑉 𝐺,𝐷∗

JSD(P||𝑄) = !
"
KL 𝑃||𝑀 + !

"
KL 𝑄||𝑀

M= !
"
𝑃 + 𝑄



In the end ……

• Generator G, Discriminator D
• Looking for G* such that
• Given G, max

-
𝑉 𝐺, 𝐷

• What is the optimal G?

= −2𝑙𝑜𝑔2 + 2𝐽𝑆𝐷 𝑃"#$# 𝑥 ||𝑃! 𝑥

𝑃! 𝑥 = 𝑃"#$# 𝑥  
with/using the JS(𝑃! , 𝑃"#$#) Divergence

𝑉 = 𝔼%∼'!"#" 𝑙𝑜𝑔𝐷 𝑥

+𝔼%∼'$ 𝑙𝑜𝑔 1 − 𝐷 𝑥

0 < < log 2

𝐺∗ = 𝑎𝑟𝑔min
!
max
-

𝑉 𝐺, 𝐷

(In Maximum Likelihood it is a KL Divergence)
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Drawing?  => learning from examples



Recall Algo GAN

Functions G and D are NN
Question: 
Which architectures  for G and D?
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1. Basics



Basic Archi for G and D and expe

Frechet inception distance using 2 Gaussian
(data,gen) over inception features:







GAN architectures

• How to improve result quality?
• Spatial resolution

ÞCascade of GAN
• Object quality

=> Progressive growing of spatial resolution in G 
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2. Generative models with GAN
3. GAN architectures

1. Basics
2. LaPGAN
3. DCGAN



Progressive growing of spatial 
resolution in G: DCGAN
Upsampling step by step
Combine with convolutional layers





DCGAN results - Faces
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Progressive growing of GANs [ICLR 2018]

Combine idea of LAPGAN (several output reso) and 
DCGAN (archi prog growing) 
1. First, start with training 4x4 output images.
2. When this training has converged, add a new block to 

generate 8x8 output images.
3. Etc.



Progressive growing of GANs [ICLR 2018]
Gradual addition of new blocks
Starting with more weight on the (upsampled) output of the previous 
block, and then add more and more weights to the output of the 
current block
All weights trainable during the whole process
Discriminator = mirror image of generator



Progressive growing of GANs [ICLR 2018]
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MSG-GAN: Multi-Scale Gradients for Generative 
Adversarial Networks [CVPR 2020]

Main Idea:
• ProGAN both use progressive growing, but although this gives 

stability, it introduces many complicated training parameters 
associated with each new network.

• Training cannot be done “out of the box”, have to adjust parameters 
for each new dataset.

→ Train all at once without complicated adding on layers



MSG-GAN: Multi-Scale Gradients for Generative
Adversarial Networks [CVPR 2020]



MSG-GAN: results – Random generated CelebA-HQ 
Faces at resolution 1024x1024
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StyleGAN: A Style-Based Generator Architecture for 
Generative Adversarial Networks [Karras CVPR 2019]

Still progressive growing architecture but with new refinement block based 
on:  Arbitrary Style Transfer in Real-time with Adaptive Instance 
Normalization (AdaIN)



StyleGAN Network Architecture 



Building up the Model



Results -- faces





Results -- cars 
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GAN editing

Artithmetics in latent 
space: vector mean, 
addition, substraction  

Editing by manipulation in the latent space of z
Image I = G(z) 
Editing: changing z to z’ and the new image is I’ = G(z’) 

DCGAN examples



GAN editing
Linear interpolation 
in latent space



Gan Editing
Latent space analysis for GAN editing with 
StyleGAN 

Female/male

young



GAN editing
Latent space analysis 
for GAN editing with 
StyleGAN
 

Two sets of images were generated from their respective latent 
codes (sources A and B); the rest of the images were generated by
copying a specified subset of styles from source B and taking the 
rest from source A. Copying the styles corresponding to coarse
spatial resolutions (4x4– 8x8) brings high-level aspects such as 
pose, general hair style, face shape, and eyeglasses from source B, 
while all colors (eyes, hair, lighting) and finer facial features
resemble A. If we instead copy the styles of middle resolutions
(16x16– 32x32) from B, we inherit smaller scale facial features, hair
style, eyes open/closed from B, while the pose, general face shape, 
and eyeglasses from A are preserved.


