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https://cord.isir.upmc.fr/teaching-rdfia/

Intro to Computer Vision and Machine Learning

Intro to Neural Networks + Machine Learning theory
Neural Nets for Image Classification

Large ConvNets

Vision Transformers

Segmentation, Transfer learning and domain adaptation
Vision-Language models

Explaining VLMS

Self Supervised Learning in Vision

Generative models with GANs

. Control Jan 07, 2026

Diffusion models

. Bayesian deep learning

Uncertainty, Robustness

Evaluations: Control (30%) + Practicals (3 reports, total=70%)
can be modified by 10% between the 2 evaluations
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Introduction to Neural nets



The Formal Neuron: 1943 [7?]

> Basis of Neural Networks
> Input: vector x e R™, ie. x={xi}; (12 m

> Neuron output ¥ € R: scalar

Output



The Formal Neuron: 1943 [7?]

> Mapping from x to y:
1. Linear (affine) mapping: s=w'x+b
2. Non-linear activation function: f: y = f(s)

Inputs  Weights ~ Summation and Bias Activation Output



The Formal Neuron: Linear Mapping

m
> Linear (affine) mapping: s=w'x+b=3 wixi+b
i=1
> w: normal vector to an hyperplane in R™ = linear boundary
> b bias, shift the hyperplane position

2D hyperplane: line 3D hyperplane: plane

X2

wix+b=0

X1




The Formal Neuron: Activation Function

> §=f(w'x+b),
> f: activation function
1 ifz>0

*> Bio-inspired choice: Step (Heaviside) function: H(z) = {0 otherwi
erwise

o z

> Popular f choices: sigmoid, tanh, ReLU, GELU, ...
> Sigmoid: O'(Z) = (]_ + efaZ)—l

09

> a1: more similar to step function (step: a — oo)
> Sigmoid: linear and saturating regimes



Step function: Connection to Biological Neurons

Lo Wo
@ synapse
axon from a neuron \\y i

N woxo

dendrite \

N

nucleus

cell body

Zw;m; +b

f <Z wim; + b)

w1y

output axon dendrites of
mext meuron
activation
function

symapse electrical
signal

dendrites
> Formal neuron, step activation H: § = H(w'x + b)
> 9 =1 (activated) < w'x > -b
> § =0 (unactivated) < w'x < -b
> Biological Neurons: output activated
< input weighted by synaptic weight > threshold




The Formal neuron: Application to Binary Classification

> Binary Classification: label input x as belonging to class 1 or 0

> Neuron output with sigmoid:
N 1
= 1 + e—a(wTx+b)
> Sigmoid: probabilistic interpretation = y ~ P(1|x)
> Input x classified as 1 if P(1]x) >0.5 < w'x+b>0

> Input x classified as 0 if P(1]x) <0.5 < w'x+b<0
= sign(w"x + b): linear boundary decision in input space !

bias b only
changes the
position of
the riff




The Formal neuron: Toy Example for Binary Classification

> 2d example: m=2, x={x1,x2} € [-5;5] x [-5; 5]
> Linear mapping: w=[1;1] and b=-2
» Result of linear mapping : s=w'x+ b




The Formal neuron: Toy Example for Binary Classification

> 2d example: m=2, x={x1,x2} € [-5;5] x [-5; 5]
> Linear mapping: w=[1;1] and b=-2
> Result of linear mapping : s=w'x+ b

. . . . . ~ —a(wx+b) -1
> Sigmoid activation function: y = (1 +e ) ,
a=10




The Formal neuron: Toy Example for Binary Classification

> 2d example: m=2, x={x1,x2} € [-5;5] x [-5; 5]
> Linear mapping: w=[1;1] and b=-2
> Result of linear mapping : s=w'x+ b

. . . . . ~ —a(wx+b) -1
> Sigmoid activation function: y = (1 +e ) ,
a=1



The Formal neuron: Toy Example for Binary Classification

> 2d example: m=2, x={x1,x2} € [-5;5] x [-5;5]
» Linear mapping: w=[1;1] and b=-2
» Result of linear mapping : s=w'x+ b

. -1
» Sigmoid activation function: y = (1 +e?v X“’)) ,
a=0.1



From Formal Neuron to Neural Networks

» Formal Neuron:

classification

> Single scalar output: limited for several tasks

> Ex: multi-class classification, e.g. MNIST or : / =
CIFAR . 3 > _/—

Inputs Summation and Bias Activation Output

1. A single scalar output .
2. Linear decision boundary for binary .\
o

plane car bird cat de frog horse ship truck
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SRR Ee &
SEANMNAER LS
I 5 I N 1 [ e
<BFEINMAENSS
CSaERAEPNE. fax
= @A N



Perceptron and Multi-Class Classification

> Formal Neuron: limited to binary
classification

> Multi-Class Classification: use several
output neurons instead of a single onel!
= Perceptron

> Input x in R"”
> Output neuron y; is a formal neuron:
> Linear (affine) mapping: s1 = w1 x+ by
> Non-linear activation function: f:
y1=1f(s1)
> Linear mapping parameters:

> wi = {W11,...,Wm1} e R™
> by eR




Perceptron and Multi-Class Classification

> Input x in R"”
> Output neuron yj is a formal neuron:
> Linear (affine) mapping: sk = wy ' x + by
> Non-linear activation function: f:
Yic = f(sk)
> Linear mapping parameters:

> wi = {Wik;s .o, Wik} €RT
> breR



Perceptron and Multi-Class Classification

> Input x in R™ (1 x m), output y: concatenation of K formal neurons
> Linear (affine) mapping ~ matrix multiplication: s =xW +b

> W matrix of size m x K - columns are wy,

> b: bias vector - size 1 x K

> Element-wise non-linear activation: § = f(s)




Perceptron and Multi-Class Classification

» Soft-max Activation:

e’k

Yie=f(sk) = —
Z esk/
k'=1

> Note that f(sx) depends on the other s;/,
the arrow is a functional link

> Probabilistic interpretation for multi-class
classification:

> Each output neuron < class
> Vi~ P(klx, W)

= Logistic Regression (LR) Model!



2d Toy Example for Multi-Class Classification

» x={x1,x2} € [-5;5] x [-5;5], ¥: 3 outputs (classes)

wy =[1;1], by = -2 wp =[0;-1], by =1

L
—

w3 = [1;-0.5], b3 = 10
Linear mapping for

each class:

Sk = WkTX + bk

Soft-max output:
P(k[x,W)




2d Toy Example for Multi-Class Classification

» x={x1,x2} € [-5;5] x[-5;5], §: 3 outputs (classes)

wlz[m] by = -2 wy =[0;-1], by =1 w3 = [1;-0.5], b3 = 10

Soft-max output:

P(klx, W) ;5 v

Class Prediction:
k* = arg max P(k|x, W)




Beyond Linear Classification

X-OR Problem
> Logistic Regression (LR): NN with 1 input layer & 1 output layer

» LR: limited to linear decision boundaries
» X-OR: NOT 1 and 2 ORNOT 2 AND 1
> X-OR: Non linear decision function

OR Function XOR Function

Input 1 Input 1

Input2

Input2



Beyond Linear Classification

> Input x in R™, eg. m=4

» Output § in R¥ (K # classes),
eg K=2
» Hidden layer h in R*

» LR: limited to linear boundaries

> Solution: add a layer!




Multi-Layer Perceptron

> Hidden layer h: x projection to a new
space Rt

> Neural Net with > 1 hidden layer:
Multi-Layer Perceptron (MLP)

> h: intermediate representations of x
for classification §:

> h=f(XW1+b1)
f non-linear activation,
S = th + b2
§ = SoftMax(s)
> Mapping from x to §: non-linear
boundary!
= non-linear activation f crucial!




Deep Neural Networks

> Adding more hidden layers: Deep Neural Networks (DNN) = Basis of Deep
Learning

» Each layer h' projects layer h'~! into a new space

> Gradually learning intermediate representations useful for the task

hidden layer 1 hidden layer 2 hidden layer 3

input layer




Conclusion

> Deep Neural Networks: applicable to classification problems with non-linear
decision boundaries

> Visualize prediction from fixed model parameters

> Reverse problem: Supervised Learning



Outline

Training Deep Neural Networks



Training Multi-Layer Perceptron (MLP)

> Input x, output y
> A parametrized (w) model x = y: £, (x;) =i
> Supervised context:
> Training set A = {(X"’yi*)}ie{l,z,...,N}
> Loss function £(y;,y;) for each annotated pair (x;,y;")
> Goal: Minimizing average loss £ over training set: L(w) = ﬁ N, L(yi,y!)
» Assumptions: parameters w € RY continuous, £ differentiable

> Gradient Vy = %: steepest direction to decrease loss L(w)




MLP Training

> Gradient descent algorithm:
> Initialyze parameters w

> Update: ’ w(tl) — () _ 77%

» Until convergence, e.g. ||[Vw|]? ~ 0

Initial

weight \

L(w)

/ __— Gradient

—

Global cost minimum

v



Supervised Learning: Multi-Class Classification

> Logistic Regression for multi-class classification
»s;i=xi\W+b

> Soft-Max (SM): yi ~ P(k/xi, W,b) = —=*—
A
N
> Supervised loss function: £(W,b) = & ¥ £(¥i,y)
iz

> Input x;, ground truth
output supervision y;

> One hot-encoding for y;:

. {1 if c is the ground truth class for x;
.yc,i =

0 otherwise

N
*
Yi Yi
P(cat) =0.80 P(cat) = 1.0
P(dog) = 0.15 P(dog) = 0.0
P(bird) = 0.05 P(bird) = 0.0




Logistic Regression Training Formulation

> Loss function: multi-class Cross-Entropy (CE) {ce

> {ce: Kullback-Leiber divergence between y;" and ¢;

K
Cee(9iyi) = KL(y, 91) == > vl ilog(Pe,i) = —log (9ex.i)
c=1
> A\ KL asymmetric: KL(9i,yi ) # KL(y{',9i) A
*

Y; }/’\i

1.0 0.80
0.0 > 0.15
0.0 0.05

KL(y; ,9i) = —log(Jc- ;) = —log(0.8) ~ 0.22



Logistic Regression Training

N N
> Lce(W,b) = & gfcs(fi,YT) =-% ; log (Jer i)

> {ce smooth convex upper bound of £
= gradient descent optimization

» Gradient descent: W(HD = wW(® _ n% (b1 = p(® agth)
» MAIN CHALLENGE: O - L 5 Oter
C GE: computing = NEI ek
Ox Ox 0y
= Key Property: chain rule — = ——
—_— 0z 0Oyoz

= Backpropagation of gradient error!



Chain Rule

— o _ 9oy
Ox — 09 Ox

o —on

Ix 09

. . ol Olcg OY; Os;
> Logistic regression: 8—\/CVE = a—;fa—zla—\jv

Osi. 89. {%CE
oW Bs; oy




Logistic Regression Training: Backpropagation

Olce _ OLce OY; Osi

W = By e GW Lce(Yi,yi) = —log(§c+,;) = Update for 1 example:

O g -1 -1
| ZCE - =2 - 22 0,
oy; Jex i i © Oc,er

e _ . * _ gy
> ds; =9i-vyi =9

oL
> | B =X1T6iy

Xi S'i }A’i
(1,m) (1,K) (1,K)
—_— [r—

1 1

Os; Oy Olce
oW  Ps; oy;



Logistic Regression Training: Backpropagation

» Whole dataset: data matrix X (N x m), label matrix ¥, Y* (N x K)

N o
1 - aL dLcE OY 85
> Lee(W.b) = - X log(Jer.i). 5 = 755 75 ow
Fa

A

(N K)

(N m) (N K)

3ECE

> aECEZV*Y*:Ay
s

> 56£CE XTAY




Perceptron Training: Backpropagation

» Perceptron vs Logistic Regression: adding hidden layer (sigmoid)

» Goal: Train parameters W and W" (4bias) with Backpropagation

N N
ol aLee _ 1 o otee Lce _ 1 & aeg
= computing | Fuy = 21 aws |and | Gk = § 3 oWh
1= 1=
h. \'2
X u, i i Yi

[Ty 2o oo 2 gy gy

ou; =4 oWy 6vi B

> Last hidden layer ~ Logistic Regression

Olce T OLce

> First hidden layer: 5 = x; = computin BZCE _sh
W Bu; puting i




Perceptron Training: Backpropagation

aeCE _ dlce _ Olce dv; Oh

du; _ Ov; oh; Bu,

> Computing 5 = 6" = use chain rule:

.. Leading to: 88&_ =6 =8""W oo (h)=8"W o (ho(l-h))
X, Y h,

V. y.

Y. T
a—ui = 6;" OWY 6 h avl - Y|




Deep Neural Network Training: Backpropagation

> Multi-Layer Perceptron (MLP): adding more hidden layers

> Backpropagation update ~ = A" known
> awl+1 - HITA/+1
> Computmg =A' (= At "Wt o H; ® (1 - H,) sigmoid)

> W’ =H._ 1TAhI

[+1

oL
8U| ] 1 0U|+1



Recap MLP

ABE AN
EaSAENE S
s ARAT e WL

y(x)
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Introduction to Statistical Decision Theory



Statistical Decision Theory

Let X € R” be a real-valued random input vector,

Y € R be a real-valued random output variable,

f be a function from R” to R (e.g. fu with parameters w or a deep neural
network). Here, Y is the prediction for Y:

x 0L v - fx)

How to find the best function ?

1. Measure the difference between f(X) and Y.
Define an error/loss function L(Y,f (X)), which penalizes errors in
prediction. The loss function L is a non-negative, real-valued function.
Examples of common loss functions:

> Squared Error Loss:
L(Y,f(X)) = (Y -f(X))?
> 0-1 Loss Function:

Lo ={y iy oo

> Cross-Entropy Loss (L = L¢g) for classification:

> Assume here that Y is a one-hot vector.
> Let c* be the index of the correct class.

L(Y,£(X)) = ~log(Vcr)



Statistical Decision Theory (cont'd)

How to find the best function f? (continued)

2. As we consider random variables and probability spaces, assume a joint
distribution P(X,Y) exists
The criterion to minimize in choosing f is the Expected Prediction Error,
also known as the Risk:

R(f) = EPE(f) = Ep(x,v)[L(Y, f(X))]
The risk can be expressed as an integral:
R(f) = [[ L(Y,F(X))dP(X, )
Example: For L= (Y - f(X))* R(f) = [[(y - f(x))*p(x,y) dx dy
(Final) Goal: Find a hypothesis f* among a fixed class of functions F for

which the risk is minimal:

f* = Argmin R(f) (D
feF



In-depth Problem and Machine Learning solution

Cannot solve (1)?!
Problem: P(X,Y) unknown = R(f) cannot be computed.

Solution:
» Fix F to a parameterized family f,, where w ¢ R¢
> Learn from examples! to approximate R(fy)
Supervised Learning:
» Ay ={xi,yi}iz1..v  Training set implicit use of P(X,Y) by iid sampling

> X —> fw(Xi) = }7,- >y



Empirical Risk Minimization

We can approximate R(f) by averaging the loss function on Ap:

1 N
R() = [[LOY F(X)) dP(X, V) = ERM(fW):NZ;E(y,-,fW(x,-))

ERM: Empirical Risk Minimization

Requirement: {x;,yi} ~ P(x,y) and N large = "good" approximation

New Objective: | w” = Argmin ERM(f,; Axr) = Argmin % Z,{\il L (yi, fw(xi))

weRd weRd

Supervised learning algorithm to solve this optimization problem.



Optimization Depending on L(w)

> Depending on L(w), optimization is not always easy.
> In this course, £(w) is (supposed) differentiable for w e R?.
» Definition: Gradient VL = [g—ﬁ] eRC.



Gradient Descent Algorithm

Gradient Descent Algorithm:

» Initialize: w'®

» Repeat: w'"™ = w(® —pyL(w®)
» Until: Convergence |[VL(w*™)|?~0

Remark about convergence:
0 < L(wY)
— £ (w® —nvLw))
8L (W(t)) — v LW T . vL(w™)(first order approximation)
=L (w?) -l vLw®)[?
<L (W(t))

= local Convergence



Gradient Descent

Update rule: [w(*1) = w(® - n%& | n learning rate

> Convergence ensured ? = provided a "well chosen" learning rate 7

L(w) L(w)

w* w w w
Too small: converge Too big: overshoot and
very slowly even diverge



Gradient Descent

Update rule: |w( = w(® — n%

> Global minimum ?
= convex a) vs non convex b) loss £(w)

Starting p.

Initial

weight \\
Y

L(w) Local minima

— Gradient

Global cost minimum

o

Global minima

a) Convex function a) Non convex function



Neural Network Training: Optimization Issues

> Classification loss over training set (vectorized w, b
ignored):

1 N . N
LCE(W) = N ZKCE(Yiyy, = Z lOg(yc* i
i=1 i=1

> Gradient descent optimization:

1) _ 0 OLce (@) )
W w0 P8 (109) 9

N iyt .
» Gradient v = N > W (w(t)) linearly scales
=1

wrt: . .
» w dimension

> Training set size

= Too slow even for moderate
dimensionality & dataset size!



Stochastic Gradient Descent

N
> Solution: approximate v = N Z M (w(t)) with subset of examples

= Stochastic Gradient Descent (SGD)
> Use a single example (online):

Olce(¥i,yi) (W(t))

N
Vi ow

> Mini-batch: use B < N examples:

ol i Y
(t) BZ ce(¥i, i )(W(r))

pact ow

Full gradient SGD (online) SGD (mini-batch)



Stochastic Gradient Descent

> SGD: approximation of the true Gradient V,, !
> Noisy gradient can lead to bad direction, increase loss

» BUT: much more parameter updates: online xN, mini-batch x 2
> Faster convergence, at the core of Deep Learning for large scale datasets

Full gradient SGD (online) SGD (mini-batch)



Optimization: Learning Rate Decay

» Gradient descent optimization: w(**%) = w(® — py{®
> 7 setup ? = open question

> Learning Rate Decay: decrease 7 during training progress

> Inverse (time-based) decay: 7; =
At

o

Tar. I decay rate

> Exponential decay: n: =g - e~
t

> Step Decay nt =mno-rtv ...

— learning rate 010 — leamning rate

o o
o o
& &

°
s
2

learning rate
learning rate

°
2

0.00 000
20 40 60 80 100 20 40 60 -] 100

) epoch och
Exponential Decay (no=0.1, x=0.15) Step Decay (no o r= 0.5 ty = 10)




Generalization and Overfitting

> Learning: minimizing classification loss L£cg over training set

> Training set: sample representing data vs labels distributions
> Ultimate goal: train a prediction function with low prediction error on the true

(unknown) data distribution

Training set
10 . 10

Test set

4 ./ ./ o
_5__// ° _5__/‘./
L]
® .
-195 -1 0 1 2 -103 -1 0 1 2
L‘/Tm/'n = 4. L"[t}L = 15,

= Optimization # Machine Learning!
= Generalization / Overfitting!



Regularization

» Regularization: improving generalization, i.e. test (+ train) performances

» Structural regularization: add Prior R(w) in training objective:
[,(W) = ﬁCE(W) + aR(W)

» L2 regularization: weight decay, R(w) = |jw|?
> Commonly used in neural networks
> Theoretical justifications, generalization bounds (SVM)

» Other possible R(w): L' regularization, dropout, etc




L? regularization: interpretation

» "Smooth" interpretation of L? regularization, Cauchy-Schwarz:

({w, (x=x)))? < Il lx = x|

» Controlling L* norm |jw||*: "small" variation between inputs x and x’
= small variation in neuron prediction (w,x) and (w,x")

= Supports simple, i.e. smoothly varying prediction models



Regularization and hyper-parameters

> Neural networks: hyper-parameters to tune:

> Training parameters: learning rate, weight decay, learning rate decay, #
epochs, etc

> Architectural parameters: number of layers, number neurones,
non-linearity type, etc

» Hyper-parameters tuning: = improve generalization: estimate
performances on a validation set

Error

Validation

— Training

>

Stop training Number of epochs
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