
RDFIA: deep learning for Vision
https://cord.isir.upmc.fr/teaching-rdfia/

Matthieu Cord
Sorbonne University

Course Outline
1. Intro to Computer Vision and Machine Learning
2. Intro to Neural Networks + Machine Learning theory
3. Neural Nets for Image Classification
4. Large ConvNets
5. Vision Transformers
6. Segmentation, Transfer learning and domain adaptation
7. Vision-Language models
8. Explaining VLMS
9. Self Supervised Learning in Vision
10. Generative models with GANs
11. Control Jan 07, 2026
12. Diffusion models
13. Bayesian deep learning
14 Uncertainty, Robustness

Evaluations: Control (30%) + Practicals (3 reports, total=70%)
can be modified by 10% between the 2 evaluations

https://cord.isir.upmc.fr/teaching-rdfia/

Outline

Introduction to Neural nets

Training Deep Neural Networks

Introduction to Statistical Decision Theory

The Formal Neuron: 1943 [?]

� Basis of Neural Networks
� Input: vector x ∈ Rm, i.e. x = {xi}i∈{1,2,...,m}� Neuron output ŷ ∈ R: scalar

The Formal Neuron: 1943 [?]

� Mapping from x to ŷ :
1. Linear (affine) mapping: s = w

�
x + b

2. Non-linear activation function: f : ŷ = f (s)

The Formal Neuron: Linear Mapping

� Linear (affine) mapping: s = w�x + b = m∑
i=1wixi + b

� w: normal vector to an hyperplane in Rm ⇒ linear boundary� b bias, shift the hyperplane position

2D hyperplane: line 3D hyperplane: plane

The Formal Neuron: Activation Function

� ŷ = f (w�x + b),� f: activation function
� Bio-inspired choice: Step (Heaviside) function: H(z) = �1 if z ≥ 0

0 otherwise

� Popular f choices: sigmoid, tanh, ReLU, GELU, ...� Sigmoid: �(z) = (1 + e−az)−1

� a ↑: more similar to step function (step: a →∞)� Sigmoid: linear and saturating regimes

Step function: Connection to Biological Neurons

� Formal neuron, step activation H: ŷ = H(w�x + b)� ŷ = 1 (activated) ⇔ w
�
x ≥ −b� ŷ = 0 (unactivated) ⇔ w
�
x < −b

� Biological Neurons: output activated⇔ input weighted by synaptic weight ≥ threshold

The Formal neuron: Application to Binary Classification

� Binary Classification: label input x as belonging to class 1 or 0
� Neuron output with sigmoid:

ŷ = 1
1 + e−a(w�x+b)� Sigmoid: probabilistic interpretation ⇒ ŷ ∼ P(1�x)� Input x classified as 1 if P(1�x) > 0.5 ⇔ w

�
x + b > 0� Input x classified as 0 if P(1�x) < 0.5 ⇔ w
�
x + b < 0⇒ sign(w

�
x + b): linear boundary decision in input space !

The Formal neuron: Toy Example for Binary Classification

� 2d example: m = 2, x = {x1, x2} ∈ [−5;5] × [−5;5]� Linear mapping: w = [1;1] and b = −2
� Result of linear mapping : s = w�x + b

The Formal neuron: Toy Example for Binary Classification

� 2d example: m = 2, x = {x1, x2} ∈ [−5;5] × [−5;5]� Linear mapping: w = [1;1] and b = −2
� Result of linear mapping : s = w�x + b
� Sigmoid activation function: ŷ = �1 + e−a(w�x+b)�−1,

a = 10

The Formal neuron: Toy Example for Binary Classification

� 2d example: m = 2, x = {x1, x2} ∈ [−5;5] × [−5;5]� Linear mapping: w = [1;1] and b = −2
� Result of linear mapping : s = w�x + b
� Sigmoid activation function: ŷ = �1 + e−a(w�x+b)�−1,

a = 1

The Formal neuron: Toy Example for Binary Classification

� 2d example: m = 2, x = {x1, x2} ∈ [−5;5] × [−5;5]� Linear mapping: w = [1;1] and b = −2
� Result of linear mapping : s = w�x + b
� Sigmoid activation function: ŷ = �1 + e−a(w�x+b)�−1,

a = 0.1

From Formal Neuron to Neural Networks

� Formal Neuron:
1. A single scalar output

2. Linear decision boundary for binary

classification� Single scalar output: limited for several tasks� Ex: multi-class classification, e.g. MNIST or

CIFAR

Perceptron and Multi-Class Classification

� Formal Neuron: limited to binary
classification

� Multi-Class Classification: use several
output neurons instead of a single one!⇒ Perceptron

� Input x in Rm

� Output neuron ŷ1 is a formal neuron:� Linear (affine) mapping: s1 = w1
�
x + b1� Non-linear activation function: f :

ŷ1 = f (s1)� Linear mapping parameters:� w1 = {w11, ...,wm1} ∈ Rm� b1 ∈ R

Perceptron and Multi-Class Classification

� Input x in Rm

� Output neuron ŷk is a formal neuron:� Linear (affine) mapping: sk = wk
�
x + bk� Non-linear activation function: f :

ŷk = f (sk)� Linear mapping parameters:� wk = {w1k , ...,wmk} ∈ Rm� bk ∈ R

Perceptron and Multi-Class Classification

� Input x in Rm (1 ×m), output ŷ : concatenation of K formal neurons� Linear (affine) mapping ∼ matrix multiplication: s = xW + b� W matrix of size m ×K - columns are wk� b: bias vector - size 1 ×K
� Element-wise non-linear activation: ŷ = f (s)

Perceptron and Multi-Class Classification

� Soft-max Activation:

ŷk = f (sk) = e
sk

K∑
k′=1 e

s
k′

� Note that f (sk) depends on the other sk′ ,
the arrow is a functional link� Probabilistic interpretation for multi-class
classification:� Each output neuron ⇔ class� ŷk ∼ P(k �x,W)

⇒ Logistic Regression (LR) Model!

2d Toy Example for Multi-Class Classification

� x = {x1, x2} ∈ [−5;5] × [−5;5], ŷ : 3 outputs (classes)

Linear mapping for
each class:
sk = wk

�x + bk

w1 = [1;1], b1 = −2 w2 = [0;−1], b2 = 1 w3 = [1;−0.5], b3 = 10

Soft-max output:
P(k �x,W)

2d Toy Example for Multi-Class Classification

� x = {x1, x2} ∈ [−5;5] × [−5;5], ŷ : 3 outputs (classes)

Soft-max output:
P(k �x,W)

w1 = [1;1], b1 = −2 w2 = [0;−1], b2 = 1 w3 = [1;−0.5], b3 = 10

Class Prediction:
k
∗ = argmax

k

P(k �x,W)

Beyond Linear Classification

X-OR Problem

� Logistic Regression (LR): NN with 1 input layer & 1 output layer
� LR: limited to linear decision boundaries� X-OR: NOT 1 and 2 OR NOT 2 AND 1� X-OR: Non linear decision function

Beyond Linear Classification

� LR: limited to linear boundaries
� Solution: add a layer!

� Input x in Rm, e.g. m = 4
� Output ŷ in RK (K # classes),

e.g. K = 2
� Hidden layer h in RL

Multi-Layer Perceptron

� Hidden layer h: x projection to a new
space RL

� Neural Net with ≥ 1 hidden layer:
Multi-Layer Perceptron (MLP)

� h: intermediate representations of x
for classification ŷ:

� h = f (xW1 + b1)
f non-linear activation,
s = hW2 + b2
ŷ = SoftMax(s)

� Mapping from x to ŷ: non-linear
boundary!⇒ non-linear activation f crucial!

Deep Neural Networks

� Adding more hidden layers: Deep Neural Networks (DNN) ⇒ Basis of Deep
Learning

� Each layer hl projects layer hl−1 into a new space
� Gradually learning intermediate representations useful for the task

Conclusion

� Deep Neural Networks: applicable to classification problems with non-linear
decision boundaries

� Visualize prediction from fixed model parameters
� Reverse problem: Supervised Learning

Outline

Introduction to Neural nets

Training Deep Neural Networks

Introduction to Statistical Decision Theory

Training Multi-Layer Perceptron (MLP)

� Input x, output y
� A parametrized (w) model x⇒ y: fw(xi) = ŷi� Supervised context:� Training set A = �(xi , y∗i)�i∈{1,2,...,N}� Loss function `(ŷi , y∗i) for each annotated pair (xi , y∗i)� Goal: Minimizing average loss L over training set: L(w) = 1

N
∑N

i=1 `(ŷi , y∗i)� Assumptions: parameters w ∈ Rd continuous, L differentiable
� Gradient ∇w = @L

@w : steepest direction to decrease loss L(w)

MLP Training

� Gradient descent algorithm:� Initialyze parameters w

� Update: w
(t+1) = w

(t) − ⌘ @L
@w� Until convergence, e.g. ��∇w ��2 ≈ 0

Supervised Learning: Multi-Class Classification

� Logistic Regression for multi-class classification
� si = xiW + b
� Soft-Max (SM): ŷk ∼ P(k�xi,W,b) = e

s
k

K∑
k′=1 e

s
k′

� Supervised loss function: L(W,b) = 1
N

N∑
i=1 `(ŷi , y∗i)

� Input xi , ground truth
output supervision y∗i� One hot-encoding for y∗i :

y
∗
c,i =
�������
1 if c is the ground truth class for xi
0 otherwise

Logistic Regression Training Formulation

� Loss function: multi-class Cross-Entropy (CE) `CE� `CE : Kullback-Leiber divergence between y∗i and ŷi

`CE (̂yi, y∗i) = KL(y∗i , ŷi) = − K�
c=1

y
∗
c,i log(ŷc,i) = −log(ŷc∗,i)

� " KL asymmetric: KL(̂yi, y∗i) ≠ KL(y∗i , ŷi) "

Logistic Regression Training

� LCE(W,b) = 1
N

N∑
i=1 `CE(ŷi , y∗i) = − 1

N

N∑
i=1 log(ŷc∗,i)� `CE smooth convex upper bound of `0�1⇒ gradient descent optimization

� Gradient descent: W(t+1) =W(t) − ⌘ @LCE

@W (b(t+1) = b(t) − ⌘ @LCE

@b)

� MAIN CHALLENGE: computing @LCE

@W = 1
N

N∑
i=1

@`CE
@W ?

⇒ Key Property: chain rule
@x

@z
= @x

@y

@y

@z⇒ Backpropagation of gradient error!

Chain Rule

@`
@x
= @`

@ŷ

@ŷ

@x

� Logistic regression: @`CE
@W
= @`CE

@ŷi

@ŷi
@si

@si
@W

Logistic Regression Training: Backpropagation

@`CE
@W = @`CE

@ŷi
@ŷi
@si

@si
@W , `CE(ŷi , y∗i) = −log(ŷc∗,i) ⇒ Update for 1 example:

� @`CE
@ŷi
= −1

ŷ
c∗,i = −1ŷi ⊙ �c,c∗

� @`CE
@si
= ŷi − y∗i = �y

i

� @`CE
@W = xi

T �y
i

Logistic Regression Training: Backpropagation

� Whole dataset: data matrix X (N ×m), label matrix Ŷ, Y∗ (N ×K)

� LCE(W,b) = − 1
N

N∑
i=1 log(ŷc∗,i), @LCE

@W = @LCE

@Ŷ
@Ŷ
@S

@S
@W

� @LCE

@s = Ŷ −Y∗ =�y

� @LCE

@W = XT�y

Perceptron Training: Backpropagation

� Perceptron vs Logistic Regression: adding hidden layer (sigmoid)
� Goal: Train parameters Wy and Wh (+bias) with Backpropagation

⇒ computing @LCE

@Wy = 1
N

N∑
i=1

@`CE
@Wy and @LCE

@Wh
= 1

N

N∑
i=1

@`CE
@Wh

� Last hidden layer ∼ Logistic Regression
� First hidden layer: @`CE

@Wh
= xi

T @`CE
@ui
⇒ computing @`CE

@ui
= �h

i

Perceptron Training: Backpropagation

� Computing @`CE
@ui
= �h

i ⇒ use chain rule: @`CE
@ui
= @`CE

@vi
@vi
@hi

@hi
@ui� ... Leading to: @`CE

@ui
= �h

i = �y
i
TWy ⊙ �

′(hi) = �y
i
TWy ⊙ (hi ⊙ (1 − hi))

Deep Neural Network Training: Backpropagation

� Multi-Layer Perceptron (MLP): adding more hidden layers
� Backpropagation update ∼ Perceptron: assuming @L

@Ul+1 =�l+1 known

� @L
@Wl+1 = Hl

T�l+1

� Computing
@L
@Ul
=�l

(=�l+1T
W

l+1 ⊙Hl ⊙ (1 −Hl) sigmoid)

� @L
@Wl

= Hl−1T�hl

Outline

Introduction to Neural nets

Training Deep Neural Networks

Introduction to Statistical Decision Theory

Statistical Decision Theory

Let X ∈ Rp be a real-valued random input vector,
Y ∈ R be a real-valued random output variable,
f be a function from Rp to R (e.g. fw with parameters w or a deep neural
network). Here, Ŷ is the prediction for Y :

X
f ()��→ Ŷ = f (X)

How to find the best function f ?
1. Measure the difference between f (X) and Y .

Define an error/loss function L(Y , f (X)), which penalizes errors in
prediction. The loss function L is a non-negative, real-valued function.
Examples of common loss functions:� Squared Error Loss:

L(Y , f (X)) = (Y − f (X))2� 0-1 Loss Function:

L(Y , f (X)) = �1 if Y ≠ f (X),
0 if Y = f (X)

� Cross-Entropy Loss (L = LCE) for classification:� Assume here that Y is a one-hot vector.� Let c
∗ be the index of the correct class.

L(Y , f (X)) = − log(Ŷc∗)

Statistical Decision Theory (cont’d)

How to find the best function f ? (continued)
2. As we consider random variables and probability spaces, assume a joint

distribution P(X ,Y) exists
The criterion to minimize in choosing f is the Expected Prediction Error,
also known as the Risk:

R(f) = EPE(f) = EP(X ,Y)[L(Y , f (X))]
The risk can be expressed as an integral:

R(f) =x L(Y , f (X))dP(X ,Y)
Example: For L = (Y − f (X))2: R(f) = s (y − f (x))2p(x , y)dx dy

(Final) Goal: Find a hypothesis f
∗ among a fixed class of functions F for

which the risk is minimal:
f
∗ = Argmin

f ∈F R(f) (1)

In-depth Problem and Machine Learning solution

Cannot solve (1)?!

Problem: P(X ,Y) unknown ⇒ R(f) cannot be computed.

Solution:
� Fix F to a parameterized family fw where w ∈ Rd

� Learn from examples! to approximate R(fw)
Supervised Learning:
� AN = {xi , yi}i=1..N Training set implicit use of P(X ,Y) by iid sampling
� xi �→ fw(xi) = ŷi ←→ yi

Empirical Risk Minimization

We can approximate R(f) by averaging the loss function on AN :

R(f) =x L(Y , f (X))dP(X ,Y) ⇒ ERM(fw) = 1
N

N�
i=1
L (yi , fw(xi))

ERM: Empirical Risk Minimization

Requirement: {xi , yi} ∼ P(x , y) and N large ⇒ "good" approximation

New Objective: w
∗ = Argmin

w∈Rd

ERM(fw ;AN) = Argmin
w∈Rd

1
N
∑N

i=1L (yi , fw(xi))

Supervised learning algorithm to solve this optimization problem.

Optimization Depending on L(w)

� Depending on L(w), optimization is not always easy.
� In this course, L(w) is (supposed) differentiable for w ∈ Rd .
� Definition: Gradient ∇L = � @L

@w
� ∈ Rd .

Gradient Descent Algorithm

Gradient Descent Algorithm:
� Initialize: w

(0)
� Repeat: w

(t+1) = w (t) − ⌘∇L(w (t))
� Until: Convergence �∇L(w (t+1))�2 ≈ 0

Remark about convergence:

0 ≤ L(w (t+1))
= L �w (t) − ⌘∇L(w (t))�
≈ L �w (t)� − ⌘∇L(w (t))T ⋅ ∇L(w (t))(first order approximation)

= L �w (t)� − ⌘�∇L(w (t))�2
≤ L �w (t)�

⇒ local Convergence

Gradient Descent

Update rule: w(t+1) = w(t) − ⌘ @L
@w ⌘ learning rate

� Convergence ensured ? ⇒ provided a "well chosen" learning rate ⌘

Gradient Descent

Update rule: w(t+1) = w(t) − ⌘ @L
@w

� Global minimum ?⇒ convex a) vs non convex b) loss L(w)

a) Convex function a) Non convex function

Neural Network Training: Optimization Issues

� Classification loss over training set (vectorized w, b
ignored):

LCE(w) = 1
N

N�
i=1

`CE(ŷi , y∗i) = − 1
N

N�
i=1

log(ŷc∗,i)
� Gradient descent optimization:

w(t+1) = w(t) − ⌘ @LCE

@w
�w(t)� = w(t) − ⌘∇(t)w

� Gradient ∇(t)w = 1
N

N∑
i=1

@`CE (ŷi ,y∗i)
@w �w(t)� linearly scales

wrt:� w dimension� Training set size

⇒ Too slow even for moderate
dimensionality & dataset size!

Stochastic Gradient Descent

� Solution: approximate ∇(t)w = 1
N

N∑
i=1

@`CE (ŷi ,y∗i)
@w �w(t)� with subset of examples

⇒ Stochastic Gradient Descent (SGD)� Use a single example (online):

∇(t)w ≈ @`CE(ŷi , y∗i)
@w

�w(t)�
� Mini-batch: use B < N examples:

∇(t)w ≈ 1
B

B�
i=1

@`CE(ŷi , y∗i)
@w

�w(t)�

Full gradient SGD (online) SGD (mini-batch)

Stochastic Gradient Descent

� SGD: approximation of the true Gradient ∇w !� Noisy gradient can lead to bad direction, increase loss� BUT: much more parameter updates: online ×N, mini-batch ×N

B� Faster convergence, at the core of Deep Learning for large scale datasets

Full gradient SGD (online) SGD (mini-batch)

Optimization: Learning Rate Decay

� Gradient descent optimization: w(t+1) = w(t) − ⌘∇(t)w� ⌘ setup ? ⇒ open question� Learning Rate Decay: decrease ⌘ during training progress� Inverse (time-based) decay: ⌘t = ⌘0
1+r ⋅t , r decay rate� Exponential decay: ⌘t = ⌘0 ⋅ e−�t� Step Decay ⌘t = ⌘0 ⋅ r t

tu ...

Exponential Decay (⌘0 = 0.1, � = 0.1s) Step Decay (⌘0 = 0.1, r = 0.5, tu = 10)

Generalization and Overfitting

� Learning: minimizing classification loss LCE over training set� Training set: sample representing data vs labels distributions� Ultimate goal: train a prediction function with low prediction error on the true

(unknown) data distribution

Ltrain = 4, Ltrain = 9 Ltest = 15, Ltest = 13

⇒ Optimization ≠ Machine Learning!⇒ Generalization / Overfitting!

Regularization

� Regularization: improving generalization, i.e. test (≠ train) performances
� Structural regularization: add Prior R(w) in training objective:

L(w) = LCE(w) + ↵R(w)
� L

2 regularization: weight decay, R(w) = ��w��2� Commonly used in neural networks� Theoretical justifications, generalization bounds (SVM)

� Other possible R(w): L
1 regularization, dropout, etc

L2 regularization: interpretation

� "Smooth" interpretation of L2 regularization, Cauchy-Schwarz:
(�w, (x − x′)�)2 ≤ ��w��2��x − x′��2

� Controlling L
2 norm ��w��2: "small" variation between inputs x and x′⇒ small variation in neuron prediction �w, x� and �w, x′�

⇒ Supports simple, i.e. smoothly varying prediction models

Regularization and hyper-parameters

� Neural networks: hyper-parameters to tune:� Training parameters: learning rate, weight decay, learning rate decay, #

epochs, etc� Architectural parameters: number of layers, number neurones,

non-linearity type, etc
� Hyper-parameters tuning: ⇒ improve generalization: estimate

performances on a validation set

	Introduction to Neural nets
	

	Training Deep Neural Networks
	

	Introduction to Statistical Decision Theory
	

