

RDFIA: deep learning for Vision

https://cord.isir.upmc.fr/teaching-rdfia/

Matthieu Cord Sorbonne University

Course Outline

https://cord.isir.upmc.fr/teaching-rdfia/

- 1. Intro to Computer Vision and Machine Learning
- 2. Intro to Neural Networks + Machine Learning theory
- 3. Neural Nets for Image Classification
- 4. Large ConvNets
- 5. Vision Transformers
- 6. Segmentation, Transfer learning and domain adaptation
- 7. Vision-Language models
- 8. Explaining VLMS
- 9. Self Supervised Learning in Vision
- 10. Generative models with GANs
- 11. Control Jan 07, 2026
- 12. Diffusion models
- 13. Bayesian deep learning
- 14 Uncertainty, Robustness

Evaluations: Control (30%) + Practicals (3 reports, total=70%) can be modified by 10% between the 2 evaluations

Outline

Introduction to Neural nets

Training Deep Neural Networks

Introduction to Statistical Decision Theory

The Formal Neuron: 1943 [?]

- Basis of Neural Networks
- ▶ Input: vector $x \in \mathbb{R}^m$, *i.e.* $x = \{x_i\}_{i \in \{1,2,...,m\}}$
- ▶ Neuron output $\hat{y} \in \mathbb{R}$: scalar

The Formal Neuron: 1943 [?]

- Mapping from x to \hat{y} :

 - 1. Linear (affine) mapping: $s = w^Tx + b$ 2. Non-linear activation function: $f: \hat{y} = f(s)$

The Formal Neuron: Linear Mapping

- Linear (affine) mapping: $s = w^T x + b = \sum_{i=1}^m w_i x_i + b$
 - w: normal vector to an hyperplane in $\mathbb{R}^m \Rightarrow$ linear boundary
 - b bias, shift the hyperplane position

2D hyperplane: line

3D hyperplane: plane

The Formal Neuron: Activation Function

$$\hat{y} = f(\mathbf{w}^{\mathsf{T}} \mathbf{x} + b),$$

- f: activation function
 - ▶ Bio-inspired choice: Step (Heaviside) function: $H(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{otherwise} \end{cases}$

- Popular f choices: sigmoid, tanh, ReLU, GELU, ...
- Sigmoid: $\sigma(z) = (1 + e^{-az})^{-1}$

- ▶ $a \uparrow$: more similar to step function (step: $a \to \infty$)
- Sigmoid: linear and saturating regimes

Step function: Connection to Biological Neurons

- Formal neuron, step activation $H: \hat{y} = H(\mathbf{w}^T \mathbf{x} + b)$
 - $\hat{y} = 1 \text{ (activated)} \Leftrightarrow \mathbf{w}^{\mathsf{T}} \mathbf{x} \geq -b$
 - $\hat{y} = 0$ (unactivated) $\Leftrightarrow \mathbf{w}^{\mathsf{T}} \mathbf{x} < -b$
- ▶ Biological Neurons: output activated
 - ⇔ input weighted by synaptic weight ≥ threshold

The Formal neuron: Application to Binary Classification

- Binary Classification: label input x as belonging to class 1 or 0
- Neuron output with sigmoid:

$$\hat{y} = \frac{1}{1 + e^{-a(\mathbf{w}^{\mathsf{T}} \mathbf{x} + b)}}$$

- Sigmoid: probabilistic interpretation $\Rightarrow \hat{y} \sim P(1|x)$
 - Input x classified as 1 if $P(1|x) > 0.5 \Leftrightarrow w^Tx + b > 0$
 - Input x classified as 0 if P(1|x) < 0.5 ⇔ w^Tx + b < 0 ⇒ sign(w^Tx + b): linear boundary decision in input space!
 - bias b only changes the position of the riff

- ▶ 2d example: m = 2, $x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5]$
- ▶ Linear mapping: w = [1; 1] and b = -2
- Result of linear mapping : $s = w^T x + b$

- 2d example: m = 2, $x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5]$
- Linear mapping: w = [1; 1] and b = -2
- Result of linear mapping : $s = w^T x + b$
- Sigmoid activation function: $\hat{y} = \left(1 + e^{-a(\mathbf{w}^{\mathsf{T}} \mathbf{x} + b)}\right)^{-1}$, a = 10

- 2d example: m = 2, $x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5]$
- ▶ Linear mapping: w = [1; 1] and b = -2
- Result of linear mapping : $s = w^T x + b$
- Sigmoid activation function: $\hat{y} = \left(1 + e^{-a(\mathbf{w}^T \mathbf{x} + b)}\right)^{-1}$, a = 1

- ▶ 2d example: m = 2, $x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5]$
- Linear mapping: w = [1; 1] and b = -2
- Result of linear mapping : $s = w^T x + b$
- Sigmoid activation function: $\hat{y} = (1 + e^{-a(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)})^{-1}$, a = 0.1

From Formal Neuron to Neural Networks

- ► Formal Neuron:
 - 1. A single scalar output
 - 2. Linear decision boundary for binary classification
- Single scalar output: limited for several tasks
 - Ex: multi-class classification, e.g. MNIST or CIFAR

- Formal Neuron: limited to binary classification
- <u>Multi-Class Classification:</u> use several output neurons instead of a single one! ⇒ Perceptron
- ▶ Input x in \mathbb{R}^m
- Output neuron $\hat{y_1}$ is a formal neuron:
 - Linear (affine) mapping: $s_1 = w_1^T x + b_1$
 - Non-linear activation function: f: $\hat{y_1} = f(s_1)$
- Linear mapping parameters:
 - $\mathbf{v}_1 = \{w_{11}, ..., w_{m1}\} \in \mathbb{R}^m$
 - ▶ $b_1 \in \mathbb{R}$

- ▶ Input \times in \mathbb{R}^m
- Output neuron $\hat{y_k}$ is a formal neuron:
 - Linear (affine) mapping: $s_k = \mathbf{w_k}^{\mathsf{T}} \times + b_k$
 - Non-linear activation function: \hat{f} : $\hat{y_k} = f(s_k)$
- Linear mapping parameters:
 - $\quad \mathbf{w_k} = \left\{ w_{1k}, ..., w_{mk} \right\} \in \mathbb{R}^m$
 - $b_k \in \mathbb{R}$

- ▶ Input x in \mathbb{R}^m (1 x m), output \hat{y} : concatenation of K formal neurons
- ► Linear (affine) mapping ~ matrix multiplication: s = xW + b
 - ▶ W matrix of size $m \times K$ columns are w_k
- b: bias vector size $1 \times K$
- ▶ Element-wise non-linear activation: $\hat{y} = f(s)$

Soft-max Activation:

$$\hat{y_k} = f(s_k) = \frac{e^{s_k}}{\sum_{k'=1}^{K} e^{s_{k'}}}$$

- Note that $f(s_k)$ depends on the other $s_{k'}$, the arrow is a functional link
- Probabilistic interpretation for multi-class classification:
 - ▶ Each output neuron ⇔ class
 - $\hat{y}_k \sim P(k|\mathbf{x}, \mathbf{W})$

⇒ Logistic Regression (LR) Model!

2d Toy Example for Multi-Class Classification

2d Toy Example for Multi-Class Classification

•
$$x = \{x_1, x_2\} \in [-5; 5] \times [-5; 5], \hat{y}: 3 \text{ outputs (classes)}$$

Soft-max output: P(k|x,W)

Class Prediction:

$$k^* = \arg \max P(k|x)$$

$$k^* = \underset{k}{\operatorname{arg max}} P(k|x,W)$$

Beyond Linear Classification

X-OR Problem

- ▶ Logistic Regression (LR): NN with 1 input layer & 1 output layer
- LR: limited to linear decision boundaries
- X-OR: NOT 1 and 2 OR NOT 2 AND 1
 - ► X-OR: Non linear decision function

Beyond Linear Classification

- ► LR: limited to linear boundaries
- Solution: add a layer!

- ▶ Input x in \mathbb{R}^m , e.g. m = 4
- Output \hat{y} in \mathbb{R}^K (K # classes), e.g. K = 2
- ▶ Hidden layer h in \mathbb{R}^L

Multi-Layer Perceptron

- ▶ Hidden layer h: \times projection to a new space \mathbb{R}^L
- Neural Net with ≥ 1 hidden layer: Multi-Layer Perceptron (MLP)
- h: intermediate representations of x for classification ŷ:

- h = f (xW₁ + b₁)
 f non-linear activation,
 s = hW₂ + b₂
 ŷ = SoftMax(s)
- Mapping from x to ŷ: non-linear boundary!
 ⇒ non-linear activation f crucial!

Deep Neural Networks

- Adding more hidden layers: Deep Neural Networks (DNN) ⇒ Basis of Deep Learning
- ► Each layer h¹ projects layer h¹⁻¹ into a new space
- Gradually learning intermediate representations useful for the task

Conclusion

 Deep Neural Networks: applicable to classification problems with non-linear decision boundaries

- Visualize prediction from fixed model parameters
- ▶ Reverse problem: Supervised Learning

Outline

Introduction to Neural nets

Training Deep Neural Networks

Introduction to Statistical Decision Theory

Training Multi-Layer Perceptron (MLP)

- Input x, output y
- ▶ A parametrized (w) model $x \Rightarrow y$: $f_w(x_i) = \hat{y_i}$
- Supervised context:
 - Training set $A = \{(x_i, y_i^*)\}_{i \in \{1, 2, ..., N\}}$
 - Loss function $\ell(\hat{y}_i, y_i^*)$ for each annotated pair (x_i, y_i^*)
 - Goal: Minimizing average loss \mathcal{L} over training set: $\mathcal{L}(w) = \frac{1}{N} \sum_{i=1}^{N} \ell(\hat{y}_i, y_i^*)$
- Assumptions: parameters $w \in \mathbb{R}^d$ continuous, \mathcal{L} differentiable
- Gradient $\nabla_{\mathbf{w}} = \frac{\partial \mathcal{L}}{\partial \mathbf{w}}$: steepest direction to decrease loss $\mathcal{L}(\mathbf{w})$

MLP Training

- Gradient descent algorithm:
 - Initialyze parameters w
 - Update: $w^{(t+1)} = w^{(t)} \eta \frac{\partial \mathcal{L}}{\partial w}$
 - ▶ Until convergence, e.g. $||\nabla_{\mathbf{w}}||^2 \approx 0$

Supervised Learning: Multi-Class Classification

- Logistic Regression for multi-class classification
- $\mathbf{s}_i = \mathbf{x}_i \mathbf{W} + \mathbf{b}$
- ► Soft-Max (SM): $\hat{y_k} \sim P(k/x_i, W, b) = \frac{e^{s_k}}{\sum\limits_{k'=1}^{K} e^{s_{k'}}}$
- ▶ Supervised loss function: $\mathcal{L}(W, b) = \frac{1}{N} \sum_{i=1}^{N} \ell(\hat{y_i}, y_i^*)$

- Input x_i, ground truth output supervision y_i*
- One hot-encoding for y_i*:

$$y_{c,i}^* = \begin{cases} 1 & \text{if c is the ground truth class for } x_i \\ 0 & \text{otherwise} \end{cases}$$

Logistic Regression Training Formulation

- ▶ Loss function: multi-class Cross-Entropy (CE) ℓ_{CE}
- ℓ_{CE} : Kullback-Leiber divergence between y_i^* and \hat{y}_i

$$\ell_{CE}(\hat{y}_{i}, y_{i}^{*}) = KL(y_{i}^{*}, \hat{y}_{i}) = -\sum_{c=1}^{K} y_{c,i}^{*} log(\hat{y}_{c,i}) = -log(\hat{y}_{c^{*},i})$$

► \bigwedge KL asymmetric: $KL(\hat{y}_i, y_i^*) \neq KL(y_i^*, \hat{y}_i)$ \bigwedge

Logistic Regression Training

$$\mathcal{L}_{CE}(W,b) = \frac{1}{N} \sum_{i=1}^{N} \ell_{CE}(\hat{y}_i, y_i^*) = -\frac{1}{N} \sum_{i=1}^{N} log(\hat{y}_{c^*,i})$$

- ℓ_{CE} smooth convex upper bound of $\ell_{0/1}$
 - $\Rightarrow \text{gradient descent optimization}$
- ► Gradient descent: $W^{(t+1)} = W^{(t)} \eta \frac{\partial \mathcal{L}_{CE}}{\partial W}$ $(b^{(t+1)} = b^{(t)} \eta \frac{\partial \mathcal{L}_{CE}}{\partial b})$
- ► MAIN CHALLENGE: computing $\frac{\partial \mathcal{L}_{CE}}{\partial W} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell_{CE}}{\partial W}$?
 - $\Rightarrow \underline{\text{Key Property:}} \text{ chain rule } \frac{\partial x}{\partial z} = \frac{\partial x}{\partial y} \frac{\partial y}{\partial z}$
 - ⇒ Backpropagation of gradient error!

Chain Rule

Logistic Regression Training: Backpropagation

$$\frac{\partial \ell_{CE}}{\partial W} = \frac{\partial \ell_{CE}}{\partial \hat{y_i}} \frac{\partial \hat{y_i}}{\partial \mathbf{s_i}} \frac{\partial \mathbf{s_i}}{\partial \mathbf{w}}, \ \ell_{CE}(\hat{y_i}, y_i^*) = -log(\hat{y}_{c^*,i}) \Rightarrow \text{Update for } 1 \text{ example:}$$

Logistic Regression Training: Backpropagation

▶ Whole dataset: data matrix X $(N \times m)$, label matrix \hat{Y} , Y^* $(N \times K)$

$$\blacktriangleright \ \mathcal{L}_{CE}(\mathsf{W},\mathsf{b}) = -\frac{1}{N} \sum_{i=1}^{N} log(\hat{y}_{c^*,i}), \ \frac{\partial \mathcal{L}_{CE}}{\partial \mathsf{W}} = \frac{\partial \mathcal{L}_{CE}}{\partial \hat{\mathsf{Y}}} \frac{\partial \hat{\mathsf{Y}}}{\partial \mathsf{S}} \frac{\partial \mathsf{S}}{\partial \mathsf{W}}$$

Perceptron Training: Backpropagation

- Perceptron vs Logistic Regression: adding hidden layer (sigmoid)
- **Goal:** Train parameters W^y and W^h (+bias) with Backpropagation

- Last hidden layer ~ Logistic Regression
- ▶ First hidden layer: $\frac{\partial \ell_{CE}}{\partial W^h} = x_i^T \frac{\partial \ell_{CE}}{\partial u_i} \Rightarrow computing \frac{\partial \ell_{CE}}{\partial u_i} = \delta_i^h$

Perceptron Training: Backpropagation

- ▶ Computing $\frac{\partial \ell_{\textit{CE}}}{\partial u_i} = \delta_i^h \Rightarrow$ use chain rule: $\frac{\partial \ell_{\textit{CE}}}{\partial u_i} = \frac{\partial \ell_{\textit{CE}}}{\partial v_i} \frac{\partial v_i}{\partial h_i} \frac{\partial h_i}{\partial u_i}$
- $\blacktriangleright \ \, ... \ \, \mathsf{Leading to:} \ \, \frac{\partial \ell_{\mathit{CE}}}{\partial u_i} = \delta_i^h = \delta_i^{y \, \mathsf{T}} \mathsf{W}^y \odot \sigma^{'}(\mathsf{h}_i) = \delta_i^{y \, \mathsf{T}} \mathsf{W}^y \odot (\mathsf{h}_i \odot (1 \mathsf{h}_i))$

Deep Neural Network Training: Backpropagation

- ▶ Multi-Layer Perceptron (MLP): adding more hidden layers
- ▶ Backpropagation update ~ Perceptron: assuming $\frac{\partial \mathcal{L}}{\partial U_{l+1}} = \Delta^{l+1}$ known

Computing
$$\frac{\partial \mathcal{L}}{\partial \mathsf{U}_{\mathsf{I}}} = \Delta^I \left| \left(= \Delta^{I+1}^T \mathsf{W}^{\mathsf{I}+1} \odot \mathsf{H}_{\mathsf{I}} \odot (1 - \mathsf{H}_{\mathsf{I}}) \right. \right|$$
 sigmoid)

$$\frac{\partial \mathcal{L}}{\partial W^l} = \mathbf{H_{l-1}}^T \Delta^{h_l}$$

Recap MLP

Outline

Introduction to Neural nets

Training Deep Neural Networks

Introduction to Statistical Decision Theory

Statistical Decision Theory

Let $X \in \mathbb{R}^p$ be a real-valued random input vector,

 $Y \in \mathbb{R}$ be a real-valued random output variable,

f be a function from \mathbb{R}^p to \mathbb{R} (e.g. f_w with parameters w or a deep neural network). Here, \hat{Y} is the prediction for Y:

$$X \xrightarrow{f()} \hat{Y} = f(X)$$

How to find the best function f?

- 1. Measure the difference between f(X) and Y. Define an **error/loss** function L(Y, f(X)), which penalizes errors in prediction. The loss function L is a non-negative, real-valued function. Examples of common loss functions:
 - Squared Error Loss: $L(Y, f(X)) = (Y - f(X))^2$
 - ▶ 0-1 Loss Function:

$$L(Y, f(X)) = \begin{cases} 1 & \text{if } Y \neq f(X), \\ 0 & \text{if } Y = f(X) \end{cases}$$

- **Cross-Entropy Loss** $(L = L_{CE})$ for classification:
 - Assume here that Y is a one-hot vector.
 - Let c* be the index of the correct class.

$$L(Y, f(X)) = -\log(\hat{Y}_{c^*})$$

Statistical Decision Theory (cont'd)

How to find the best function *f***?** (continued)

 As we consider random variables and probability spaces, assume a joint distribution P(X, Y) exists
 The criterion to minimize in choosing f is the Expected Prediction Error, also known as the Risk:

$$R(f) = EPE(f) = \mathbb{E}_{P(X,Y)}[L(Y,f(X))]$$

The risk can be expressed as an integral:

$$R(f) = \iint L(Y, f(X)) dP(X, Y)$$

Example: For
$$L = (Y - f(X))^2$$
: $R(f) = \iint (y - f(x))^2 p(x, y) dx dy$

(Final) Goal: Find a hypothesis f^* among a fixed class of functions \mathcal{F} for which the risk is minimal:

$$f^* = \operatorname{Argmin}_{f \in \mathcal{F}} R(f) \tag{1}$$

In-depth Problem and Machine Learning solution

Cannot solve (1)?!

Problem: P(X, Y) unknown $\Rightarrow R(f)$ cannot be computed.

Solution:

- ▶ Fix \mathcal{F} to a parameterized family f_w where $w \in \mathbb{R}^d$
- Learn from examples! to approximate $R(f_w)$

Supervised Learning:

- $A_N = \{x_i, y_i\}_{i=1..N}$ Training set implicit use of P(X, Y) by *iid* sampling
- $> x_i \longrightarrow f_w(x_i) = \hat{y}_i \longleftrightarrow y_i$

Empirical Risk Minimization

We can approximate R(f) by averaging the loss function on A_N :

$$R(f) = \iint L(Y, f(X)) dP(X, Y) \quad \Rightarrow \quad \text{ERM}(f_w) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(y_i, f_w(x_i))$$

ERM: Empirical Risk Minimization

Requirement: $\{x_i, y_i\} \sim P(x, y)$ and N large \Rightarrow "good" approximation

New Objective:
$$w^* = \underset{w \in \mathbb{R}^d}{\mathsf{Argmin}} \, \mathsf{ERM}(f_w; \mathcal{A}_{\mathcal{N}}) = \underset{w \in \mathbb{R}^d}{\mathsf{Argmin}} \, \frac{1}{N} \, \sum_{i=1}^N \mathcal{L}\left(y_i, f_w(x_i)\right)$$

Supervised learning algorithm to solve this optimization problem.

Optimization Depending on $\mathcal{L}(w)$

- ▶ Depending on $\mathcal{L}(w)$, optimization is not always easy.
- ▶ In this course, $\mathcal{L}(w)$ is (supposed) differentiable for $w \in \mathbb{R}^d$.
- ▶ Definition: Gradient $\nabla \mathcal{L} = \left[\frac{\partial \mathcal{L}}{\partial w}\right] \in \mathbb{R}^d$.

Gradient Descent Algorithm

Gradient Descent Algorithm:

- ▶ Initialize: w⁽⁰⁾
- ▶ Repeat: $w^{(t+1)} = w^{(t)} \eta \nabla \mathcal{L}(w^{(t)})$
- ▶ Until: Convergence $\|\nabla \mathcal{L}(w^{(t+1)})\|^2 \approx 0$

Remark about convergence:

$$\begin{split} & 0 \leq \mathcal{L}(\boldsymbol{w}^{(t+1)}) \\ & = \mathcal{L}\left(\boldsymbol{w}^{(t)} - \eta \nabla \mathcal{L}(\boldsymbol{w}^{(t)})\right) \\ & \approx \mathcal{L}\left(\boldsymbol{w}^{(t)}\right) - \eta \nabla \mathcal{L}(\boldsymbol{w}^{(t)})^T \cdot \nabla \mathcal{L}(\boldsymbol{w}^{(t)}) \text{(first order approximation)} \\ & = \mathcal{L}\left(\boldsymbol{w}^{(t)}\right) - \eta \|\nabla \mathcal{L}(\boldsymbol{w}^{(t)})\|^2 \\ & \leq \mathcal{L}\left(\boldsymbol{w}^{(t)}\right) \end{split}$$

⇒ local Convergence

Gradient Descent

Update rule: $w^{(t+1)} = w^{(t)} - \eta \frac{\partial \mathcal{L}}{\partial w} \eta$ learning rate

Convergence ensured ? \Rightarrow provided a "well chosen" learning rate η

Gradient Descent

Update rule: $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \frac{\partial \mathcal{L}}{\partial \mathbf{w}}$

► Global minimum ? ⇒ convex a) vs non convex b) loss $\mathcal{L}(w)$

Neural Network Training: Optimization Issues

Classification loss over training set (vectorized w, b ignored):

$$\mathcal{L}_{CE}(\mathsf{w}) = \frac{1}{N} \sum_{i=1}^{N} \ell_{CE}(\hat{y}_{i}, \mathsf{y}_{i}^{*}) = -\frac{1}{N} \sum_{i=1}^{N} log(\hat{y}_{c^{*}, i})$$

Gradient descent optimization:

$$\mathbf{w^{(t+1)}} = \mathbf{w^{(t)}} - \eta \frac{\partial \mathcal{L}_{\textit{CE}}}{\partial \mathbf{w}} \left(\mathbf{w^{(t)}} \right) = \mathbf{w^{(t)}} - \eta \nabla_{\mathbf{w}}^{(t)}$$

Training set size

⇒ Too slow even for moderate dimensionality & dataset size!

Stochastic Gradient Descent

- ▶ <u>Solution:</u> approximate $\nabla_{\mathbf{w}}^{(t)} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell_{CE}(\hat{y_i}, \mathbf{y}_i^*)}{\partial \mathbf{w}} \left(\mathbf{w}^{(t)}\right)$ with subset of examples
 - ⇒ Stochastic Gradient Descent (SGD)
 - Use a single example (online):

$$\nabla_{\mathbf{w}}^{(t)} \approx \frac{\partial \ell_{CE}(\hat{y_i}, y_i^*)}{\partial \mathbf{w}} \left(\mathbf{w}^{(t)} \right)$$

▶ Mini-batch: use *B* < *N* examples:

$$\nabla_{\mathsf{w}}^{(t)} \approx \frac{1}{B} \sum_{i=1}^{B} \frac{\partial \ell_{CE}(\hat{\mathsf{y}}_{i}, \mathsf{y}_{i}^{*})}{\partial \mathsf{w}} \left(\mathsf{w}^{(t)}\right)$$

Stochastic Gradient Descent

- SGD: approximation of the true Gradient ∇_w!
 - ▶ Noisy gradient can lead to bad direction, increase loss
 - **BUT:** much more parameter updates: online $\times N$, mini-batch $\times \frac{N}{R}$
 - ▶ **Faster convergence**, at the core of Deep Learning for large scale datasets

Optimization: Learning Rate Decay

- Gradient descent optimization: $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} \eta \nabla_{\mathbf{w}}^{(t)}$
- η setup ? \Rightarrow open question
- Learning Rate Decay: decrease η during training progress
 - ▶ Inverse (time-based) decay: $\eta_t = \frac{\eta_0}{1+r \cdot t}$, r decay rate
 - Exponential decay: $\eta_t = \eta_0 \cdot e^{-\lambda t}$
 - Step Decay $\eta_t = \eta_0 \cdot r^{\frac{t}{t_u}} \dots$

Exponential Decay ($\eta_0 = 0.1$, $\lambda = 0.1s$)

Step Decay ($\eta_0 = 0.1$, r = 0.5, $t_u = 10$)

Generalization and Overfitting

- **Learning:** minimizing classification loss $\mathcal{L}_{\textit{CE}}$ over training set
 - ▶ Training set: sample representing data *vs* labels distributions
 - Ultimate goal: train a prediction function with low prediction error on the true (unknown) data distribution

- ⇒ Optimization ≠ Machine Learning!
- ⇒ Generalization / Overfitting!

Regularization

- ▶ **Regularization:** improving generalization, *i.e.* test (# train) performances
- Structural regularization: add **Prior** R(w) in training objective:

$$\mathcal{L}(\mathsf{w}) = \mathcal{L}_{CE}(\mathsf{w}) + \alpha R(\mathsf{w})$$

- L^2 regularization: weight decay, $R(w) = ||w||^2$
 - Commonly used in neural networks
 - Theoretical justifications, generalization bounds (SVM)
- Other possible R(w): L^1 regularization, dropout, etc

L^2 regularization: interpretation

▶ "Smooth" interpretation of L² regularization, Cauchy-Schwarz:

$$(\langle w, (x-x')\rangle)^2 \le ||w||^2 ||x-x'||^2$$

- Controlling L² norm ||w||²: "small" variation between inputs x and x' ⇒ small variation in neuron prediction (w,x) and (w,x')
 - → small variation in fleuron prediction (w,x) and (w,x)
 - \Rightarrow Supports simple, $\emph{i.e.}$ smoothly varying prediction models

Regularization and hyper-parameters

- Neural networks: hyper-parameters to tune:
 - Training parameters: learning rate, weight decay, learning rate decay, # epochs, etc
 - Architectural parameters: number of layers, number neurones, non-linearity type, etc
- Hyper-parameters tuning: ⇒ improve generalization: estimate performances on a validation set

