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Outline

Convolutional Nets for visual classification

1. Recap MLP
2. Convolutional Neural Networks



Recap MLP
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MLP example: brute force connection

Input Image
16 = 16

S
100 hiden unit
25600 + 100 + 2600+ 26 = 28326

Example: 1000x1000 image
1M hidden units

=i First Pb: Scalability

Large images => extremely large
number of trainable parameters




MLP example: brute force connection

2d Pb: Stability of the representation

Expectation: F .1
— Small deformation in the input space F a1

=> similar representations A A

— Large (or unexpected) transfo in the input space
=> very dissimilar representations

Representations:

Il
I

11 NN

bl

Input Image
16 = 16



MLP example: brute force connection

Stability: Invariance/Robustness to (local) shifting, scaling, and
other forms of (small) distortions?




MLP example: brute force connection

Little or no invariance to shifting, scaling, and other forms of
distortion

Shift left




MLP example: brute force connection

154 input change
from 2 shift left
77 : black to white
/7 : white to black

@LeCun



MLP example: brute force connection

> same pb

Scaling and other forms of distortions




Conclusion of MLP on raw data

Brute force connection of images as input of MLP NOT a good
idea
* No Invariance/Robustness of the representation because
topology of the input data completely ignored

* Nb of weights grows largely with the size of the input image

How keep spatial topology?

Example: 1000x1000 image
1M hidden units
M) 10712 parameters!!

How to limit the weight number?



Outline

Convolutional Nets for visual classification

1. Recap MLP
2. Convolutional Neural Networks



How to limit the weight numbers?

1/ Locally connected neural networks

» Sparse connectivity: a hidden unit is only connected to a local patch (weights
connected to the patch are called filter or kernel)

* Inspired by biological systems, where a cell is sensitive to a small sub-region
of the input space, called a receptive field. Many cells are tiled to cover the
entire visual field

Example: 1000x1000 image
1M hidden units
- 10”12 parameters!ll

Example: 1000x1000 image
IM hidden units
Filter size: 10x10
100M parameters




How to limit the weight numbers?

2/ Shared Weights

* Hidden nodes at different locations share the same weights
» greatly reduces the number of parameters to learn

» Keep spatial information in a 2D feature map (hidden layer map)

Example: 1000x1000 image
1M hidden units

Filter size: 10x10
100M parameters

Share the same para/neters across
different locations:
Convolutions with le

=%

ned kernels

= Computing responses at hidden nodes equivalent to convoluting
input image with a linear filter (learned)
= Alearned filter as a feature detector



Recap (1D/2D) convolution

1D discrete convolution of input signal x[n], with filter impulse response h[n], and

output y[n]: 0

yln] = x[n] * hin] = Z x|k| - h|n — k|

k=—

2D discrete convolution of input signal x[m,n], with filter impulse response h[ m,n] (kernel),

and output y[m,n]:

ylm,n] = z[m,n] * hjm,n| = T Y

J=—00 1=—

Example with impulse response (kernel) 3x3, and it's values are a, b, c, d.... :

(0,0) located in the center of the kernel

1u——§: 2: [i,5] - h[1—i,1 — ]

Jj=—001t=—00

= 2[0,0]-A[1,1] +=[1,0]-A[0,1] +z[2,0]-R[-1,1]  output

m—i,n — j
nm 1 0 1
1la|bc
o|d|e]|f
10 g | h |

+2[0,1]-A[1,0] +=[1,1]-£[0,0] +2[2,1]-h[—1,0]

+2[0,2] - h[1,—1] + z[1,2] - R[]0, —1] + 2[2,2] - h[-1, —1]

h

g

kernel (fioeed) input

f
c

d
a

(0,0)((10)

20)

e
b

|t

T

i

I

(08)] (CA)

02) (1,2)




Ex. of convolution operator

Convolution

output kerqel (ﬂiprped) input

Pz =
i h] 9|0l
s s e 2D
I s I B O O R ()
< = | a _’__——-—"’"/ 35 |40 |41 |45 50
L C i/ @(1’2)(2,2) " 40|40 |42 |16 |52 X of1]o
— | | __—T1"1 42 |46 |50 |55 |55 olo|o a2
//i 48 |52 56 58 |60 o|o|o _—
|
I /// 56 |60 |65 [70 |75
// )
//)/

Share the same parameters across
different locations:
Convolutions with learned kernels




From one to many filters

1 filter => 1 feature map (corresponding to 1 visual pattern)

To detect spatial distributions of multiple visual patterns: Multiple filters

M filters => M feature maps! Get richer description

E.g.: 1000x1000 image
100 Filters
Filter size: 10x10
10K parameters

4 )

Not a big
deal!
Many filters

=> still few
parameters
/




From one to many filters

M filters => M feature maps

hidden unit /
filter response

Rqg: not many weights but many neurons! => memory issues will appear



What does replicating the feature detectors

achieve?

« Equivariant activities (Hinton Ex): Replicated features do not make
the neural activities invariant to translation. The activities are

equivariant.

Map representation
by one filter

image

AAA
AAAL

1

i

0l

9)

translated
representation

translated
image

—How to get invariance to 2D spatial transformation of the input?



Getting (more) local Invariance

(local) spatial POOLING of the outputs of
replicated feature detectors:

* Averaging neighboring replicated detectors to
give a single output to the next level

* Max pooling: Taking the maximum in a
neighboring

Get a small amount of translational invariance

1
at eaCh |eve| Vi = Z(XZi,Zj X105 T X001 T X2i1,2/41 )

Reducing the number of inputs to the next layer of
feature extraction

;1 — —> "

Translation Equivariant Invariant

R

=> Stability OK (at least for local shift) for Convolutional Net!




To sum up:

]

M filters

M feature maps

Convol.

@

Pooling

l L]




Color images: 3D kernels for filtering

mxnxd parameters per filter
ldem for any layer i to layer i+1

/: £ 3D kernel
<A (filter)

Input feature maps

output feature map

i34 (filters)

Input feature maps

output feature maps




L.CN: Local Contrast Normalization

Normalization within a neighborhood along both spatial and feature

dimensions hix.y .k — Mi N,y k)
hist xy ke =

Ti,N(x.y k)

Layeri Layeri+1l

=> Very important for training large nets to carefully consider
normalization within mini-batchs [S. loffe, C. Szegedy 2015]



Istage of convolutional neural networks

Convol.

Example with only two filters.

LCN

Pooling

.‘

Ranzato CVPR’13




Istage of convolutional neural networks

One stage (zoom)

Convol.

A hidden unit in the first hidden layer is influenced by a small

LCN

neighborhood (equal to size of filter).

.‘

Ranzato CVPR’13



Istage of convolutional neural networks

One stage (zoom)

Convol.

™

LCN Pooling

5

A hidden unit after the poolinglayeris influenced by a larger neighborhood

(it depends on filter sizes and the sizes of poolingregions)
Ranzato CVPR’13




Full ConvNet architecture

One stage (zoom)

Whole system

Input
Image
e

Class
Fully Conn. |Labels
Layers

1% stage 2" stage 3" stage



To sum up: Full ConvNet architecture

B
’JF‘
phii=
witf

‘ -
Convolution.




To sum up: Full ConvNet architecture

ConvNet (CNN): feed-forward network with
-- ability to extract topological properties from image
-- designed to recognize visual patterns

Working directly from pixel images with (no/minimal)
preprocessing

Trained with back-propagation

6123956729

CNN IE ]
012 3 45 ¢6789

o o = =

I

t

Input Image




Outline

Convolutional Nets for visual classification

1. Recap MLP
2. Convolutional Neural Networks
3. Examples: LeNet)5, AlexNet



Example: LeNet5

Infroduced by Y. LeCun

Raw image of 32 x 32 pixels as input

Cl: 6x28x28 52 6xl4x14 C3: 1ex10x10 C5: 120
T F6: 84

input image:
32x32

3

RBF output: 10




Example: LeNet5

« C1,C3,C5 . Convolutional layer

« 5 x 5 Convolution matrix

« S2, 5S4 : Subsampling layer = Pooling+stride s=2
=> Subsampling by factor 2

« F6: Fully connected layer

Cl: 6x2Bx28 S2exld4xl4d C3: 16x10x10 5. 120

RBF output: 10

"

-~
-




LeNet5

All the units of the layers up to F6 have a sigmoidal activation
function

Cl: 6x28x28 52 6xl4x14 C3: 1ex10x10 C5: 120
S4: 16x5x5 _— ™~ F6: 84

input image:
32x32

3

RBF cutput: 10




LeNet5

Cl: 6x28x28 S2exldxl4 C3: 16x10x10 C5: 120

input image:
32x32

3

About 187,000 connections
About 14,000 trainable weights

RBF cutput: 10
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LeNet5 (@LeCun)
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LeNet5 (aLeCun)

2

dnswer:

_. s, FHW‘- #m&r.ﬂ. »

4

dAnswer:

LTS e O W T
b L

ﬂ] _....h.w..h.lru..n.. _L_Fn.“ﬁr Ity

6

dANSWer:

0 B B N
H r_.rdlrnlf.....

:
q
@
x
m
s
2
b

M ;_:m_
=3

O T

¥ <. ATl

[ |

_L___"_::_‘
.—. L1 i
-u4 L]
uil




AlexNet 2012

* Same model as LeCun’98 but:
- Bigger model (8 layers)

- More data (106 vs 10° images)
- GPU implementation (50x speedup over CPU)

- Better regularization (DropOut)

dense

Max
Max Max pocling




AlexNet 2012
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* Convolutional

Same type of convnet with D e
 Filtering (convolution) — Tied filter weights (few params)
 Non-Linearity sl 8
 Pooling *a |
8 layers but 224x224 input
images => much biger model:
* 650,000 neurons

* 60,000,000 weights!

Non-Linearity

* Non-linearity _ 4 ,‘ * Spatial Pooling
— Per-feature independent k. — Non-overlapping / overlapping regions
— Sum or max

— Sigmoid: 1/(1+exp(-x)) — Boureau et al. ICML’10 for theoretical analysis

* Simplifies backprop

* Makes learning faster

* Avoids saturation issues

=> Preferred option




More data for supervised training

ImageNet 2012: the (deep) revolution

* 1.2 million labeled images

* 1000 classes

. Mono-class Image classification result
- TOP5 : ¥

L) R e T
mite container ship motor scooter eopard

=i mite container ship motor scooter legpard
# black widow lifeboat go-kart jaguar
i cockroach amphibian moped cheetah
| tick fireboat bumper car snow leopard
|

Madagascar cat

vertible agaric dalmatiah sq | monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire buliterrier indri
fire engine || dead-man's-fingers currant howler monkey




Learning the AlexNet

* Basics:
« SGD, Backprop
* Cross Validation
» Grid search

* “New”
« Huge computational resources (GPU)
* Huge training set (1 million images)
« Data augmentation - Pre-processing
» Dropout
* Relu



Data Augmentation

lots of jittering, mirroring, and color perturbation of the original images
generated on the fly to increase the size of the training set

Crop, flip,.. in train / in test




Dropout: an efficient way to average many large
neural nets

For each training example, randomly omit each
hidden unit with probability 0.5

Due to sharing of weights, model strongly OROOORRO
regularized ,

Pulls the weights towards what other models
want.

Better than L2 and L1 regularization that pull
weights towards zero

After applying dropout.

@Hinton, NIPS 2012



Dropout: what do we do at test time?

Option 1:

Sample many different architectures and take the geometric mean of their
output distributions

Option 2: (Faster way)
Use all the hidden units

but after halving their outgoing weights

Rq: In case of single hidden layer, this is equivalent to the geometric mean of the
predictions of all models

For multiple layers, it’s a pretty good approximation and its fast



How well does dropout work?

Improving generalization:

For very deep nets, or at least when there are huge fully connected
layers (eg. AlexNet first FC layer, VGG next, ...)

Less useful for fully convolutional nets

Useful to prevent feature co-adaptation (feature only helpful when
other specific features present)

Later in course
—=Dropout as a Bayesian Approximation
—Representing Model Uncertainty in Deep Learning



AlexNet 2012

Ablation study
1. Number of layers
2. Tapping off features at each layer
3. Transfo Robustness vs layers



Architecture of Krizhevsky et al.

Softmax Output

8 layers total Layer 7: Full

. Layer 6: Full
Trained on Imagenet

dataset [Deng et al. CVPR’09] Layer 5: Conv + Pool
Layer 4: Conv

18.2% top-5 error

Layer 3: Conv

. . Layer 2: Conv + Pool
Our reimplementation:

18.1% tOP—S error Layer 1: Conv + Pool

| softmax Quput__

e
= F

TS
= N

| Loyers Corv ool

B

e

| Lover2:Conv +Pool__
= F

| LveriConroo

| neurimage

Input Image




Architecture of Krizhevsky et al.

Softmax Output

* Remove top fully

connected layer
Layer 6: Full

— Layer 7

Layer 5: Conv + Pool

* Drop 16 million Lerep R Gy
parameters

Layer 3: Conv

° Ol'lly 1.1% dI'Op in Layer 2: Conv + Pool

!
perform ance. Layer 1: Conv + Pool

| sormaxOuput__
|

_wersn
= F

| Loyers Corvpoa

B

e

_Laver 2:Conv +Pool _
= F

| Loser-Convvod

| neucimage

Input Image




Architecture of Krizhevsky et al.

* Remove both fully connected
layers
— Layer 6 & 7

Layer 5: Conv + Pool

= =

* Drop ~50 million parameters

= =

Layer 3: Conv

& =

* 5.7% drop in performance

a

Layer 1: Conv + Pool

= >

Input Image




Architecture of Krizhevsky et al.

* Now try removing upper feature
extractor layers & fully connected:

— Layers 3,4, 6,7
* Now only 4 layers

* 33.5% drop in performance

= Depth of network is key

Softmax Output

Layer 5: Conv + Pool

Layer 2: Conv + Pool
Layer 1: Conv + Pool

Input Image




Translation (Vertical)
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Scale Invariance

—— Lawn Mower

——Shih—Tzu

—— African Crocodile
African Grey

—— Entertrainment Center
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Rotation Invariance
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Deep ConvNets for image classification

* AlexNet 8 layers, 62M parameters

55
27
13 13
A

13

\

55 3B4

13

256

dense |

Max Max
Stride\| g | PO°liNg pooling
of 4

224

3

D Alex Krizhevsky, llya Sutskever and Geoffrey Hinton

Max

pooling 4

ImageNet Classification with Deep Convolutional Neural Networks.

In NIPS, 2012,

dense|

4096

100
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