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Introduction

@ The past years have seen incredible progress in generative modelling;
@ Results have gone from this (2014*):

* Generative Adversarial Nets, Goodfellow et al, NIPS 2014
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Introduction

e To this (Stable Diffusion, 2022*) !

* High-resolution image synthesis with latent diffusion models, Rombach et al, CVPR 2022
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Introduction

@ Currently, the state-of-the-art is represented by the following methods;

@ Diffusion models/score-based models;
© Flow matching;

@ These are in fact very closely linked;

@ This lesson will explore Diffusion Models and Flow Matching;
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Introduction

@ First, an example of text conditioned generation with Chatgpt

@ Prompt: “RDFIA class at sorbonne university, a cool logo"

RDFIA

SORBONNE UNIVERS Ty
\7101010110I 3

N7
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Introduction

e Video Generation Models (VGMs - Sora, Veo 3 ...) now produce
incredible results;

@ However, requires very large models (billions of parameters)
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Introduction

@ Goal of all generative models: produce data which “looks like” data in
a database;

o Not sufficient to simply draw a datum from the database;

@ Often formulated by modelling the database as samples from an
unknown probability distribution p;;

@ To sample from 1, we first sample from a simpler distribution g, and
apply a function f : R® — R? to the sample
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Introduction

@ Goal of all generative models: produce data which “looks like” data in
a database;

o Not sufficient to simply draw a datum from the database;

@ Often formulated by modelling the database as samples from an
unknown probability distribution p;;

@ To sample from 1, we first sample from a simpler distribution g, and
apply a function f : R® — R? to the sample

Generative Model sampling algorithm

@ Sample X ~ pup;
Q@ X = f(Xo);
@ Return Xj;
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Introduction

f(Xo)
¥ f

Ho M1

e Variational Autoencoders (VAEs), Generative Adversarial Networks
(GANs), Diffusion Models and Flow Matching all use this approach;

@ The main question is, how to design f such that f(Xy) ~ p; 7
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Introduction

o Diffusion Models and Flow Matching design f in a very different
manner to VAEs and GANs;

e f isin fact an iteration of a neural network several times;

@ The network is viewed as a denoising process;
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Diffusion Models
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Diffusion Models

e Diffusion models*,’ become image synthesis state-of-the-art;

@ Produce incredible results? :

* Deep Unsupervised Learning using Nonequilibrium Thermody ics, J. Sohl-Dickstein, ICML 2015
1LDenoising Diffusion Probabilistic Models, Ho et al., NIPS 2020
iHigh—Resqution Image Synthesis with Latent Diffusion Models, R. Rombach et al, CVPR 2022
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Diffusion Models

@ There are several formulations of diffusion models, with different
technical tools;

o All lead to similar algorithms;

@ In this lesson, we present the Denoising Diffusion Probabilistic
Models (Ho et al) version;

@ Less technical tools, but slightly more complicated,;
e As far as possible, we maintain same notation;

@ Other versions : Score-based, Denoising Diffusion Implicit Models;
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Diffusion Models

@ Main difference between diffusion models and previous generative
models (VAEs, GANs):

e Neural network applied iteratively;
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Diffusion Models

@ Main difference between diffusion models and previous generative
models (VAEs, GANs):

e Neural network applied iteratively;

o Core idea: we know how to add noise to an image; if we know how to
remove it, we can synthesise images from noise

* 11

o "Forward/reverse*” random processes;

Forward

Jar Xty + VBrir
—_—

Reverse
* We use “reverse” to not confuse with “backward” in backpropagation
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Diffusion Models

o Diffusion model algorithm :
@ Train a neural network to denoise images;

@ Sample a random Gaussian noise;

© lIteratively denoise to produce random synthesised image;
@ Sounds simple !

@ Well, let us look at the mathematical formulation;

Thanks to Arthur Leclaire and Bruno Galerne for their exceedingly enlightening explanations on this subject !
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Diffusion Models

Forward process
e Diffusion models first set up a forward process: (Xo, X1, Xo, ..., X7)
e X,'s are images with an increasing amount of noise;
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Diffusion Models

Forward process
e Diffusion models first set up a forward process: (Xo, X1, Xo, ..., X7)
e X,'s are images with an increasing amount of noise;
o We define Xy = \/ar X;—1 +/Bi Z;

o Z;'s are independent Gaussian noises: z; ~ N(0, 8;);
o (a,ft) are scalars;

Forward
] "‘ VarXo+VBiZ VarXr- + VBrZr
—_— ﬂ —_— —_—
| ,XO X1 X7_1 X1
Z, ~ N(0,Id) Reverse
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Diffusion Models

@ Let gp be the probability distribution of X (noiseless image);
e Note that this corresponds to p in our original formulation;

e Formally, we wish to draw a sample from go (same goal as any
generative model);
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Diffusion Models

@ Let gp be the probability distribution of X (noiseless image);
e Note that this corresponds to p in our original formulation;

e Formally, we wish to draw a sample from go (same goal as any
generative model);

e First, note that the forward process (Xy, X1, Xo,..., Xr) forms a
Markov Chain (X only depends on X;_1):

q(Xl, e ,XT|X0) = q(XT|XT_1) q(XT_1|XT_2) e q(X1|X0) (1)
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Diffusion Models

@ Let gp be the probability distribution of X (noiseless image);
e Note that this corresponds to p in our original formulation;

e Formally, we wish to draw a sample from go (same goal as any
generative model);

e First, note that the forward process (Xy, X1, Xo,..., Xr) forms a
Markov Chain (X only depends on X;_1):

q(X1, ..., Xr[Xo) = ¢(X7|X7-1) ¢(Xr-1[X7-2) ... ¢(X1]X0) (1)
@ Also, by the definition of ¢(X;|X:—1):
¢(Xe| Xio1) = N(Xy; VaXi1,v/Bild) (2)
e Finally, Ho et al set ay = /1 — f3;;
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Diffusion Models

o We have, recursively:

X = thfl + \/EZt
=1-5 th—z +\/Beo1Zi—1 | + VB2

Xi1

= Va1 Xi—2 +\/(1 = B)Bie1Zi—1 + VB 24
= oo 1 Xe—o+ /()1 — 1) Zi1 + V1 —awZy

(3)

@ Reminder: Z;,_; and Z; are i.i.d normal variables;

@ NB: we have converted ; to oy for conveniance of formulae;
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Diffusion Models

@ Recall: sum of two independent Gaussian r.v. is also a Gaussian r.v.
e Mean and variance are both summed;

@ Thus, we have

(\/ (at)(l — Oét_l)Zt_l + 11— OttZt> ~ N(O, 1-— atat_l), and we

can write:

X = opoy 1 X2 + /1 — aroy_1€, (4)
o where ¢, ~ N (0, Id)
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Diffusion Models

@ Recall: sum of two independent Gaussian r.v. is also a Gaussian r.v.
e Mean and variance are both summed;

@ Thus, we have

(\/ (at)(l — Oét_l)Zt_l + 11— OttZt> ~ N(O, 1-— atat_l), and we

can write:

X = opoy 1 X2 + /1 — aroy_1€, (4)

o where ¢, ~ N (0, Id)
@ More generally, wrt Xy, we can write:

X = VauXo+ V1 — aue, (5)

o where a; = [

s=1 &s
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Diffusion Models

@ Intuitively, ¢ is the noise which produces X; from the initial image Xy

X = VauXo+ V1 — e, (6)

@ Thus, we can skip to the end of the Markov chain !

Forward

¥ " Varzo + Bz WTH ' Varar-1 +v/Brar
— ¥ — —
[ X X ]
Xo X1 X711 X7

varXo+ V1 — arep
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Diffusion Models

Reverse process
@ Now, how do we go in the reverse direction ?
e Recall: we want to do this to randomly synthesise images;

@ This is not so easy: we only want to remove noise from X; to X; 1

o Most denoisers estimate X directly;
o Furthermore, they are not trained on very high noise levels (meaningless
above a certain noise level);

@ To solve this, let us look at the mathematical formulation more
carefully;
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Diffusion Models

e Formally, reverse process is again a Markov chain (X7, X7_1,...,Xp);

e This is also chosen to be a series of Gaussian r.v.'s;
o We note py the prob. distribution of the backward process;
o This is the process to be learned;
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Diffusion Models

e Formally, reverse process is again a Markov chain (X7, X7_1,...,Xp);

e This is also chosen to be a series of Gaussian r.v.'s;
o We note py the prob. distribution of the backward process;
o This is the process to be learned;

o We have pg(Xr, ..., Xo) = p(X7) [Tier po(Xe—11Xy);
Po(Xe—1]Xt) = N (Xy—15 1g( X4, 1), o ( Xy, 1)) (7)

@ How to calculate the mean 1y and covariance ¥y of this reverse
process, for each ¢t ?

e DDPM does this by maximising E [Xo ~ go] log pg(Xo);
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Diffusion Models

@ We first note a special property of the Markov chain when the X;'s are
Gaussian r.v.'s:

o If (Xo,X;) are known, X;_1 is also Gaussian !

o Why is this true ?
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Diffusion Models

@ We first note a special property of the Markov chain when the X;'s are
Gaussian r.v.'s:

o If (Xo,X;) are known, X;_1 is also Gaussian !

o Why is this true ?
o The joint distribution P(Xr, ..., X1, Xo) is Gaussian;

e For any random variables X, Y, with P(X,Y) Gaussian, then P(X|Y)
also Gaussian;

e More generally, for any collection of jointly Gaussian r.v's, then
conditioning on one or more of them also gives a Gaussian;
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Diffusion Models

o We have q(X;_1|Xo, X;) = N(X;—1; fir(Xe, Xo), BeId), with

(X, Xg) = Y010ty VLT ) ®)

1—0175 1—0?,5
= l—ar
= — 9
b= ©)

@ Closed form !
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Diffusion Models

o We have q(X;_1|Xo, X;) = N(X;—1; fir(Xe, Xo), BeId), with

(X2, Xo) = Vb, vall Zam) o (8)
ty <20 —Olt 1—at
Btzll__—o‘;tl 9)

@ Closed form !

Reverse (partial)
Xo
q(Xe-1]Xo, X¢) = N (Xo1; (it (Xe, Xo), BId)
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Diffusion Models

@ Why is this useful ? We don't know X in practice: indeed, X is
what we are trying to produce!
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Diffusion Models

@ Why is this useful ? We don't know X in practice: indeed, X is
what we are trying to produce!
@ In fact, we can train a NN to estimate X, and then use this to
sample q(X;—1]Xo, X¢);
o Indeed, estimating X is the common goal of denoisers;

o Easier than estimating X;_1 directly from xy;

@ Thus, knowing X; and an estimation of X, we can sample X;_1;
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Diffusion Models

@ Why is this useful ? We don't know X in practice: indeed, X is
what we are trying to produce!

@ In fact, we can train a NN to estimate X, and then use this to
sample q(X;—1]Xo, X¢);
o Indeed, estimating X is the common goal of denoisers;
o Easier than estimating X;_1 directly from xy;

@ Thus, knowing X; and an estimation of X, we can sample X;_1;

@ So, our algorithm is now :
@ Train denoiser;
@ Sample Gaussian noise;
@ lterate:
o Estimate Xy using denoiser(X4);
o Sample X;_1, using X7 and estimate of Xy

@ So, how is the denoiser trained ?
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Diffusion Models

e We train a network to maximise py(Xp), using the ELBO, as in the
VAE;

@ Slightly more complicated form due to the Markov chain setting:

log(pge(Xo)) > E [log pe(Xo|X1)] — KL (q(X7|X0)||pe(XT)) (10)

— S KL (a(Xi1| X0, Xo)llpo (X1 | X)) (11)
t>1

@ The terms in blue are known, and do not intervene in the optimisation;
o SO, what is KL (Q(Xt—1’X0>Xt)HP()(Xt—ﬂXt)) ?
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Diffusion Models

@ Recall that pg(X;—1|X;) was chosen to be Gaussian
o We just don’t know the mean and variance yet;

@ Thus, since pg(X;—1|X:) and ¢(X;—1|Xo, X;) are both Gaussian, we
have a closed form solution for KL (q(X;—1|Xo, Xt)||pe(Xi—1]Xt))

Neural net
1 B —— 9
KL (q(Xt-1]Xo, X¢)||po(Xi-1|X2)) = Eq | || 1( X, Xo) — po(Xe, 1)][2
t H—/
Known if
Xt,Xo known
(12)
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Diffusion Models

@ Recall that pg(X;—1|X;) was chosen to be Gaussian
o We just don’t know the mean and variance yet;

@ Thus, since pg(X;—1|X:) and ¢(X;—1|Xo, X;) are both Gaussian, we
have a closed form solution for KL (q(X;—1|Xo, Xt)||pe(Xi—1]Xt))

Neural net
1 ~ — 5
KL (q(Xe—1|Xo, Xe)|[po(Xe—1]X4)) = Eq | || (X2, Xo) — po(Xe, )2
t N——

Known if
Xt,Xo known

(12)
e During a training process, we select pairs (X, Xo) to train ug(Xy,t);

@ In practice, role of the network: estimate X, from Xj;
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Diffusion Models

o Final note: the authors of DDPM reformulate the loss such that the
network estimate the noise ¢;, rather than X
o Why do they do this 7 Because they report that this gives better results
(see Section 3.2) ...

@ Since X; = /oy Xy + /1 — aye; (Equation (6)), it is equivalent to
estimate X or ¢; from Xy;
o Knowing X gives us €; directly, and vice cersa
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Diffusion Models

@ Final note: the authors of DDPM reformulate the loss such that the
network estimate the noise ¢;, rather than X

o Why do they do this 7 Because they report that this gives better results
(see Section 3.2) ...

@ Since X; = /oy Xy + /1 — aye; (Equation (6)), it is equivalent to
estimate X or ¢; from Xy;
o Knowing X gives us €; directly, and vice cersa
e Final training loss (after much simplification):
2

L=E;x,c |lle = fo | VaXo+ VI — ae,t (13)

Xt 2

@ ¢ : noise to estimate with NN denoiser fy;
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Diffusion Models

@ Once the training is carried out, we can sample pg(X;_1|X;) using the
following formula:

Bt >
X1 = 7 (Xt \/17f9(Xt; )) + 8%, (14)

e where Z; ~ N(0,Id) is a Gaussian noise;
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Diffusion Models

Diffusion model summary

Algorithm 1 Diffusion model training
@ Repeat following until converged:
O Xy ~ q(Xp) (take example X from database);
Q@ t ~ Uniform(1,...,7T);
Q ¢~ N(0,Id);
© One optimiser step on Vy ||e — f5 (VaXo + T — aze) Hz

Algorithm 2 Diffusion model testing (synthesis)
o Xr ~ N(0,Id);

@ Fort=1T,...,1, do
Q Z ~N(0,Id), if t > 1, else Z = 0;

Q X; 1= ﬁ (Xt - \/{B_tiatfa(Xtyt)) + B2,
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Diffusion Models

Diffusion models summary

o ldea: if we can reverse a noise process, then we can synthesise random
images;

o Forward process X; 1 — X; is easy to sample: we just add Gaussian
noise a certain number of timesteps;

@ Reverse process X; — X;_1 is more difficult to sample;
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Diffusion Models

Diffusion models summary

o ldea: if we can reverse a noise process, then we can synthesise random
images;

o Forward process X; 1 — X; is easy to sample: we just add Gaussian
noise a certain number of timesteps;

@ Reverse process X; — X;_1 is more difficult to sample;

e We first note that, if we know (Xg, X}), then go(Xy—1]|Xo, X}) is
Gaussian;
e Thus, we need to estimate X first: job of a denoiser;

o We formulate the ELBO of log pp(Xo) such that
KL (q(X¢—1|Xo, X1)[|po(Xi-1]X3)) appears.
e Meaning : the Gaussian reverse process should be as close as possible to
q(Xi-1]Xo, Xy);

Alasdair Newson Diffusion Models and Flow Matching 44



Diffusion Models

@ A network fy is trained to predict X (or, equivalently, €;) from any
Xt

@ The synthesis starts with a noise image, and these two steps are
iterated:

@ Use fy to estimate Xy (or €;);

@ Use X; and the estimation of X to sample X;_1
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Diffusion Models

@ Architecture of fp (in DDPM) is often a U-Net, more precisely
“Pixel CNN++"*

e This is a common type of architecture for denoising;

layers

32x32 16x16 8x8 8x8 16x16 32x32 l:—‘ = Sequence of 6
O

[0 - ownward sieam

[] -Downward and
: H H :: : fightward stream
H Ve wweegp = Identity (skip)
N . B : connection
— = Convolutional
connection
e

t .
/e
el
et
Vit
el

~
P

* Pixelcnn++: Improving the pixelcnn with discretized logistic mixture likelihood and other modifications, T. Salimans et al,
arXiv:1701.05517, 2017
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Diffusion Models

Original DDPM results
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Diffusion Models

DDPM results
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Diffusion Models

Stable diffusion

Diffusion models have many different variants;

One of the most famous is “Stable Diffusion” *

@ Carries out diffusion in a pretrained latent space;

Conditional on a textual input (we do not explain this here)

* High-Resolution Image Synthesis with Latent Diffusion Models, R. Rombach et al, CVPR 2022
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Diffusion Models

Stable diffusion
@ Produces incredible results:
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Diffusion Models

@ Example of iterations of stable diffusion;
@ Text input: "Link fighting with Ganon"
@ Recall: "X; = aXg + bs;"

Noise ¢;
o SR

*Stable Diffusion is in a latent space, so this is not exactly correct here
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Diffusion Models

@ Example of iterations of stable diffusion;
@ Text input: "Link fighting with Ganon"
@ Recall: "X; = aXg + bs;"

Noise ¢;
et
ol Y

*Stable Diffusion is in a latent space, so this is not exactly correct here
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Diffusion Models

@ Example of iterations of stable diffusion;

@ Text input: "Link fighting with Ganon"
@ Recall: "X; = aXg + bs;"

*Stable Diffusion is in a latent space, so this is not exactly correct here
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Diffusion Models

@ Example of iterations of stable diffusion;
@ Text input: "Link fighting with Ganon"
@ Recall: "X; = aXg + bs;"

Noise &; Estimation* of X
AT T )

*Stable Diffusion is in a latent space, so this is not exactly correct here
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Diffusion Models

@ Example of iterations of stable diffusion;
@ Text input: "Link fighting with Ganon"
@ Recall: "X; = aXg + bs;"

Noise &; Estimation* of X

*Stable Diffusion is in a latent space, so this is not exactly correct here
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Diffusion Models

@ Example of iterations of stable diffusion;
@ Text input: "Link fighting with Ganon"
@ Recall: "X; = aXg + bs;"

N0|se €t Est|mat|on of Xo X

*Stable Diffusion is in a latent space, so this is not exactly correct here
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Diffusion Models

Advantages of diffusion models
@ More stable training wrt to GANs, which require a discriminator;

@ Due to the sampling at each time step ¢, one initial noise x7 can
produce many different outputs:

»e(x) oo (z)

[llustration from Song et al 2021*

@ VAEs and GANs produce (mostly) the same image for each initial noise
* Score-Based Generative Modeling Through Stochastic Differential Equations, Song et al, ICLR 2021
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Diffusion Models

Disadvantage of diffusion models
@ Networks fy tend to be huge !

o Why is this 7 Because fy has to denoise at a very wide range of noise
levels (even when there is only noise)

@ Theory can be quite complicated;

o Not always explained or implemented clearly (various practical
techniques)
e Theory and practice are often not aligned;
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Flow Matching

Alasdair Newson Diffusion Models and Flow Matching 59



Flow matching

@ Although frameworks differ, flow matching and diffusion are almost
identical in practice;

@ As for Diffusion Models, f is an iteration of a neural network;

e Formulated in terms of trajectories between g and puq, instead of a
Markov chain (Diffusion Models);

o However, leads to almost identical setting: noising/denoising images;
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Flow matching

@ Although frameworks differ, flow matching and diffusion are almost
identical in practice;
@ As for Diffusion Models, f is an iteration of a neural network;

e Formulated in terms of trajectories between g and puq, instead of a
Markov chain (Diffusion Models);

o However, leads to almost identical setting: noising/denoising images;

@ Core idea of flow matching: use simple trajectories between pg and 1
to learn f;

@ In particular, we teach the network using straight paths between
samples Xg ~ pg and X ~ pq;
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Introduction

@ Recall of initial idea;

Ho K1

@ Before looking into Flow Matching in more detail, we need to recall a
notion from probability theory;
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Flow matching

Pushforward measure

@ Let X be a random variable, following distribution y;
@ The pushforward measure f#u is the distribution of f(X);

Zo
T

@ More formally, f#u is defined as the measure such that, for all sets B,

f#u(B) == u(f~H(B)) (15)
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Flow matching

@ Back to flow matching. Let (X, X1) ~ 7 be two random variables;
@ 7 is the joint distribution of (Xg, X1), such that the marginals are pg
and p; respectively;
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Flow matching

@ Back to flow matching. Let (Xo, X1) ~ 7 be two random variables;
@ 7 is the joint distribution of (Xg, X1), such that the marginals are pg
and p; respectively;

Interpolation X,

@ We define the interpolation between X and Xi:
X, = (1-)Xo+tX3 (16)
@ Define the interpolation function g;(z,y) := (1 — t)x + ty, we have:
X = gi(Xo, X1) (17)

@ Let p; be the distribution of X;. We can write this:

Pt = GiHT (18))

@ p; is sometimes referred to as a probability path;
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Flow matching

@ lllustration of the interpolation between two probability distributions;
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Flow matching

o This interpolation is useful because at ¢ = 0 and t = 1 we have:

90(Xo, X1) :=(1—-0)Xo +0X; = X (19)
91(Xo, X1) :=(1—-1)Xo+1X; = X;. (20)

@ Therefore, pg = po, p1 = p1;

@ Thus, p; verifies the correct distributions at the beginning and end
(unsurprisingly);
o If we can draw a sample Xy, we can draw a sample X7 ~ pq;
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Flow matching

o This interpolation is useful because at ¢ = 0 and t = 1 we have:

90(Xo, X1) :=(1—-0)Xo +0X; = X (19)
91(Xo, X1) :=(1—-1)Xo+1X; = X;. (20)

@ Therefore, pg = po, p1 = p1;
@ Thus, p; verifies the correct distributions at the beginning and end
(unsurprisingly);
o If we can draw a sample Xy, we can draw a sample X7 ~ pq;
@ Unfortunately, we have to be able to sample from both pg and p to
produce Xy, so unusable as such;

@ We have to find an indirect way to determine X; and p;: we will use a
flow
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Flow matching

o Flow matching consists in defining a flow which represents py;

e A flow is a function from R? to R% which is determined by a velocity
field;

e Originally, flows represent fluids in fluid dynamics;

o Let ¢; : R — R? be a function such that:

d¢>ctl§x) = vg(x) Velocity field (21)
¢o(z) == Starting point: identity at 0

@ v; is a smooth function which defines the motion of the flow;
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Flow matching

@ Once v is established, ¢; is determined uniquely as the solution of
the flow equation (21)

@ Thus, for a given ¢t € (0,1) we have:

or(r) =x+ /Ot vr(xr)dT (22)
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Flow matching

@ Core idea of flow matching: if we choose v; correctly, we can use the
flow ¢, to “transport” samples from Xy to X7;

@ This avoids having to determine X, p; directly, we only need po and

bt

X~

Xo ~ po L
ol

. \../\/\. 400 o
o... o.:.'. ¢‘. .ﬁ......gi..
.'.:i". “.-.o"o.-
wat e SREER
. o o, . . ® e .0 o

o oT o hd ®oele®

@ Actually, this is similar to a GAN: a function f to transport pg to u1;
@ Main difference: ¢; given by an integration over time of a function wvy;
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Flow matching

e Flow matching proposes to define v;(z) as the conditional
expectation of the velocity knowing X;

Flow matching velocity field

o Let (Xo,X1) ~ 7 such that the marginals are pg, p1;

@ The flow matching velocity field is defined as:

ve(z) = E[X; — Xo|X; = 2] (23)

@ Indeed, %gtt (Xo,Xl) =5 ((1 — t)XO + tXl) = X7 — Xy,
e Fix a time ¢t and a position z, and calculate the average velocity of
all straight paths passing through x;
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Flow matching

lllustration of velocity vi(z) = E[X; — Xo|X; = z], with = 0.4, with t = 0.5

Path transparency o pio(zo) X pi1(21)

—— Initial distr. o
—— Target distr. 11

Alasdair Newson
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Flow matching

@ So, we now have a way to establish a flow ¢;

o Let p; be the probability path defined with po and ¢;:

Pt = Pt 1o (24)

@ p is the distribution of ¢y(Xy), with Xo ~ puo;
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Flow matching

@ So, we now have a way to establish a flow ¢;
Let p; be the probability path defined with g and ¢;:

Pt = Pt 1o (24)

Pt is the distribution of ¢y(Xy), with Xo ~ puo;

Main question: is v; correctly designed to ensure that, for all
te€0,1]

Pt = pt, almost everywhere 7 (25)

Why ? Because p; has the good properties (p; = p1), but not
necessarily py

We need to have p; = 11, otherwise the flow is useless;

For this, we turn to the continuity equation;
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Flow matching

Continuity equation

@ Let p; be the density of a flow (ie the probability path), and v; the
velocity field of this flow. Then we have:

0 ‘
% + div(pvy) =0 (26)

@ We say that the couple (p;, v;) solves the continuity equation;

@ The continuity equation will allow us to prove that p; = pq, a.e.;
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Flow matching

@ We also know that the solution to the continuity equation is unique,
given a fixed initial condition;

Characterisation and uniqueness of solutions to the continuity equation

o Let v; : R* —» R? be a velocity field and ¢, the corresponding flow,
and consider some initial distribution p;

@ Then the distribution ¢;# o and v, solve the continuity equation;

e Furthermore, with initial condition pg, the solution (p;) to the
continuity equation is unique;

Alasdair Newson Diffusion Models and Flow Matching 77



Flow matching

Proposition: (p;, v;) solve the continuity equation

@ Recall that p; = gi#m;
@ It can be shown that (p;, v;) solve the continuity equation;

@ This means that v; indeed leads to a flow ¢; such that:

Ot 1o = P by definition (27)
= pt a.e. (28)

@ We know that p; = p; a.e. because solution to the continuity equation
is unique;

@ In summary: we can sample from g; by using ¢:(Xj), and it happens
that g, = p;
@ Thus, ¢1(Xo) ~ w1, achieving our original goal !!
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Flow matching

Flow matching summary - the story so far
@ Calculate v(z) = E[X; — Xo|X; = 2);

Q Sample Xy ~ po;

Q X1 = éi(Xo) = Xo+ fol vy (Xo)dy
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Flow matching

Flow matching summary - the story so far

@ Calculate v(z) = E[X; — Xo|X; = 2);

Q Sample Xy ~ po;

Q X1 = éi(Xo) = Xo+ fol vy (Xo)dy

Remaining questions

@ How to calculate vy(z) = E[X; — Xo| Xy = 2] ?

o Not trivial, since we do not know p1;

@ How to calculate fol ve(Xo)dy ?
e Numerical approximation of integral;

Alasdair Newson
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Flow matching

Calculating v (z) = E [X; — Xo| X, = 7]
@ Unsurprisingly, we use a neural network to approximate
E[X1 — Xo|X; = z];

fori=1to N do
Draw ¢ € U([0, 1])
Draw XO ~ Lo
Draw X7 from the database
Xi=(1-t)Xo+tX,y
Minimiseg ||(X1 — X()) — f@(Xt,t)H%
end for
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Flow matching

Training fy

lllustration of velocity v;(z) = E[X; — Xo|X; = 2], with z = 0.7, with t = 0.5
Path transparency o po(xp) x g (1)

— Initial distr. g
— Target distr. p1

t=0 =051
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Flow matching

Training fy

lllustration of velocity v;(z) = E[X; — Xo|X; = 2], with z = 0.3, with ¢t = 0.3
Path transparency o (o) x g (1)

— Initial distr. g
— Target distr. p1

To

t=0 =034
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Flow matching

Training fy

lllustration of velocity v;(z) = E[X; — Xo|X; = 2], with z = 0.5, with t = 0.5
Path transparency o (o) x g (1)

— Initial distr. g
— Target distr. p1

t=0 =051 =1
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Flow matching

Training fy

lllustration of velocity v;(z) = E[X; — Xo|X; = 2], with z = 0.6, with ¢t = 0.3
Path transparency o po(xp) x g (1)

— Initial distr. g
— Target distr. p1

t=0 =031
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Flow matching

Training fy

lllustration of velocity v;(z) = E[X; — Xo|X; = 2], with z = 0.7, with t = 0.4
Path transparency o po(xp) x g (1)

— Initial distr. g
— Target distr. p1

To

t=0 t=0.45

Alasdair Newson Diffusion Models and Flow Matching 86



Flow matching

Numerical integration
@ Determining ¢1(Xop) = fol v(Xo)d; requires a numerical integration;

@ Simplest option, Euler scheme
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Flow matching

Numerical integration
@ Determining ¢1(Xop) = fol v(Xo)d; requires a numerical integration;

@ Simplest option, Euler scheme

Euler scheme for numerical integraion

@ Let N > 0 be the number of numerical integration steps;

@ Let ty,...,ty be a sequence of discrete time steps:
o In general, t; = + (but this could be modified)

Xo ~ N(0,Id)

X =Xy

fori=1to N —1do

X =X+ (tiv1 — ta) fo(X, ti)
end for
Return ¢1(Xp) + X
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Flow matching

Translation between Diffusion Models and Flow Matching terms

Meaning Diffusion Models Flow Matching (FM)
(DM)

Data sample Xo X1

Latent / noise sample Xr Xo

Intermediate state X = oy Xg + o Xy = X1 + B Xo

Noise variable et ~N(0,1) Xo

Time variable t € 10,7 (diffusion) t € [0,1] (interpolation)

Predicted quantity eo(X,1) v (X, 1)
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Conclusion

Conclusion

@ Diffusion Models and Flow Matching are extremely similar;

o Major differences:
o No noise between X; and X;_; in diffusion: deterministic from Xj;
o Diffusion can never reach complete noise, requires infinite T’;

e Flow Matching formulation simpler to explain, although mathematics
behind it may be more sophisticated,;
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Diffusion Models

Some legitimate questions !
@ Why can’t we just train a network to predict/sample x;_; directly

from z; 7
e Why do we have to sample it indirectly via xg ?
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Diffusion Models

Some legitimate questions !

@ Why can’t we just train a network to predict/sample x;_; directly
from x; 7
e Why do we have to sample it indirectly via xg ?
o Answer: it is difficult for the network to predict the same image
with slightly less noise (z; — x4—1);
o If you could do this, diffusion models would be much simpler (less
maths);
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Diffusion Models

Some legitimate questions !

@ Why can’t we just train a network to predict/sample x;_; directly
from x; 7
e Why do we have to sample it indirectly via xg ?
o Answer: it is difficult for the network to predict the same image
with slightly less noise (z; — x4—1);
o If you could do this, diffusion models would be much simpler (less
maths);

o Why is it better to carry out an iterative diffusion process, rather
than just one step (as in VAEs/GANs) ?
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Diffusion Models

Some legitimate questions !

@ Why can’t we just train a network to predict/sample x;_; directly
from x; 7
e Why do we have to sample it indirectly via xg ?
o Answer: it is difficult for the network to predict the same image
with slightly less noise (z; — x4—1);
o If you could do this, diffusion models would be much simpler (less
maths);

o Why is it better to carry out an iterative diffusion process, rather

than just one step (as in VAEs/GANs) ?
e This is currently a subject of research;
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