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Introduction

The past years have seen incredible progress in generative modelling;

Results have gone from this (2014∗):
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∗Generative Adversarial Nets, Goodfellow et al, NIPS 2014



Introduction

To this (Stable Diffusion, 2022∗) !

Alasdair Newson Diffusion Models and Flow Matching 3

∗High-resolution image synthesis with latent diffusion models, Rombach et al, CVPR 2022



Introduction

Currently, the state-of-the-art is represented by the following methods;
1 Diffusion models/score-based models;
2 Flow matching;

These are in fact very closely linked;

This lesson will explore Diffusion Models and Flow Matching;

Alasdair Newson Diffusion Models and Flow Matching 4



Introduction

First, an example of text conditioned generation with Chatgpt

Prompt: “RDFIA class at sorbonne university, a cool logo“
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Introduction

Video Generation Models (VGMs - Sora, Veo 3 ...) now produce
incredible results;

However, requires very large models (billions of parameters)
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Introduction

Goal of all generative models: produce data which “looks like” data in
a database;

Not sufficient to simply draw a datum from the database;

Often formulated by modelling the database as samples from an
unknown probability distribution µ1;

To sample from µ1, we first sample from a simpler distribution µ0, and
apply a function f : Rd → R

d to the sample
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Introduction

Goal of all generative models: produce data which “looks like” data in
a database;

Not sufficient to simply draw a datum from the database;

Often formulated by modelling the database as samples from an
unknown probability distribution µ1;

To sample from µ1, we first sample from a simpler distribution µ0, and
apply a function f : Rd → R

d to the sample

Generative Model sampling algorithm

1 Sample X0 ∼ µ0;

2 X1 = f(X0);

3 Return X1;
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Introduction

Variational Autoencoders (VAEs), Generative Adversarial Networks
(GANs), Diffusion Models and Flow Matching all use this approach;

The main question is, how to design f such that f(X0) ∼ µ1 ?
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Introduction

Diffusion Models and Flow Matching design f in a very different
manner to VAEs and GANs;

f is in fact an iteration of a neural network several times;

The network is viewed as a denoising process;
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Diffusion Models
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Diffusion Models

Diffusion models∗,† become image synthesis state-of-the-art;

Produce incredible results‡ :
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∗Deep Unsupervised Learning using Nonequilibrium Thermodynamics, J. Sohl-Dickstein, ICML 2015
†Denoising Diffusion Probabilistic Models, Ho et al., NIPS 2020
‡High-Resolution Image Synthesis with Latent Diffusion Models, R. Rombach et al, CVPR 2022



Diffusion Models

There are several formulations of diffusion models, with different
technical tools;

All lead to similar algorithms;

In this lesson, we present the Denoising Diffusion Probabilistic
Models (Ho et al) version;

Less technical tools, but slightly more complicated;
As far as possible, we maintain same notation;

Other versions : Score-based, Denoising Diffusion Implicit Models;
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Diffusion Models

Main difference between diffusion models and previous generative
models (VAEs, GANs):

Neural network applied iteratively;
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Diffusion Models

Main difference between diffusion models and previous generative
models (VAEs, GANs):

Neural network applied iteratively;

Core idea: we know how to add noise to an image; if we know how to
remove it, we can synthesise images from noise

“Forward/reverse∗” random processes;

Forward

Reverse
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∗We use “reverse” to not confuse with “backward” in backpropagation



Diffusion Models

Diffusion model algorithm :
1 Train a neural network to denoise images;

2 Sample a random Gaussian noise;

3 Iteratively denoise to produce random synthesised image;

Sounds simple !

Well, let us look at the mathematical formulation;
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Thanks to Arthur Leclaire and Bruno Galerne for their exceedingly enlightening explanations on this subject !



Diffusion Models

Forward process

Diffusion models first set up a forward process: (X0, X1, X2, . . . , XT )

Xt’s are images with an increasing amount of noise;
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Diffusion Models

Forward process

Diffusion models first set up a forward process: (X0, X1, X2, . . . , XT )

Xt’s are images with an increasing amount of noise;

We define Xt =
√

αtXt−1 +
√

βtZt

Zt’s are independent Gaussian noises: zt ∼ N (0, βt);
(αt, βt) are scalars;

Forward

Reverse
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Diffusion Models

Let q0 be the probability distribution of X0 (noiseless image);

Note that this corresponds to µ1 in our original formulation;

Formally, we wish to draw a sample from q0 (same goal as any
generative model);
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Diffusion Models

Let q0 be the probability distribution of X0 (noiseless image);

Note that this corresponds to µ1 in our original formulation;

Formally, we wish to draw a sample from q0 (same goal as any
generative model);

First, note that the forward process (X0, X1, X2, . . . , XT ) forms a
Markov Chain (Xt only depends on Xt−1):

q(X1, . . . , XT ♣X0) = q(XT ♣XT −1) q(XT −1♣XT −2) . . . q(X1♣X0) (1)
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Diffusion Models

Let q0 be the probability distribution of X0 (noiseless image);

Note that this corresponds to µ1 in our original formulation;

Formally, we wish to draw a sample from q0 (same goal as any
generative model);

First, note that the forward process (X0, X1, X2, . . . , XT ) forms a
Markov Chain (Xt only depends on Xt−1):

q(X1, . . . , XT ♣X0) = q(XT ♣XT −1) q(XT −1♣XT −2) . . . q(X1♣X0) (1)

Also, by the definition of q(Xt♣Xt−1):

q(Xt♣Xt−1) = N (Xt;
√

αXt−1,
√

βtId) (2)

Finally, Ho et al set αt =
√

1− βt;
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Diffusion Models

We have, recursively:

Xt =
√

1− βtXt−1 +
√

βtZt

=
√

1− βt







√

1− βt−1Xt−2 +
√

βt−1Zt−1
︸ ︷︷ ︸

Xt−1







+
√

βtZt

=
√

αtαt−1Xt−2 +
√

(1− βt)βt−1Zt−1 +
√

βtZt

=
√

αtαt−1Xt−2 +
√

(αt)(1− αt−1)Zt−1 +
√

1− αtZt

(3)

Reminder: Zt−1 and Zt are i.i.d normal variables;

NB: we have converted βt to αt for conveniance of formulae;
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Diffusion Models

Recall: sum of two independent Gaussian r.v. is also a Gaussian r.v.
Mean and variance are both summed;

Thus, we have(√

(αt)(1− αt−1)Zt−1 +
√

1− αtZt

)

∼ N (0, 1− αtαt−1), and we
can write:

Xt =
√

αtαt−1Xt−2 +
√

1− αtαt−1ϵt, (4)

where ϵt ∼ N (0, Id)
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Diffusion Models

Recall: sum of two independent Gaussian r.v. is also a Gaussian r.v.
Mean and variance are both summed;

Thus, we have(√

(αt)(1− αt−1)Zt−1 +
√

1− αtZt

)

∼ N (0, 1− αtαt−1), and we
can write:

Xt =
√

αtαt−1Xt−2 +
√

1− αtαt−1ϵt, (4)

where ϵt ∼ N (0, Id)

More generally, wrt X0, we can write:

Xt =
√

ᾱtX0 +
√

1− ᾱtϵt, (5)

where ᾱt =
∏t

s=1 αs
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Diffusion Models

Intuitively, ϵt is the noise which produces Xt from the initial image X0

Xt =
√

ᾱtX0 +
√

1− ᾱtϵt, (6)

Thus, we can skip to the end of the Markov chain !

Forward
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Diffusion Models

Reverse process

Now, how do we go in the reverse direction ?

Recall: we want to do this to randomly synthesise images;

This is not so easy: we only want to remove noise from Xt to Xt−1

Most denoisers estimate X0 directly;
Furthermore, they are not trained on very high noise levels (meaningless
above a certain noise level);

To solve this, let us look at the mathematical formulation more
carefully;
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Diffusion Models

Formally, reverse process is again a Markov chain (XT , XT −1, . . . , X0);

This is also chosen to be a series of Gaussian r.v.’s;
We note pθ the prob. distribution of the backward process;
This is the process to be learned;
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Diffusion Models

Formally, reverse process is again a Markov chain (XT , XT −1, . . . , X0);

This is also chosen to be a series of Gaussian r.v.’s;
We note pθ the prob. distribution of the backward process;
This is the process to be learned;

We have pθ(XT , . . . , X0) = p(XT )
∏1

t=T pθ(Xt−1♣Xt);

pθ(Xt−1♣Xt) = N (Xt−1; µθ(Xt, t), Σθ(Xt, t)) (7)

How to calculate the mean µθ and covariance Σθ of this reverse
process, for each t ?

DDPM does this by maximising E [X0 ∼ q0] log pθ(X0);
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Diffusion Models

We first note a special property of the Markov chain when the Xt’s are
Gaussian r.v.’s:

If (X0, Xt) are known, Xt−1 is also Gaussian !

Why is this true ?
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Diffusion Models

We first note a special property of the Markov chain when the Xt’s are
Gaussian r.v.’s:

If (X0, Xt) are known, Xt−1 is also Gaussian !

Why is this true ?

The joint distribution P(XT , . . . , X1, X0) is Gaussian;

For any random variables X, Y , with P(X, Y ) Gaussian, then P(X♣Y )
also Gaussian;

More generally, for any collection of jointly Gaussian r.v’s, then
conditioning on one or more of them also gives a Gaussian;
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Diffusion Models

We have q(Xt−1♣X0, Xt) = N (Xt−1; µ̃t(Xt, X0), β̃tId), with

µ̃(Xt, X0) =

√

ᾱt−1βt

1− ᾱt
X0 +

√
αt(1− ᾱt−1)

1− ᾱt
Xt (8)

β̃t =
1− ᾱt−1

1− ᾱt
(9)

Closed form !
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Diffusion Models

We have q(Xt−1♣X0, Xt) = N (Xt−1; µ̃t(Xt, X0), β̃tId), with

µ̃(Xt, X0) =

√

ᾱt−1βt

1− ᾱt
X0 +

√
αt(1− ᾱt−1)

1− ᾱt
Xt (8)

β̃t =
1− ᾱt−1

1− ᾱt
(9)

Closed form !

Reverse (partial)
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Diffusion Models

Why is this useful ? We don’t know X0 in practice: indeed, X0 is
what we are trying to produce!
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Diffusion Models

Why is this useful ? We don’t know X0 in practice: indeed, X0 is
what we are trying to produce!

In fact, we can train a NN to estimate X0, and then use this to
sample q(Xt−1♣X0, Xt);

Indeed, estimating X0 is the common goal of denoisers;
Easier than estimating Xt−1 directly from xt;

Thus, knowing Xt and an estimation of X0, we can sample Xt−1;
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Diffusion Models

Why is this useful ? We don’t know X0 in practice: indeed, X0 is
what we are trying to produce!

In fact, we can train a NN to estimate X0, and then use this to
sample q(Xt−1♣X0, Xt);

Indeed, estimating X0 is the common goal of denoisers;
Easier than estimating Xt−1 directly from xt;

Thus, knowing Xt and an estimation of X0, we can sample Xt−1;

So, our algorithm is now :
1 Train denoiser;
2 Sample Gaussian noise;
3 Iterate:

Estimate X0 using denoiser(Xt);
Sample Xt−1, using XT and estimate of X0

So, how is the denoiser trained ?
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Diffusion Models

We train a network to maximise pθ(X0), using the ELBO, as in the
VAE;

Slightly more complicated form due to the Markov chain setting:

log(pθ(X0)) ≥ E [log pθ(X0♣X1)]−KL (q(XT ♣X0)♣♣pθ(XT )) (10)

−
∑

t>1

KL (q(Xt−1♣X0, Xt)♣♣pθ(Xt−1♣Xt)) (11)

The terms in blue are known, and do not intervene in the optimisation;

So, what is KL (q(Xt−1♣X0, Xt)♣♣pθ(Xt−1♣Xt)) ?
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Diffusion Models

Recall that pθ(Xt−1♣Xt) was chosen to be Gaussian

We just don’t know the mean and variance yet;

Thus, since pθ(Xt−1♣Xt) and q(Xt−1♣X0, Xt) are both Gaussian, we
have a closed form solution for KL (q(Xt−1♣X0, Xt)♣♣pθ(Xt−1♣Xt))

KL (q(Xt−1♣X0, Xt)♣♣pθ(Xt−1♣Xt)) = Eq








1

βt
∥ µ̃(Xt, X0)

︸ ︷︷ ︸

Known if
Xt,X0 known

−
Neural net
︷ ︸︸ ︷

µθ(Xt, t)∥22








(12)
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Diffusion Models

Recall that pθ(Xt−1♣Xt) was chosen to be Gaussian

We just don’t know the mean and variance yet;

Thus, since pθ(Xt−1♣Xt) and q(Xt−1♣X0, Xt) are both Gaussian, we
have a closed form solution for KL (q(Xt−1♣X0, Xt)♣♣pθ(Xt−1♣Xt))

KL (q(Xt−1♣X0, Xt)♣♣pθ(Xt−1♣Xt)) = Eq








1

βt
∥ µ̃(Xt, X0)

︸ ︷︷ ︸

Known if
Xt,X0 known

−
Neural net
︷ ︸︸ ︷

µθ(Xt, t)∥22








(12)

During a training process, we select pairs (Xt, X0) to train µθ(Xt, t);

In practice, role of the network: estimate X0 from Xt;
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Diffusion Models

Final note: the authors of DDPM reformulate the loss such that the
network estimate the noise ϵt, rather than X0

Why do they do this ? Because they report that this gives better results
(see Section 3.2) ...

Since Xt =
√

ᾱtX0 +
√

1− ᾱtϵt (Equation (6)), it is equivalent to
estimate X0 or ϵt from Xt;

Knowing X0 gives us ϵt directly, and vice cersa
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Diffusion Models

Final note: the authors of DDPM reformulate the loss such that the
network estimate the noise ϵt, rather than X0

Why do they do this ? Because they report that this gives better results
(see Section 3.2) ...

Since Xt =
√

ᾱtX0 +
√

1− ᾱtϵt (Equation (6)), it is equivalent to
estimate X0 or ϵt from Xt;

Knowing X0 gives us ϵt directly, and vice cersa

Final training loss (after much simplification):

L = Et,X0,ϵ






∥
∥
∥
∥
∥
∥
∥

ϵ− fθ






√
ᾱX0 +

√
1− ᾱtϵ

︸ ︷︷ ︸

Xt

, t






∥
∥
∥
∥
∥
∥
∥

2

2




 (13)

ϵ : noise to estimate with NN denoiser fθ;

Alasdair Newson Diffusion Models and Flow Matching 40



Diffusion Models

Once the training is carried out, we can sample pθ(Xt−1♣Xt) using the
following formula:

Xt−1 =
1√
αt

(

Xt −
βt√

1− ᾱt

fθ(Xt, t)

)

+ β̃Zt, (14)

where Zt ∼ N (0, Id) is a Gaussian noise;
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Diffusion Models

Diffusion model summary

Algorithm 1 Diffusion model training

Repeat following until converged:
1 X0 ∼ q(X0) (take example X0 from database);
2 t ∼ Uniform(1, . . . , T );
3 ϵ ∼ N (0, Id);

4 One optimiser step on ∇θ

∥
∥ϵ− fθ

(√
ᾱX0 +

√
1− ᾱtϵ

)∥
∥

2

2

Algorithm 2 Diffusion model testing (synthesis)

XT ∼ N (0, Id);

For t = T, . . . , 1, do
1 Z ∼ N (0, Id), if t > 1, else Z = 0;

2 Xt−1 = 1√
α

t

(

Xt − βt√
1−ᾱt

fθ(Xt, t)
)

+ β̃Zt
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Diffusion Models

Diffusion models summary

Idea: if we can reverse a noise process, then we can synthesise random
images;

Forward process Xt−1 → Xt is easy to sample: we just add Gaussian
noise a certain number of timesteps;

Reverse process Xt → Xt−1 is more difficult to sample;
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Diffusion Models

Diffusion models summary

Idea: if we can reverse a noise process, then we can synthesise random
images;

Forward process Xt−1 → Xt is easy to sample: we just add Gaussian
noise a certain number of timesteps;

Reverse process Xt → Xt−1 is more difficult to sample;

We first note that, if we know (X0, Xt), then qθ(Xt−1♣X0, Xt) is
Gaussian;

Thus, we need to estimate X0 first: job of a denoiser;

We formulate the ELBO of log pθ(X0) such that
KL (q(Xt−1♣X0, Xt)♣♣pθ(Xt−1♣Xt)) appears.

Meaning : the Gaussian reverse process should be as close as possible to
q(Xt−1♣X0, Xt);
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Diffusion Models

A network fθ is trained to predict X0 (or, equivalently, ϵt) from any
Xt;

The synthesis starts with a noise image, and these two steps are
iterated:

1 Use fθ to estimate X0 (or ϵt);

2 Use Xt and the estimation of X0 to sample Xt−1
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Diffusion Models

Architecture of fθ (in DDPM) is often a U-Net, more precisely
“PixelCNN++”∗

This is a common type of architecture for denoising;
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∗Pixelcnn++: Improving the pixelcnn with discretized logistic mixture likelihood and other modifications, T. Salimans et al,

arXiv:1701.05517, 2017



Diffusion Models

Original DDPM results
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Diffusion Models

DDPM results
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Diffusion Models

Stable diffusion

Diffusion models have many different variants;

One of the most famous is “Stable Diffusion”∗

Carries out diffusion in a pretrained latent space;

Conditional on a textual input (we do not explain this here)
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∗High-Resolution Image Synthesis with Latent Diffusion Models, R. Rombach et al, CVPR 2022



Diffusion Models

Stable diffusion

Produces incredible results:
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Diffusion Models

Example of iterations of stable diffusion;

Text input: "Link fighting with Ganon"

Recall: "Xt = aX0 + bεt"

Noise εt Estimation∗ of X0 Xt

t = 50

Alasdair Newson Diffusion Models and Flow Matching 51

∗Stable Diffusion is in a latent space, so this is not exactly correct here



Diffusion Models

Example of iterations of stable diffusion;

Text input: "Link fighting with Ganon"

Recall: "Xt = aX0 + bεt"

Noise εt Estimation∗ of X0 Xt

t = 40
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∗Stable Diffusion is in a latent space, so this is not exactly correct here



Diffusion Models

Example of iterations of stable diffusion;

Text input: "Link fighting with Ganon"

Recall: "Xt = aX0 + bεt"

Noise εt Estimation∗ of X0 Xt

t = 30
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∗Stable Diffusion is in a latent space, so this is not exactly correct here



Diffusion Models

Example of iterations of stable diffusion;

Text input: "Link fighting with Ganon"

Recall: "Xt = aX0 + bεt"

Noise εt Estimation∗ of X0 Xt

t = 20
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∗Stable Diffusion is in a latent space, so this is not exactly correct here



Diffusion Models

Example of iterations of stable diffusion;

Text input: "Link fighting with Ganon"

Recall: "Xt = aX0 + bεt"

Noise εt Estimation∗ of X0 Xt

t = 10
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∗Stable Diffusion is in a latent space, so this is not exactly correct here



Diffusion Models

Example of iterations of stable diffusion;

Text input: "Link fighting with Ganon"

Recall: "Xt = aX0 + bεt"

Noise εt Estimation∗ of X0 Xt

t = 1
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∗Stable Diffusion is in a latent space, so this is not exactly correct here



Diffusion Models

Advantages of diffusion models

More stable training wrt to GANs, which require a discriminator;

Due to the sampling at each time step t, one initial noise xT can
produce many different outputs:

Illustration from Song et al 2021∗

VAEs and GANs produce (mostly) the same image for each initial noise
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∗Score-Based Generative Modeling Through Stochastic Differential Equations, Song et al, ICLR 2021



Diffusion Models

Disadvantage of diffusion models

Networks fθ tend to be huge !

Why is this ? Because fθ has to denoise at a very wide range of noise
levels (even when there is only noise)

Theory can be quite complicated;

Not always explained or implemented clearly (various practical
techniques)
Theory and practice are often not aligned;
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Flow Matching
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Flow matching

Although frameworks differ, flow matching and diffusion are almost
identical in practice;

As for Diffusion Models, f is an iteration of a neural network;

Formulated in terms of trajectories between µ0 and µ1, instead of a
Markov chain (Diffusion Models);

However, leads to almost identical setting: noising/denoising images;
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Flow matching

Although frameworks differ, flow matching and diffusion are almost
identical in practice;

As for Diffusion Models, f is an iteration of a neural network;

Formulated in terms of trajectories between µ0 and µ1, instead of a
Markov chain (Diffusion Models);

However, leads to almost identical setting: noising/denoising images;

Core idea of flow matching: use simple trajectories between µ0 and µ1

to learn f ;

In particular, we teach the network using straight paths between
samples X0 ∼ µ0 and X1 ∼ µ1;

Alasdair Newson Diffusion Models and Flow Matching 61



Introduction

Recall of initial idea;

Before looking into Flow Matching in more detail, we need to recall a
notion from probability theory;
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Flow matching

Pushforward measure

Let X be a random variable, following distribution µ;

The pushforward measure f#µ is the distribution of f(X);

More formally, f#µ is defined as the measure such that, for all sets B,

f#µ(B) := µ(f−1(B)) (15)

Alasdair Newson Diffusion Models and Flow Matching 63



Flow matching

Back to flow matching. Let (X0, X1) ∼ π be two random variables;

π is the joint distribution of (X0, X1), such that the marginals are µ0

and µ1 respectively;
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Flow matching

Back to flow matching. Let (X0, X1) ∼ π be two random variables;

π is the joint distribution of (X0, X1), such that the marginals are µ0

and µ1 respectively;

Interpolation Xt

We define the interpolation between X0 and X1:

Xt := (1− t)X0 + tX1 (16)

Define the interpolation function gt(x, y) := (1− t)x + ty, we have:

Xt = gt(X0, X1) (17)

Let ρt be the distribution of Xt. We can write this:

ρt = gt#π (18)

ρt is sometimes referred to as a probability path;
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Flow matching

Illustration of the interpolation between two probability distributions;
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Flow matching

This interpolation is useful because at t = 0 and t = 1 we have:

g0(X0, X1) := (1− 0)X0 + 0X1 = X0 (19)

g1(X0, X1) := (1− 1)X0 + 1X1 = X1. (20)

Therefore, ρ0 = µ0, ρ1 = µ1;

Thus, ρt verifies the correct distributions at the beginning and end
(unsurprisingly);

If we can draw a sample Xt, we can draw a sample X1 ∼ µ1;
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Flow matching

This interpolation is useful because at t = 0 and t = 1 we have:

g0(X0, X1) := (1− 0)X0 + 0X1 = X0 (19)

g1(X0, X1) := (1− 1)X0 + 1X1 = X1. (20)

Therefore, ρ0 = µ0, ρ1 = µ1;

Thus, ρt verifies the correct distributions at the beginning and end
(unsurprisingly);

If we can draw a sample Xt, we can draw a sample X1 ∼ µ1;

Unfortunately, we have to be able to sample from both µ0 and µ1 to
produce Xt, so unusable as such;

We have to find an indirect way to determine Xt and ρt: we will use a
flow
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Flow matching

Flow matching consists in defining a flow which represents ρt;

A flow is a function from R
d to R

d which is determined by a velocity
field;

Originally, flows represent fluids in fluid dynamics;

Flow

Let ϕt : Rd 7→ R
d be a function such that:

dϕt(x)
dt

= vt(x) Velocity field
ϕ0(x) = x Starting point: identity at 0

(21)

vt is a smooth function which defines the motion of the flow;
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Flow matching

Once vt is established, ϕt is determined uniquely as the solution of
the flow equation (21)

Thus, for a given t ∈ (0, 1) we have:

ϕt(x) = x +

∫ t

0
vτ (xτ )dτ (22)
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Flow matching

Core idea of flow matching: if we choose vt correctly, we can use the
flow ϕt to “transport” samples from X0 to X1;

This avoids having to determine Xt, ρt directly, we only need µ0 and
ϕt;

Actually, this is similar to a GAN: a function f to transport µ0 to µ1;

Main difference: ϕt given by an integration over time of a function vt;
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Flow matching

Flow matching proposes to define vt(x) as the conditional
expectation of the velocity knowing Xt;

Flow matching velocity field

Let (X0, X1) ∼ π such that the marginals are µ0, µ1;

The flow matching velocity field is defined as:

vt(x) := E [X1 −X0♣Xt = x] (23)

Indeed, ∂gt

∂t
(X0, X1) = ∂

∂t
((1− t)X0 + tX1) = X1 −X0;

Fix a time t and a position x, and calculate the average velocity of
all straight paths passing through x;
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Flow matching

t = 0 t=0.5 t = 1
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Illustration of velocity vt(x) = E[X1 −X0|Xt = x], with x = 0.4, with t = 0.5
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Flow matching

So, we now have a way to establish a flow ϕt;

Let ρ̃t be the probability path defined with µ0 and ϕt:

ρ̃t = ϕt#µ0 (24)

ρ̃t is the distribution of ϕt(X0), with X0 ∼ µ0;
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Flow matching

So, we now have a way to establish a flow ϕt;

Let ρ̃t be the probability path defined with µ0 and ϕt:

ρ̃t = ϕt#µ0 (24)

ρ̃t is the distribution of ϕt(X0), with X0 ∼ µ0;

Main question: is vt correctly designed to ensure that, for all
t ∈ [0, 1]

ρ̃t = ρt, almost everywhere ? (25)

Why ? Because ρt has the good properties (ρ1 = µ1), but not
necessarily ρ̃t

We need to have ρ̃1 = µ1, otherwise the flow is useless;

For this, we turn to the continuity equation;
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Flow matching

Continuity equation

Let ρt be the density of a flow (ie the probability path), and vt the
velocity field of this flow. Then we have:

∂ρt

∂t
+ div(ρtvt) = 0 (26)

We say that the couple (ρt, vt) solves the continuity equation;

The continuity equation will allow us to prove that ρ̃t = ρt, a.e.;
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Flow matching

We also know that the solution to the continuity equation is unique,
given a fixed initial condition;

Characterisation and uniqueness of solutions to the continuity equation

Let vt : Rd → R
d be a velocity field and ϕt the corresponding flow,

and consider some initial distribution µ0;

Then the distribution ϕt#µ0 and vt solve the continuity equation;

Furthermore, with initial condition µ0, the solution (ρt) to the
continuity equation is unique;
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Flow matching

Proposition: (ρt, vt) solve the continuity equation

Recall that ρt = gt#π;

It can be shown that (ρt, vt) solve the continuity equation;

This means that vt indeed leads to a flow ϕt such that:

ϕt#µ0 = ρ̃t by definition (27)

= ρt a.e. (28)

We know that ρ̃t = ρt a.e. because solution to the continuity equation
is unique;

In summary: we can sample from ρ̃t by using ϕt(X0), and it happens
that ρ̃t = ρt;

Thus, ϕ1(X0) ∼ µ1, achieving our original goal !!
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Flow matching

Flow matching summary - the story so far

1 Calculate vt(x) = E [X1 −X0♣Xt = x];

2 Sample X0 ∼ µ0;

3 X1 = ϕt(X0) = X0 +
∫ 1

0 vt(X0)dt
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Flow matching

Flow matching summary - the story so far

1 Calculate vt(x) = E [X1 −X0♣Xt = x];

2 Sample X0 ∼ µ0;

3 X1 = ϕt(X0) = X0 +
∫ 1

0 vt(X0)dt

Remaining questions
1 How to calculate vt(x) = E [X1 −X0♣Xt = x] ?

Not trivial, since we do not know µ1;

2 How to calculate
∫ 1

0 vt(X0)dt ?

Numerical approximation of integral;
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Flow matching

Calculating vt(x) = E [X1 −X0♣Xt = x]

Unsurprisingly, we use a neural network to approximate
E [X1 −X0♣Xt = x];

Approximation of vt

for i = 1 to N do
Draw t ∈ U([0, 1])
Draw X0 ∼ µ0

Draw X1 from the database
Xt = (1− t)X0 + tX1

Minimiseθ ∥(X1 −X0)− fθ(Xt, t)∥22
end for
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Flow matching

Training fθ
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Flow matching

Training fθ
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Flow matching

Training fθ
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Flow matching

Training fθ
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Flow matching

Training fθ
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Flow matching

Numerical integration

Determining ϕ1(X0) =
∫ 1

0 vt(X0)dt requires a numerical integration;

Simplest option, Euler scheme
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Flow matching

Numerical integration

Determining ϕ1(X0) =
∫ 1

0 vt(X0)dt requires a numerical integration;

Simplest option, Euler scheme

Euler scheme for numerical integraion

Let N > 0 be the number of numerical integration steps;

Let t1, . . . , tN be a sequence of discrete time steps:

In general, ti = i
N

(but this could be modified)

X0 ∼ N (0, Id)
X = X0

for i = 1 to N − 1 do
X = X + (ti+1 − ti)fθ(X, ti)

end for
Return ϕ1(X0)← X
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Flow matching

Translation between Diffusion Models and Flow Matching terms

Meaning Diffusion Models
(DM)

Flow Matching (FM)

Data sample X0 X1

Latent / noise sample XT X0

Intermediate state Xt = αtX0 + σtε Xt = αtX1 + βtX0

Noise variable εt ∼ N (0, I) X0

Time variable t ∈ [0, T ] (diffusion) t ∈ [0, 1] (interpolation)

Predicted quantity εθ(X, t) vθ(X, t)
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Conclusion

Conclusion

Diffusion Models and Flow Matching are extremely similar;

Major differences:

No noise between Xt and Xt−1 in diffusion: deterministic from X0;
Diffusion can never reach complete noise, requires infinite T ;

Flow Matching formulation simpler to explain, although mathematics
behind it may be more sophisticated;
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Diffusion Models

Some legitimate questions !

Why can’t we just train a network to predict/sample xt−1 directly
from xt ?

Why do we have to sample it indirectly via x0 ?

Alasdair Newson Diffusion Models and Flow Matching 92



Diffusion Models

Some legitimate questions !

Why can’t we just train a network to predict/sample xt−1 directly
from xt ?

Why do we have to sample it indirectly via x0 ?
Answer: it is difficult for the network to predict the same image
with slightly less noise (xt → xt−1);
If you could do this, diffusion models would be much simpler (less
maths);
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Diffusion Models

Some legitimate questions !

Why can’t we just train a network to predict/sample xt−1 directly
from xt ?

Why do we have to sample it indirectly via x0 ?
Answer: it is difficult for the network to predict the same image
with slightly less noise (xt → xt−1);
If you could do this, diffusion models would be much simpler (less
maths);

Why is it better to carry out an iterative diffusion process, rather
than just one step (as in VAEs/GANs) ?
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Diffusion Models

Some legitimate questions !

Why can’t we just train a network to predict/sample xt−1 directly
from xt ?

Why do we have to sample it indirectly via x0 ?
Answer: it is difficult for the network to predict the same image
with slightly less noise (xt → xt−1);
If you could do this, diffusion models would be much simpler (less
maths);

Why is it better to carry out an iterative diffusion process, rather
than just one step (as in VAEs/GANs) ?

This is currently a subject of research;
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