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2. Convolutional Neural Networks



Recap MLP 

x y(x)



First Pb: Scalability 

Large images => extremely large 
number of trainable parameters

MLP example: brute force connection



2d Pb: Stability of the representation

Expectation:

– Small deformation in the input space 

 => similar representations

– Large (or unexpected) transfo in the input space

 => very dissimilar representations

Representations:

MLP example: brute force connection



Stability: Invariance/Robustness to (local) shifting, scaling, and 
other forms of (small) distortions?

MLP example: brute force connection



Little or no invariance to shifting, scaling, and other forms of 
distortion

MLP example: brute force connection

Shift left



154 input change   
from 2 shift left

77 : black to white
77 : white to black

@LeCun

MLP example: brute force connection



Scaling and other forms of distortions => same pb

MLP example: brute force connection



Brute force connection of images as input of MLP NOT a good 
idea 

• No Invariance/Robustness of the representation because 
topology of the input data completely ignored

• Nb of weights grows largely with the size of the input image

How keep spatial topology?

How to limit the weight number?

Conclusion of MLP on raw data
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1/ Locally connected neural networks

• Sparse connectivity: a hidden unit is only connected to a local patch (weights 
connected to the patch are called filter or kernel)

• Inspired by biological systems, where a cell is sensitive to a small sub-region 
of the input space, called a receptive field. Many cells are tiled to cover the 
entire visual field

How to limit the weight numbers?



2/ Shared Weights

• Hidden nodes at different locations share the same weights
• greatly reduces the number of parameters to learn

• Keep spatial information in a 2D feature map (hidden layer map)

How to limit the weight numbers?

 Computing responses at hidden nodes equivalent to convoluting 
input image with a linear filter (learned)

 A learned filter as a feature detector



Recap (1D/2D) convolution
1D discrete convolution of input signal x[n], with filter impulse response h[n], and 
output y[n]:

2D discrete convolution of input signal x[m,n], with filter impulse response h[m,n] (kernel), 
and output y[m,n]:

Example with impulse response (kernel) 3x3, and it's values are a, b, c, d,... :

(0,0) located in the center of the kernel



Ex. of convolution operator

Convolution

2D



1 filter => 1 feature map (corresponding to 1 visual pattern)

To detect spatial distributions of multiple visual patterns: Multiple filters

M filters => M feature maps!   Get richer description

From one to many filters

Not a big

deal!

Many filters

=> still few 

parameters



M filters => M feature maps

From one to many filters

Rq: not many weights but many neurons! => memory issues will appear



What does replicating the feature detectors 
achieve?

• Equivariant activities (Hinton Ex): Replicated features do not make 
the neural activities invariant to translation. The activities are 
equivariant. 

Map representation 

by one filter

image

translated 

representation

translated      

image

How to get invariance to 2D spatial transformation of the input?



Getting (more) local Invariance

(local) spatial POOLING of the outputs of 
replicated feature detectors:

• Averaging neighboring replicated detectors to 
give a single output to the next level

• Max pooling: Taking the maximum in a 
neighboring

Get a small amount of translational invariance 
at each level 

Reducing the number of inputs to the next layer of 
feature extraction

Translation Equivariant Invariant

=> Stability OK (at least for local shift) for Convolutional Net!
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To sum up:

M filters

M feature maps



mxnxd parameters per filter

Idem for any layer i to layer i+1

Color images: 3D kernels for filtering



Normalization within a neighborhood along both spatial and feature 
dimensions

LCN: Local Contrast Normalization

=> Very important for training large nets to carefully consider 

normalization within mini-batchs [S. Ioffe, C. Szegedy 2015]



• Improvement over the multilayer perceptron

• Performance, accuracy and some degree of invariance to 

distortions in the input images

1stage of convolutional neural networks 



1stage of convolutional neural networks 



1stage of convolutional neural networks 



Full ConvNet architecture



To sum up: Full ConvNet architecture

Sub-sampling

Fully-connected 
weights

Convolution

Sub-samplingConvolution

Input 
image

Class 
labels

Coding
Pooling

PoolingCoding

PoolingLocal gradient coding

Feature codingFeature extraction (e.g. SIFT) Max-pooling Classifier

Visual 
codes

Image 
signature

Class 
label

Input 
image



ConvNet (CNN): feed-forward network with

 -- ability to extract topological properties from image

 -- designed to recognize visual patterns 

Working directly from pixel images with (no/minimal) 
preprocessing

Trained with back-propagation

To sum up: Full ConvNet architecture
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Example: LeNet5

Introduced by Y. LeCun

Raw image of 32 × 32 pixels as input



• C1,C3,C5 : Convolutional layer

• 5 × 5 Convolution matrix

• S2 , S4 : Subsampling layer = Pooling+stride s=2

 => Subsampling by factor 2

• F6 : Fully connected layer

Example: LeNet5



LeNet5

All the units of the layers up to F6 have a sigmoidal activation 
function



LeNet5

About 187,000 connections

About 14,000 trainable weights



LeNet5 (@LeCun)



LeNet5 (@LeCun)



AlexNet 2012

1 2 3 4 5 6 7 8



AlexNet 2012

Same type of convnet with

• Filtering (convolution)

• Non-Linearity

• Pooling

8 layers but 224x224 input 
images => much biger model:

• 650,000 neurons

• 60,000,000 weights!



More data for supervised training

ImageNet 2012: the (deep) revolution

• 1.2 million labeled images

• 1000 classes

• Mono-class

• TOP5

39



Learning the AlexNet

• Basics:

• SGD, Backprop

• Cross Validation

• Grid search

• “New”

• Huge computational resources (GPU)

• Huge training set (1 million images)

• Data augmentation - Pre-processing

• Dropout

• ReLu

• Contrast normalization



Crop, flip,.. in train / in test 

Data Augmentation

lots of jittering, mirroring, and color perturbation of the original images 

generated on the fly to increase the size of the training set



Dropout: an efficient way to average many large 
neural nets

For each training example, randomly omit each 

hidden unit with probability 0.5

Due to sharing of weights, model strongly 
regularized

Pulls the weights towards what other models 
want.

Better than L2 and L1 regularization that pull 
weights towards zero

@Hinton, NIPS 2012



Dropout: what do we do at test time? 

Option 1: 

 Sample many different architectures and take the geometric mean of their 
output distributions

Option 2: (Faster way) 

 Use all the hidden units 

 but after halving their outgoing weights

Rq: In case of single hidden layer, this is equivalent to the geometric mean of the 
predictions of all models

For multiple layers, it’s a pretty good approximation and its fast



How well does dropout work?

Improving generalization:

For very deep nets, or at least when there are huge fully connected 
layers (eg. AlexNet first FC layer, VGG next, …)

Less useful for fully convolutional nets

Useful to prevent feature co-adaptation (feature only helpful when 
other specific features present)

Later in course

Dropout as a Bayesian Approximation

Representing Model Uncertainty in Deep Learning



AlexNet 2012

Ablation study

1. Number of layers

2. Tapping off features at each layer

3. Transfo Robustness vs layers

















Deep ConvNets for image classification

• AlexNet 8 layers, 62M parameters

Alex Krizhevsky, Ilya Sutskever and Geoffrey Hinton

ImageNet Classificat ion with Deep Convolut ional Neural Networks.

In NIPS, 2012.
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