
COURS RDFIA deep Image
https://cord.isir.upmc.fr/teaching-rdfia/

Outline
Convolutional Nets for visual classification

1. Recap MLP

2. Convolutional Neural Networks

Recap MLP

x y(x)

First Pb: Scalability

Large images => extremely large
number of trainable parameters

MLP example: brute force connection

2d Pb: Stability of the representation

Expectation:

– Small deformation in the input space

 => similar representations

– Large (or unexpected) transfo in the input space

 => very dissimilar representations

Representations:

MLP example: brute force connection

Stability: Invariance/Robustness to (local) shifting, scaling, and
other forms of (small) distortions?

MLP example: brute force connection

Little or no invariance to shifting, scaling, and other forms of
distortion

MLP example: brute force connection

Shift left

154 input change
from 2 shift left

77 : black to white
77 : white to black

@LeCun

MLP example: brute force connection

Scaling and other forms of distortions => same pb

MLP example: brute force connection

Brute force connection of images as input of MLP NOT a good
idea

• No Invariance/Robustness of the representation because
topology of the input data completely ignored

• Nb of weights grows largely with the size of the input image

How keep spatial topology?

How to limit the weight number?

Conclusion of MLP on raw data

Outline
Convolutional Nets for visual classification

1. Recap MLP

2. Convolutional Neural Networks

1/ Locally connected neural networks

• Sparse connectivity: a hidden unit is only connected to a local patch (weights
connected to the patch are called filter or kernel)

• Inspired by biological systems, where a cell is sensitive to a small sub-region
of the input space, called a receptive field. Many cells are tiled to cover the
entire visual field

How to limit the weight numbers?

2/ Shared Weights

• Hidden nodes at different locations share the same weights
• greatly reduces the number of parameters to learn

• Keep spatial information in a 2D feature map (hidden layer map)

How to limit the weight numbers?

 Computing responses at hidden nodes equivalent to convoluting
input image with a linear filter (learned)

 A learned filter as a feature detector

Recap (1D/2D) convolution
1D discrete convolution of input signal x[n], with filter impulse response h[n], and
output y[n]:

2D discrete convolution of input signal x[m,n], with filter impulse response h[m,n] (kernel),
and output y[m,n]:

Example with impulse response (kernel) 3x3, and it's values are a, b, c, d,... :

(0,0) located in the center of the kernel

Ex. of convolution operator

Convolution

2D

1 filter => 1 feature map (corresponding to 1 visual pattern)

To detect spatial distributions of multiple visual patterns: Multiple filters

M filters => M feature maps! Get richer description

From one to many filters

Not a big

deal!

Many filters

=> still few

parameters

M filters => M feature maps

From one to many filters

Rq: not many weights but many neurons! => memory issues will appear

What does replicating the feature detectors
achieve?

• Equivariant activities (Hinton Ex): Replicated features do not make
the neural activities invariant to translation. The activities are
equivariant.

Map representation

by one filter

image

translated

representation

translated

image

How to get invariance to 2D spatial transformation of the input?

Getting (more) local Invariance

(local) spatial POOLING of the outputs of
replicated feature detectors:

• Averaging neighboring replicated detectors to
give a single output to the next level

• Max pooling: Taking the maximum in a
neighboring

Get a small amount of translational invariance
at each level

Reducing the number of inputs to the next layer of
feature extraction

Translation Equivariant Invariant

=> Stability OK (at least for local shift) for Convolutional Net!

()2 ,2 2 1,2 2 ,2 1 2 1,2 1

1

4
ij i j i j i j i jy x x x x+ + + += + + +

To sum up:

M filters

M feature maps

mxnxd parameters per filter

Idem for any layer i to layer i+1

Color images: 3D kernels for filtering

Normalization within a neighborhood along both spatial and feature
dimensions

LCN: Local Contrast Normalization

=> Very important for training large nets to carefully consider

normalization within mini-batchs [S. Ioffe, C. Szegedy 2015]

• Improvement over the multilayer perceptron

• Performance, accuracy and some degree of invariance to

distortions in the input images

1stage of convolutional neural networks

1stage of convolutional neural networks

1stage of convolutional neural networks

Full ConvNet architecture

To sum up: Full ConvNet architecture

Sub-sampling

Fully-connected
weights

Convolution

Sub-samplingConvolution

Input
image

Class
labels

Coding
Pooling

PoolingCoding

PoolingLocal gradient coding

Feature codingFeature extraction (e.g. SIFT) Max-pooling Classifier

Visual
codes

Image
signature

Class
label

Input
image

ConvNet (CNN): feed-forward network with

 -- ability to extract topological properties from image

 -- designed to recognize visual patterns

Working directly from pixel images with (no/minimal)
preprocessing

Trained with back-propagation

To sum up: Full ConvNet architecture

Outline
Convolutional Nets for visual classification

1. Recap MLP

2. Convolutional Neural Networks

3. Examples: LeNet5, AlexNet

Example: LeNet5

Introduced by Y. LeCun

Raw image of 32 × 32 pixels as input

• C1,C3,C5 : Convolutional layer

• 5 × 5 Convolution matrix

• S2 , S4 : Subsampling layer = Pooling+stride s=2

 => Subsampling by factor 2

• F6 : Fully connected layer

Example: LeNet5

LeNet5

All the units of the layers up to F6 have a sigmoidal activation
function

LeNet5

About 187,000 connections

About 14,000 trainable weights

LeNet5 (@LeCun)

LeNet5 (@LeCun)

AlexNet 2012

1 2 3 4 5 6 7 8

AlexNet 2012

Same type of convnet with

• Filtering (convolution)

• Non-Linearity

• Pooling

8 layers but 224x224 input
images => much biger model:

• 650,000 neurons

• 60,000,000 weights!

More data for supervised training

ImageNet 2012: the (deep) revolution

• 1.2 million labeled images

• 1000 classes

• Mono-class

• TOP5

39

Learning the AlexNet

• Basics:

• SGD, Backprop

• Cross Validation

• Grid search

• “New”

• Huge computational resources (GPU)

• Huge training set (1 million images)

• Data augmentation - Pre-processing

• Dropout

• ReLu

• Contrast normalization

Crop, flip,.. in train / in test

Data Augmentation

lots of jittering, mirroring, and color perturbation of the original images

generated on the fly to increase the size of the training set

Dropout: an efficient way to average many large
neural nets

For each training example, randomly omit each

hidden unit with probability 0.5

Due to sharing of weights, model strongly
regularized

Pulls the weights towards what other models
want.

Better than L2 and L1 regularization that pull
weights towards zero

@Hinton, NIPS 2012

Dropout: what do we do at test time?

Option 1:

 Sample many different architectures and take the geometric mean of their
output distributions

Option 2: (Faster way)

 Use all the hidden units

 but after halving their outgoing weights

Rq: In case of single hidden layer, this is equivalent to the geometric mean of the
predictions of all models

For multiple layers, it’s a pretty good approximation and its fast

How well does dropout work?

Improving generalization:

For very deep nets, or at least when there are huge fully connected
layers (eg. AlexNet first FC layer, VGG next, …)

Less useful for fully convolutional nets

Useful to prevent feature co-adaptation (feature only helpful when
other specific features present)

Later in course

Dropout as a Bayesian Approximation

Representing Model Uncertainty in Deep Learning

AlexNet 2012

Ablation study

1. Number of layers

2. Tapping off features at each layer

3. Transfo Robustness vs layers

Deep ConvNets for image classification

• AlexNet 8 layers, 62M parameters

Alex Krizhevsky, Ilya Sutskever and Geoffrey Hinton

ImageNet Classificat ion with Deep Convolut ional Neural Networks.

In NIPS, 2012.

	Slide 1: COURS RDFIA deep Image https://cord.isir.upmc.fr/teaching-rdfia/
	Slide 2: Outline Convolutional Nets for visual classification
	Slide 3: Recap MLP
	Slide 4: MLP example: brute force connection
	Slide 5
	Slide 6: MLP example: brute force connection
	Slide 7: MLP example: brute force connection
	Slide 8: MLP example: brute force connection
	Slide 9
	Slide 10
	Slide 11: Outline Convolutional Nets for visual classification
	Slide 12: How to limit the weight numbers?
	Slide 13: How to limit the weight numbers?
	Slide 14: Recap (1D/2D) convolution
	Slide 15: Ex. of convolution operator
	Slide 17: From one to many filters
	Slide 18: From one to many filters
	Slide 19: What does replicating the feature detectors achieve?
	Slide 20: Getting (more) local Invariance
	Slide 21: To sum up:
	Slide 22: Color images: 3D kernels for filtering
	Slide 23: LCN: Local Contrast Normalization
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Full ConvNet architecture
	Slide 28: To sum up: Full ConvNet architecture
	Slide 29: To sum up: Full ConvNet architecture
	Slide 30: Outline Convolutional Nets for visual classification
	Slide 31: Example: LeNet5
	Slide 32
	Slide 33: LeNet5
	Slide 34: LeNet5
	Slide 35: LeNet5 (@LeCun)
	Slide 36: LeNet5 (@LeCun)
	Slide 37: AlexNet 2012
	Slide 38: AlexNet 2012
	Slide 39: More data for supervised training
	Slide 40: Learning the AlexNet
	Slide 41: Data Augmentation
	Slide 42: Dropout: an efficient way to average many large neural nets
	Slide 43: Dropout: what do we do at test time?
	Slide 44: How well does dropout work?
	Slide 45: AlexNet 2012
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

