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4. Editing

' Drawing? => learning from examples
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Review: Auto-encoder

As close as possible
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Review: Auto—encoder
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Review: Auto-encoder
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Auto-encoder

Input » Encoder » » De?:'der

code

VAE

Decoder

. NN i's
nput » Encoder 2 » NI
) |

Ci = 0;¢€; —+ m;
From a normal
distribution N(0,1)

Auto-Encoding Variational Bayes, https://arxiv.org/abs/1312.6114



Problems of AE/VAE

* It does not really try to simulate real images

code

»
Decoder

»

One pixel difference
from the target

b

Output

4

Realistic

4 Y
As close as : 7
possible

One pixel difference
; . | from the target

Non
Realistic



Problems of AE/VAE

GAN to tackle this pb: 7 7

-

Realistic Non Realistic

GAN: generative adversarial networks

Game scenario:

Playerl, Generator, produces samples

Player2, — Its adversary Discriminator, attempts to distinguish real samples
from fake generated ones (produced by Playerl) !

Playerl aims at producing Realistic images to fool the Player2



Generative models

Outline

1. Preview: Auto-Encoders, VAE

2. Generative models with GAN
 GAN Algorithm



Adversarial Nets Framework

D tries to make
D(G(z)) near 0,
D(X) tries to be) G tries to make
. 1

Game scenario: Heat D(G(z)) near 1

Playerl, Generator G Dflffefentlable > (

unction D
Player2, Discriminator D

T sampled from T sampled from
data model
leferentlable
function G
( Input noise 2 )

V(G,D) = Ex-p,,, [logD(x)] + Ey_p, [log(l - D(x))]

G" =arg mGjn max V(G,D)




GAN Learning — D and G updates

NN Game scenario:

Generator
1 Playerl, Generator G, produces samples
L Player2, — Its adversary Discriminator D, attempts
* to distinguish real samples from fake generated
ones (produced by Playerl) !

Fake images: _& o | 9
* Playerl aims at producing Realistic images to fool
the Player2
Discri-
minator
vl

Binary \
Classifier Real images: S 0 ,_,{ /




GAN - Discriminator

Randomly

sample vectors

image

—

—

Real images:
Discri-
minator == 1/0 (real or fake)

vl

Discriminator Optimization on a batch of images:

Use gradient descent to update the parameters in the discriminator,
with a freezed generator



Randomly

sample a vector
GAN - Generator i
NN
Updating the parameters of Generator
generator V2 sy
The output be classified as *
» “real” (as close to 1 as 0 )
possible)

\

Generator + Discriminator

= a network Discri-
minator
Optimization: vl
Use gradient descent to update the parameters
in the generator, with a freezed discriminator *

1.0 Tesa_



GAN Learning — D and G updates

NN NN NN IN
Generator » Generator » Generator e e o
v3

vl v2

Y 4 00*0 ‘ 00*00 ootz
- * * - * Game over:

Winner==Playerl

Discri- Discri- Generator G
mlnator mlnator producing fully
Realistic images

that fool the

\ K / Player2
Realimages: | O I/

Discri-
mlnator




Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(V), ..., 2™} from noise prior Pg(2).
e Sample minibatch of m examples {x(1), ..., 2(™)} from data generating distribution
pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

Vo, 23 [log D () 4108 (1- D (6 (=9)))].

1=

D tries to make

D(G(z)) near 0,

G tries to make

D(G(z)) near 1
t

end for
e Sample minibatch of m noise samples {z(1), ..., 2(™} from noise prior pg(2).
e Update the generator by descending its stochastic gradient:
. D(x) tries to be
1 : 1
Vo, — ; log (1-D (G (29))). near
d fi
endror leferentlable
function D

)(

GAN algorithm (m

T sampled from

data : : model

V = Exepypia 109D ()] + Exp,[log(1 — D(x))]

G" =arg mGin max V(G,D)

Dlﬁerentlable
function G

t

( Input noise z

O W W W ww




One example GAN

Source of images: https://zhuanlan.zhihu.com/p/24767059
DCGAN: https://github.com/carpedm20/DCGAN-tensorflow
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GAN

1000 rounds




GAN

20,000 rounds



GAN

50,000 rounds K9 ¥



Generative models

Outline

1. Preview: Auto-Encoders, VAE

2. Generative models with GAN
 GAN Algorithm
* KL vs. Jensen Shannon Divergence

V(G,D) = IEx"’Pdata l[logD(x)] + IE':vaPG [109(1 _ D(x))]

G" =arg mﬁin max V(G,D)



Which measure to evaluate how P (x; 6) is close to
P,,:iq(x) in Maximum Likelihood optimization?

* Given a data distribution P, (x)

* We have a distribution P;(x; 8) parameterized by 6

* E.g. P-(x; 0) is a Gaussian Mixture Model, 8 are means
and variances of the Gaussians

* We want to find 8 such that P;(x; 8) close to P ¢q(x)
Sample {x1,x%, ..., x™} from P14 (x)
We can compute P (xi; 0)

Likelihood of generating the samples

m
=1

Find 6" maximizing the likelihood




Which measure to evaluate how P (x; 6) is close to
P,,:iq(x) in Maximum Likelihood optimization?

m

m
0" =arg m@axl PG(xi; 0) = arg max log HPG(xi; 0)
i=1 i=1

m
= aryg meaxz: logPs(x%0)  {xt,x?, ..., x™} from Pygeq (%)
i=1

~ arg max Ex-p,,,, [l0gPs(x; 0)]

= arg max J Piagta(x)logPs(x; 60)dx — j Piagta(X)logPiqeq(x)dx
X X

: P(x)
= arg min KL(Pyata ()||Pg(x; 0)) KL(P|IQ) = f P(0)log 7o dx

X

In Maximum Likelihood it is a KLD Kullback Leibler Divergence



f P-(x; @) is a coming with a NN

G(z) =x

unit gaussiar/

O

y4

generative

model
(neural net)

PG(x 6) _f prlor(Z)I [G(2)=x]

T~

Z

Pg(x; 0) Pyata(x)
generated distribution true data distribution
7
% |loss| .7
X N ,
image space image space

dZ It is difficult to
compute the likelihood.

Credits: https://blog.openai.com/generative-models/



Basic Idea of GAN: the 2 players G-D game

* Generator G Hard to learn by maximum likelihood
* G is a function, input z, output x
* Given a prior distribution P, (z), a probability
distribution P(x) is defined by function G (and
Pprior)
* Discriminator D
* Dis a function, input x, output scalar
* Evaluate the “difference” between P;(x) and
Pdata(x)

* Global objective function V(G,D)

0" =G" =arg mGjn mgle(G,D)



Basic |dea G|= argminmaxV(G, D)

V = Ex-p oo [10gD ()] + Ex_p,[log(1 = D(x))]

Given a generator G, max V (G, D) evaluate the

“difference” between P and P, ;,

Pick the G defining P, most similar to Py ;4

V(Gl ,D) V(GZ ,D) V(G3 ,D)

i VAW

\:

G4 G




mg[X V(G, D) G* =arg mGin max V(G,D)

* Given G, what is the optimal D* maximizing

IV = IEx"’Pdata llogD(x)] + II3x~PG [log(l — D(x))]

— [ Paacatlogd @) dx + [ PoGdlog(1 - DGo)) dx

X X
= f [Pdata(x)logD (x) + P (x)log(l — D(x))] dx
x Assume that D(x) can have any value here

* Given x, the optimal D* maximizing

Pyata(x)logD (x) + Ps(x)log(1 — D(x))



mg[X V(G, D) G* =arg mGin max V(G,D)

* Given x, the optimal D* maximizing

Paata(¥)logD (x) + Ps(x)log(1 — D(x))
a D b D

* Find D* maximizing: f(D) = alog(D) + blog(1 — D)

afb) _ ><1+b>< X(—1) =0
a0 YD 1—D -
1 1 ax(1— D*) = bxD*
X =
aX o = bX T a — aD* = bD*

a Paata(x)
D* = D*(x) =
a+b~ (§<) Pdata(x)+PG(x) <1



mg[X V(G, D) G* =arg mGjn max V(G,D)

Pdata (x) D*(x) _ Pdata (x)
Paata(x) + Pg, (x) : Pgata(x) + Pg, (x)

“difference” between
P. ) and Pigtq

Di(x) =




V= IEx"’Pdata [lOgD (X)]
mng V(G, D) +Ey-p,|log(1 —D(x))]

~ ) Py (x)
V(G.D) =V(G.D . _ data
o (6, D) ( ) D*(x) Paata(x) + Pg(x)

_E lo Pdata(x)
X~Pdata g Pdata(x) + PG (X)

+E lo fol)
*~Fg J Pdata(x) + Pg (x)

1

2 Paata(x)
= P X lO dx
3! data (%) gPdata(x)+PG(x) 1
5 _
2 Pg(x)
+j Pz (x)lo dx
¢ (x) gPdata(x) + P (x)

1 pe
=> +Zlog§= — 2log?2 2




JSD(PIQ) = ;KL(P||M) + ; KL(Q||M)

max V (G, D) M=1 (P + Q)

D
V(G, D) = V(G, D*) % _ Pdata(x)
mlgix i) Paata(x) + Pg(x)
— _ Paata(x)
= —2log?2 +J Pigia(x)log (PaonaCO) + Po(0))2 dx
Pg(x)
+l Pelog (Pagta () + P (x))/2 o
= —2log2 + KL <Pdata(x)|| Pdata(x); PG(X))
KL (PG || Pdata(x)2+ Pg (X))

= —2log2 + 2JSD(Paq:q(x)||Pg(x)) Jensen-Shannon divergence



V =Ex piua [logD(x)]

In the end ...... YE,p, [log(1— D())]

* Generator G, Discriminator D

* Looking for G* such that G* = arg mGjn max V (G, D)
D

* Given G, max V(G,D)= —2log2 + ZJSD(Pdata(x)”PG (x))
* What is the optimal G? 0< <log?2

Pg(x) = Pygq(x)
with/using the JS(P., P;,:+,) Divergence
(In Maximum Likelihood it is a KL Divergence)
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Recall Algo GAN

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z1),. .., 2™} from noise prior p,(2).
e Sample minibatch of m examples {z(!),... (™)} from data generating distribution
pdata(w)-

e Update the discriminator by ascending its stochastic gradient:

Vo, 23 [log D (2 +1og (1- D (6 (=)))].

1=

end for
e Sample minibatch of m noise samples {2, ..., 2(™)} from noise prior py(2).
e Update the generator by descending its stochastic gradient:

Ve, Y olos (10 (6(=))).

D tries to make
D(G(z)) near 0,
@ tries to make

D(G(z)) near 1

t

D(x) tries to be

( near 1 )
end for ? D
Differentiable
( function D ) f
z sampled from
f model
( z sampled from ) T
. data
Functions G and D are NN Difirniabl
nction

Question:
Which architectures for G and D?

t

Input noise z

a 4 A & &
O W O W ww
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Basic Archi for G and D and expe

Models

G and D fully connected nets

or convolutional for D, (de)convolutional for G (as seen for
segmentation nets)

ReLU and/or sigmoids, dropout

Datasets
MNIST, Toronto Face Database, CIFAR-10

GAN - Evaluation
e Approximate p, by fitting a Gaussian Parzen window on the
generated images.
e Cross-validate o to maximize likelihood of validation set

e Compute the likelihood of the test set
Evaluation not trivial, can be done using generated images as
inputs for deep nets => inception scores

Frechet inception distance using 2 Gaussian
(data,gen) over inception features: FID = ||y — “ng +tr(Z+ 2y — Z(EEw)1/2)



GAN - Qualitative results 1/2

Figure: Right col nearest from dataset. a) MNIST, b) TFD, c) CIFAR-10
(fully connected), d) CIFAR-10 (convolutional D, deconvolutional G)



GAN - Qualitative results 2/2

FVD IS PETSISIS|ISISN71212121217171/717])/

Figure: Linear interpolation between 2 points in z space

e Advantages:

» Computational advantages (no complex likelihood inference)
» Can represent sharper distributions

e Disadvantages:

» G and D must be well synchronized for the algorithm to
converge correctly



GAN architectures

* How to improve result quality?

 Spatial resolution
—>Cascade of GAN
* Object quality

=> Progressive growing of spatial resolution in G
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3. GAN architectures
1. Basics

2. LaPGAN
3. DCGAN



Progressive growing of spatial
resolution in G: DCGAN

Upsampling step by step
Combine with convolutional layers







n
5
O
qV)

L

DCGAN results
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Progressive growing of GANS [ICLR 2018]

Combine 1dea of LAPGAN (several output reso) and
DCGAN (archi prog growing)

1. First, start with training 4x4 output images.

2. When this training has converged, add a new block to
generate 8x8 output images.

3 . EtC . G Latent Latent Latent
v v
—5a
§ | 8x8 | Il—J]
[ ]
: ; l ]
5 ' 1024x1024 |
H. BR. - =R
I} : Reals . Reals s | Reals
] o Yy ¥
D L 3 P 1024x1024 l
b ' [ ]
R V [
¥ ‘d
L | 8x8 | = .
axa

Training progresses >



Progressive growing of GANS [ICLR 2018]

Gradual addition of new blocks

Starting with more weight on the (upsampled) output of the previous
block, and then add more and more weights to the output of the
current block

All weights trainable during the whole process

Discriminator = mirror image of generator
'

4 X
G [_16x16 | [_16x16 | [_16x16 |
[ 2x ]
¥ l 32x32 ]
| ! ‘ 32x32 | I
toRGB toRGB toRGB toRGB
l-a;_la 1
AT | N |
' 3 '
D fromRGB o 'Sx ' fromRGB fromRGB
f—.—jo.RGB [ 32x32 | [ 32x32 |
— 0.5x 05
1ayy
®

:lsx:lls
(a) * (b) (c)



Progressive growing of GANS [ICLR 2018]

Latent

4x4

1024x1024

& Reals
L

1024x1024

4x4
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MSG-GAN: Multi-Scale Gradients for Generative
Adversarial Networks [CVPR 2020]

Main Idea:

* ProGAN both use progressive growing, but although this gives
stability, it introduces many complicated training parameters
associated with each new network.

« Training cannot be done “out of the box”, have to adjust parameters

for each new dataset.

— Train all at once without complicated adding on layers




MSG-GAN: Multi-Scale Gradients for Generative
Adversarial Networks [CVPR 2020]

Real Images downsampled to various resolutions
16x 16 8x8 4x4

Critic-loss

4x4xcl function

e

B axnconv ] @x2) average Pool (downsample)
B @x4) convr | MinibatchStd
B cx3conv ] @x49)conv highest

resolution
samples

. (2 x 2) Upsample . Fully Connected

| Combine Function

6 X 16x¢3'

4x4xcl

latent vector I I

Ygen r

16 x 16

8x8

4x4




MSG-GAN: results — Random generated CelebA-HQ
Faces at resolution 1024x1024
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StyleGAN: A Style-Based Generator Architecture for
Generative Adversarial Networks [Karras CVPR 2019]

Still progressive growing architecture but with new refinement block based
on: Arbitrary Style Transfer in Real-time with Adaptive Instance
Normalization (AdalN)

ARIN (e, 9 = o5 (m ;(‘;g”) )

- ———————————

\
m
2 |-
Q 8 B AdalN
®
//Style Transfer Network




StyleGAN Network Architecture

Latent z € Z

[ Normalize |

| Fully-connected |
1
[ PixelNorm |
1
| Conv3ix3 |

1
[ PixelNorm |

4x4.

| Upsample |
1

| Conv3ix3 |
|
[ PixelNorm |

| Conv3ix3 |
|
[ PixelNorm |

8x8

(a) Traditonal

Latent z € =Z

| Normalize |

M
network f

FC

FC

FC

FC

FC

FC

FC

— Y Y ) )

FC

Synthesis network g

| Const 4x4x512 |

| Upsample |
I
| Conv3ix3 |

(b) Style-based generator



Building up the Model

Method CelebA-HQ FFHQ
A Baseline Progressive GAN [2Y] 7.79 8.04
B + Tuning (incl. bilinear up/down) 6.11 5.25
C + Add mapping and styles 5.34 4.85
D + Remove traditional input 5.07 4.88
E + Add noise inputs 5.06 4.42
F + Mixing regularization 5.17 4.40
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GAN editing

Editing by manipulation in the latent space of z
Image | = G(z)
Editing: changing z to z’ and the new image is I’ = G(Z')

Artithmetics in latent A

woman

space: vector mean,
addition, substraction

man man woman

with glasses without glasses without glasses SOTan W pasans



GAN editing

Linear interpolation 0 i
in latent space | di Al E m ey e



Gan Editing

Latent SRIace analysis for GAN editing with
StyleGA

Female/male




GAN editing

Latent space analysis
for GAN editing with
StyleGAN

Latent z € Z )
Synthesis network ,

Normalize
Mapping
network f

Const 4x4x512

(b) Style-based generator

Two sets of images were generated from their respective latent
codes (sources A and B); the rest of the images were generated by
copying a specified subset of styles from source B and taking the
rest from source A. Copying the styles corresponding to coarse
spatial resolutions (4x4— 8x8) brings high-level aspects such as

pose, general hair style, face shape, and eyeglasses from source B,

while all colors (eyes, hair, lighting) and finer facial features
resemble A. If we instead copy the styles of middle resolutions
(16x16— 32x32) from B, we inherit smaller scale facial features, hair
style, eyes open/closed from B, while the pose, general face shape,
and eyeglasses from A are preserved.

Source A

Source B

Coarse styles from source B

Middle styles from source B




