Transfer learning and Domain adaptation

Transfer from ImageNet (source)

Transfer as generic features

Brut Deep features (learned from ImageNet)

(== a learned embedding from Image to vector representation)

Retrieval

Transfer learning (from source to target)

Frozen features + SVM => solution to small datasets

Frozen features + Deep

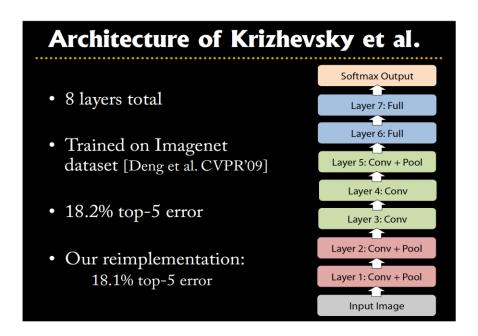
Fine tuning not easy in that case (small datasets)

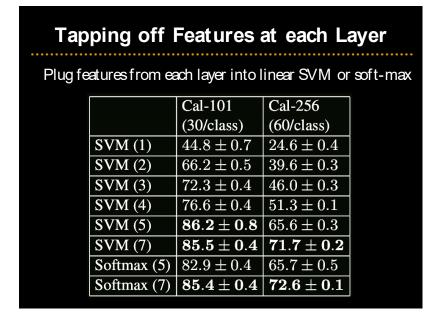
Transfer from source(=ImageNet task) to target task

Source: ImageNet (dataset + 100 classes) => AlexNet trained

Target: new dataset Cal-101 and new classification task with 101 classes =>Chopped

AlexNet (layer i) + SVM trained on





=> Results better than SoA CV methods on Cal-101!

Transfer: fine-tuning of a deep model on target task

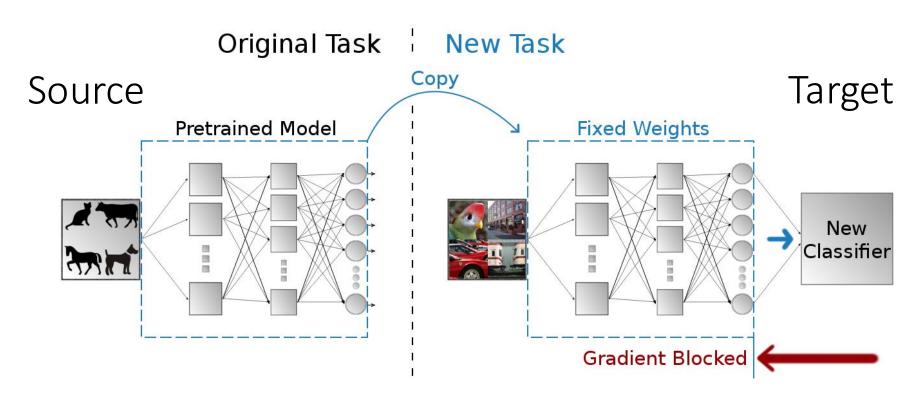
Train a deep (AlexNet) on source (ImageNet)

Keep the deep params. for target and complete with a small deep on top (fully trained on target task)

Fine-tune the whole model on target data

Challenge: only limited target data, careful about overfitting

Solution: Freeze the gradient's update for AlexNet part



Transfer: fine-tuning of a deep model on target task

Train a deep (AlexNet) on source (ImageNet)

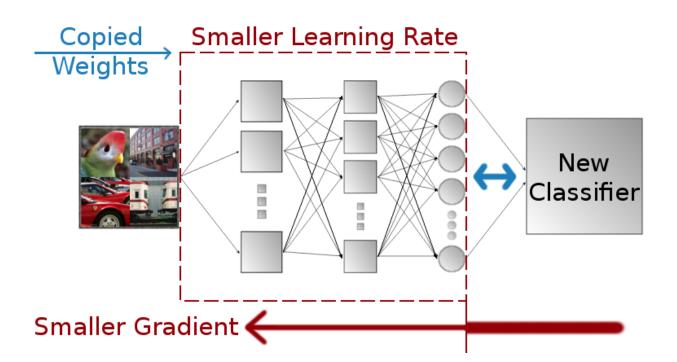
Keep the deep params. for target and complete with a small deep on top (fully trained on target task)

Fine-tune the whole model on target data

Challenge: only limited target data, careful about overfitting

Solution: Freeze the gradient's update for AlexNet part

Other solution: use smaller gradient's update for AlexNet part



Transfer: which supervision?

- Task description
 - Source data: (x^s, y^s) A large amount
 - Target data: (x^t, y^t) (Very) little

Rq: Few/One-shot learning: only a few/one examples in target domain

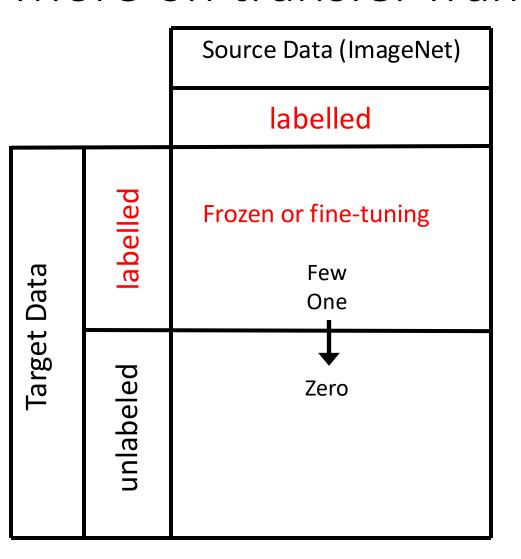
Many different contexts:

In vision: from large dataset (ImageNet) to small datasets (VOC2007)

In speech: (supervised) speaker adaption

- Source data: audio data and transcriptions from many speakers
- Target data: audio data and its transcriptions of specific user

More on transfer framework



Main purposes: Similar visual domain? Same tasks (ie class)?

Similar domain: ImageNet task => Dog/Cat task

Target:
Dog/Cat
Classifier

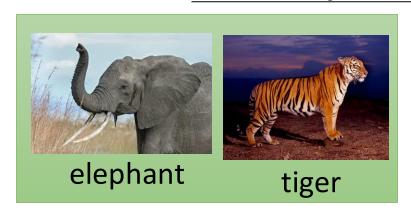
Data not directly related to the task considered

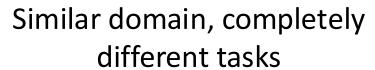
ImageNet: Similar domain, different task (1000 classes but NOT Dog and Cat classes)

General Framework for Transfer Learning

Target:
Dog/Cat
Classifier

Data not directly related to the task considered





Different domains, same task

General Framework for Transfer Learning

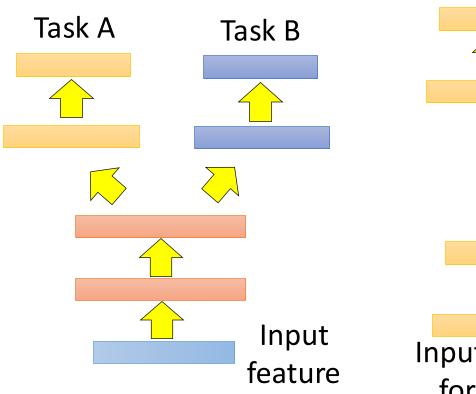
		Source Data (not directly related to the task)		
		labelled	unlabeled	
Data	labelled	Fine-tuning Multitask Learning	Self-supervised Self-taught learning Not considered here	
Target	unlabeled	Domain-adversarial training Zero-shot learning	Self-taught Clustering	

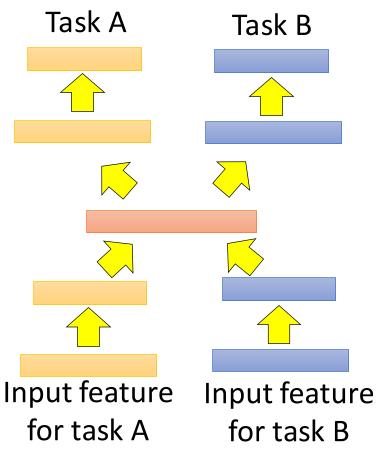
General Framework for Transfer Learning

		Source Data (not directly related to the task)		
		labelled	unlabeled	
Target Data	labelled	Fine-tuning Multitask Learning	Not considered here	
	unlabeled		Not considered here	

Multitask Learning

 The multi-layer structure makes NN suitable for multitask learning





Transfer Learning - Overview

		Source Data (not directly related to the task)		
		labelled	unlabeled	
Target Data	labelled	Fine-tuning Multitask Learning	Not considered here	
	unlabeled	Domain adaptation- adversarial training	Not considered here	

Unsupervised Domain Adaptation (UDA)

Source data: (x^s, y^s) Training data

Target data: (x^t)

Same task, domain mismatch

Source

TARGET

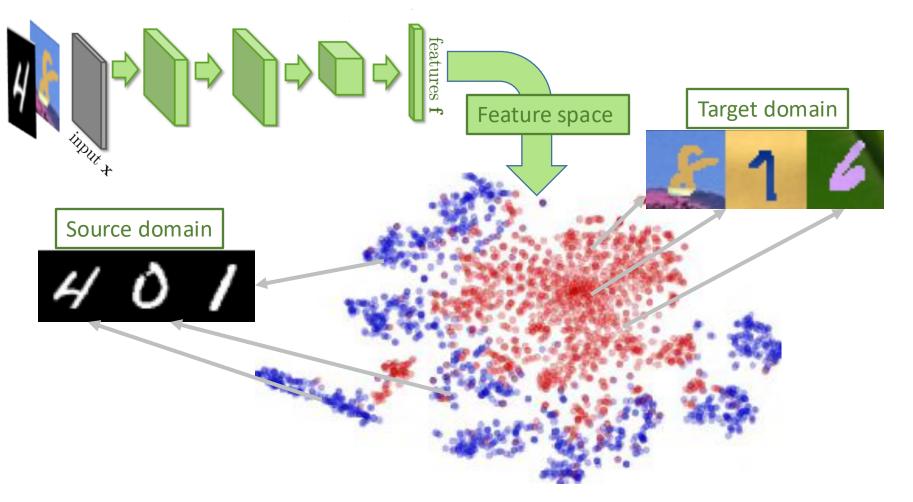
with labels

without labels

MNIST-M

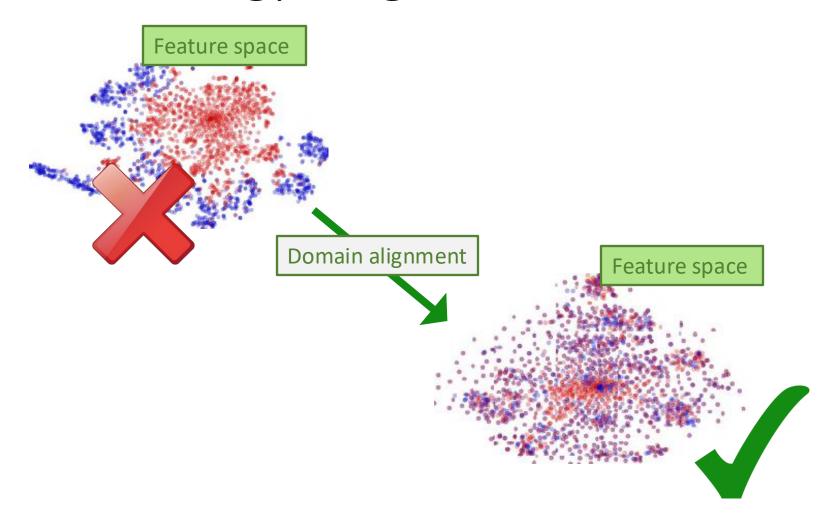
Final test on target domain!

Unsupervised Domain adaptation (UDA): objectives



Main principle: diminish the domain shift in the learned features, encourage domain confusion

UDA strategy: align both domains



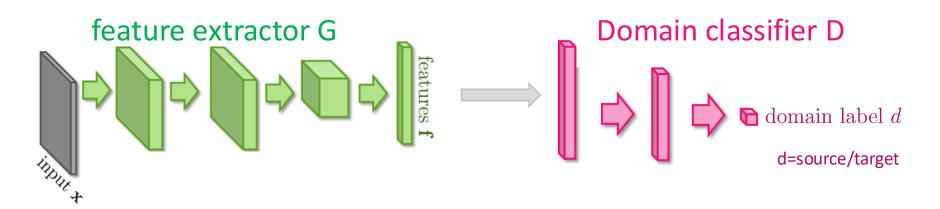
UDA strategy: 1/ domain-adversarial training

Add to the feature generator (G) a domain classifier (discriminant D) for which labels are available!

Learn G and D:

G tries to align domains

D tries to identify domains



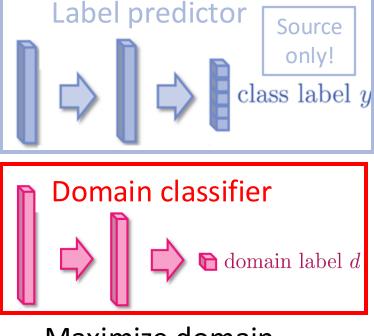
Rq: Similar to GAN (coming soon)

UDA strategy: 1/ domain-adversarial training 2/ classification task (same for source and target here)

Maximize label classification accuracy + minimize domain classification accuracy

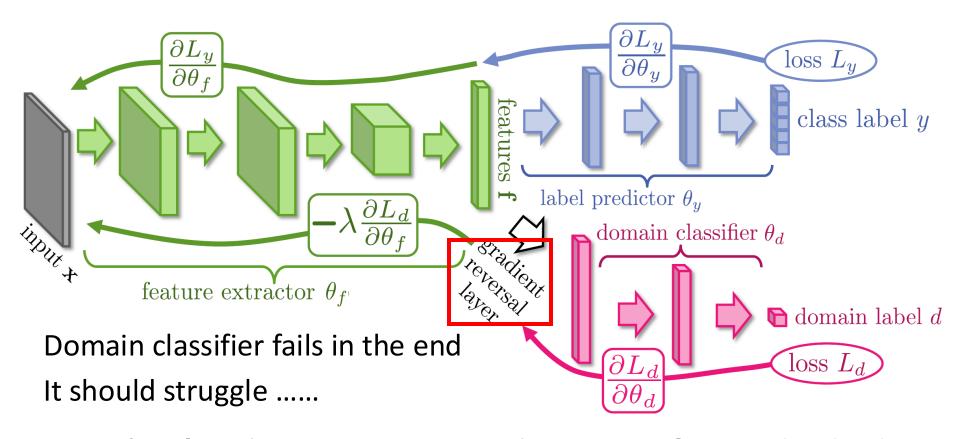
Not only cheat the domain classifier, but satisfying label classifier at the same time

Maximize label classification accuracy



Maximize domain classification accuracy

UDA strategy: joint learning



Optim from [Yaroslav Ganin, Victor Lempitsky, ICML, 2015], reconsidered and better formulated in GAN framework (latter in the course)

Domain-adversarial training

SOURCE

TARGET

No SVHN

SYN SIGNS

70

70

MNIST-M

SVHN

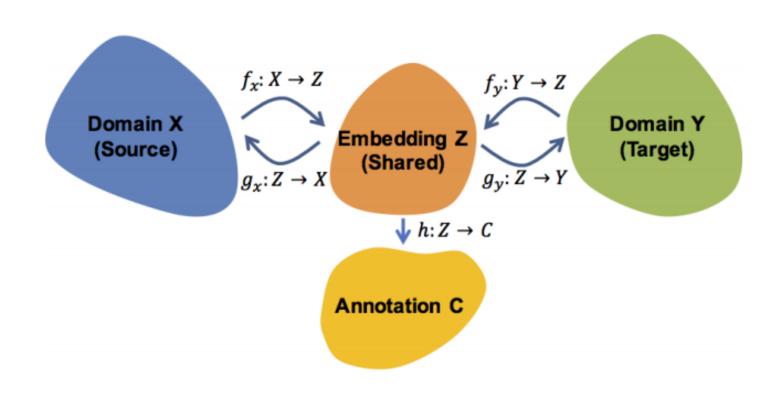
MNIST

GTSRB

Метнор	Source	MNIST	SYN NUMBERS	SVHN	SYN SIGNS
WETHOD	TARGET	MNIST-M	SVHN	MNIST	GTSRB
SOURCE ONLY		.5749	.8665	.5919	.7400
SA (FERNANDO ET AL., 2013)		.6078 (7.9%)	$.8672\ (1.3\%)$.6157~(5.9%)	.7635~(9.1%)
PROPOSED APPROACH		. 8149 (57.9%)	. 9048 (66.1%)	. 7107 (29.3%)	.8866 (56.7%)
TRAIN ON TARGET		.9891	.9244	.9951	.9987

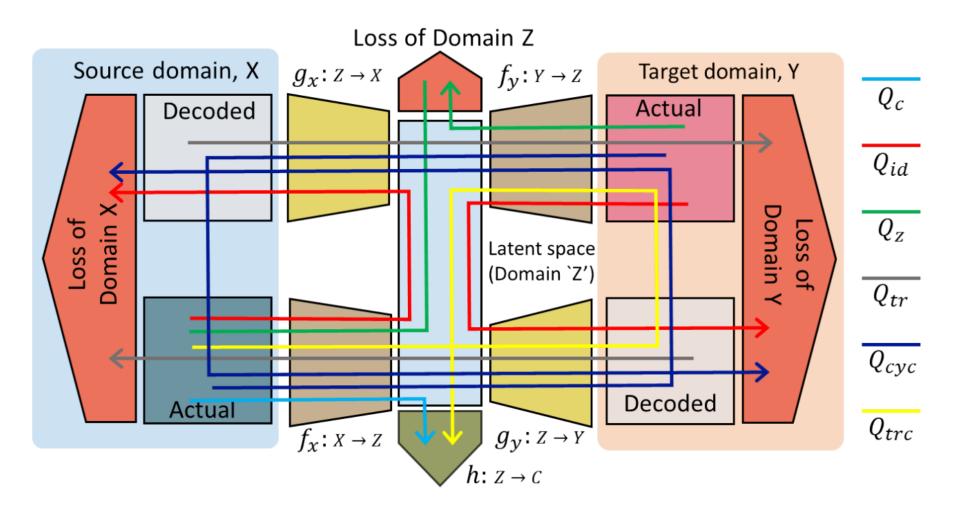
Domain adaptation

General formulation



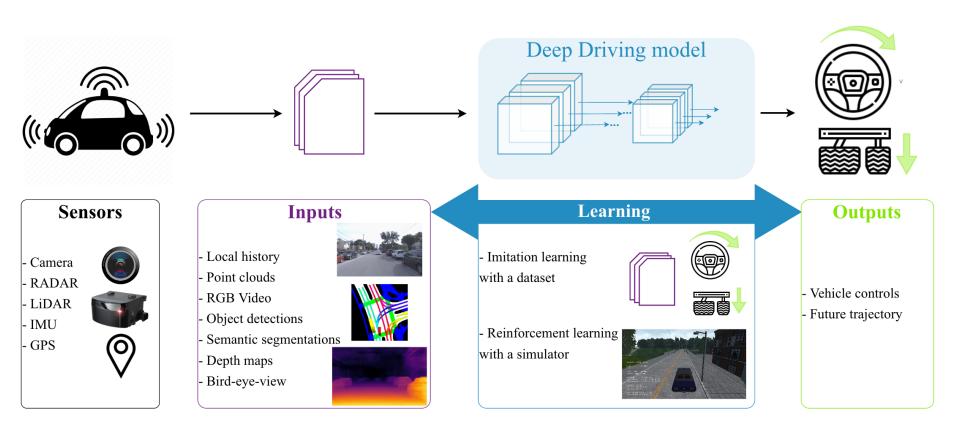
Domain adaptation

General formulation



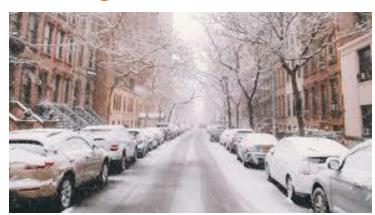
Use-Case: Domain adaptation for Autonomous driving

Context: Neural network-based autonomous driving system framework



Different, though related input data distributions

Source domain → Target domain



Different weather, light, location, sensor's spec/setup

Different, though related input data distributions

Source domain → Target domain

Different weather, light, location, sensor's spec/setup

Different, though related input data distributions

Source domain → Target domain

Different weather, light, location, sensor's spec/setup

Different, though related input data distributions

Source domain → Target domain

• Different weather, light, location, sensor's spec/setup

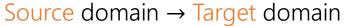
Different, though related input data distributions

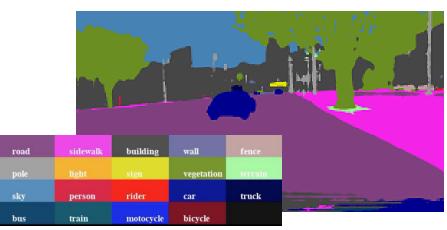
Source domain → Target domain

• Synthetic vs. real

Domain gap for VISUAL SEGMENTATION

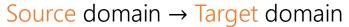
Different, though related input data distributions

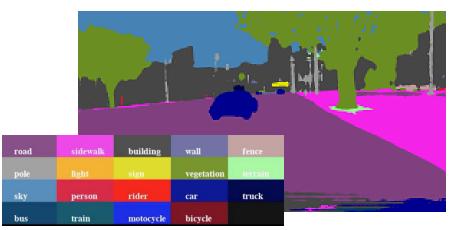


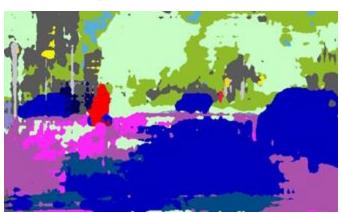


• Synthetic vs. real

Different, though *related* input data distributions



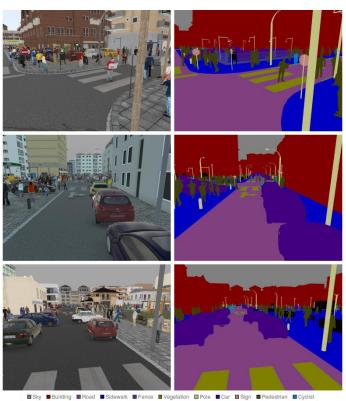




• Synthetic vs. real

Unsupervised Domain Adaptation (UDA)

Labelled source domain data



Unlabelled target domain data

Qualitative results

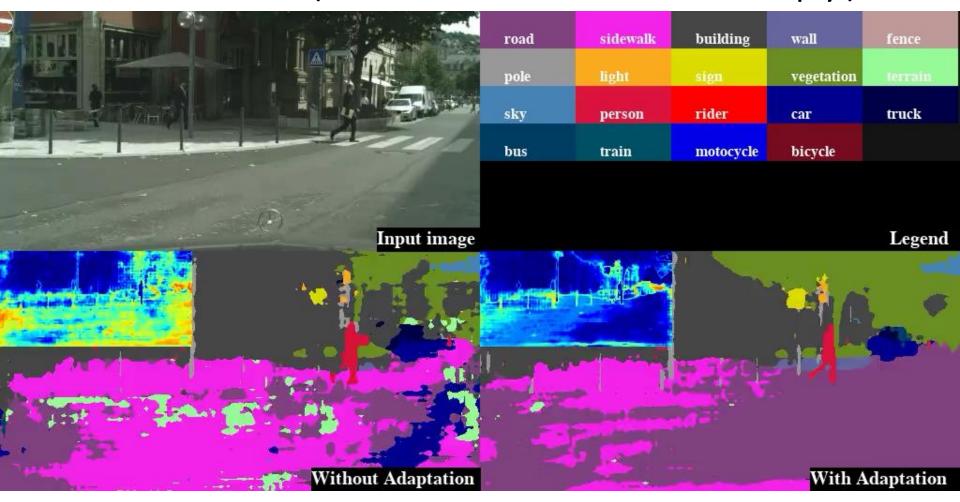
input image

without UDA

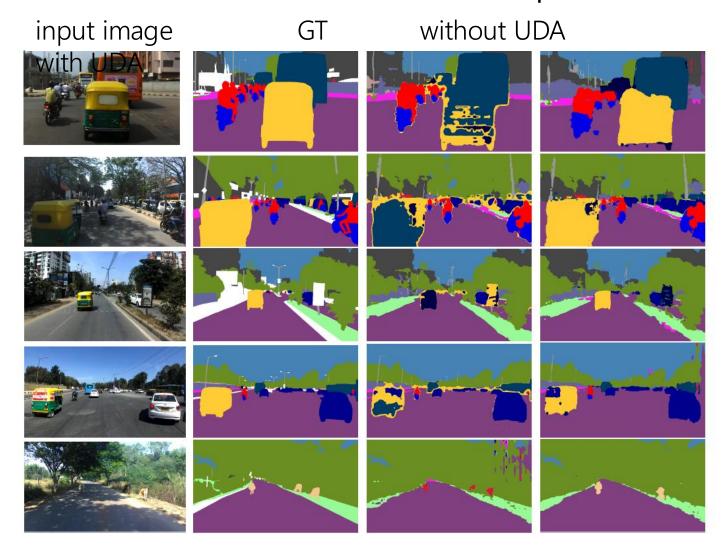
with UDA

road	sidewalk	building	wall	fence
pole	light	sign	vegetation	terrain
sky	person	rider	car	truck
bus	train	motocycle	bicycle	

UDA Results (with Adversarial Entropy)



Extension: Zero shot + Domain adaptation



Private target classes: tuk-tuk, animal. Some shared classes: truck, road, side walk, car, person, motorbike, tree, building.

Transfer Learning - Overview

		Source Data (not directly related to the task)		
		labelled	unlabeled	
Target Data	labelled	Fine-tuning Multitask Learning	Not considered here	
	unlabeled	Domain adaptation-adversarial training Zero-shot learning	Not considered here	