-Learning Music, Images and Physics

with Deep Neural Networks

Joan Bruna, Matthew Hirn, Stéphane Mallat Vincent Lostanlen, Edouard Oyallon, Nicolas Poilvert, Laurent Sifre, Irène Waldspurger

> École Normale Supérieure www.di.ens.fr/data

High Dimensional Learning

- High-dimensional $x = (x(1), ..., x(d)) \in \mathbb{R}^d$:
- Classification: estimate a class label f(x)given n sample values $\{x_i, y_i = f(x_i)\}_{i \le n}$

Image Classification $d = 10^6$ Huge variability Joshua Tree Anchor Lotus Beaver Water Lily inside classes

High Dimensional Learning

- High-dimensional $x = (x(1), ..., x(d)) \in \mathbb{R}^d$:
- Classification: estimate a class label f(x)given n sample values $\{x_i, y_i = f(x_i)\}_{i \le n}$

Audio: instrument recognition

Huge variability inside classes

High Dimensional Learning

- High-dimensional $x = (x(1), ..., x(d)) \in \mathbb{R}^d$:
- **Regression:** approximate a functional f(x)given n sample values $\{x_i, y_i = f(x_i) \in \mathbb{R}\}_{i \le n}$

Physics: energy f(x) of a state vector x

Quantum Chemistry

Curse of Dimensionality

• f(x) can be approximated from examples $\{x_i, f(x_i)\}_i$ by

local interpolation if f is regular and there are close examples:

• Need ϵ^{-d} points to cover $[0,1]^d$ at a Euclidean distance ϵ $\Rightarrow ||x - x_i||$ is always large

Learning by Euclidean Embedding

Data: $x \in \mathbb{R}^d$ Representation $\Phi x \in \mathcal{H}$ ||x - x'||: non-informative Linear Classifier Φ Gaussian & Separated "Similarity" metric: $\Delta(x, x') \quad \longleftarrow \quad \|\Phi x - \Phi x'\|$

> Equivalent Euclidean metric: $C_1 \|\Phi x - \Phi x'\| \le \Delta(x, x') \le C_2 \|\Phi x - \Phi x'\|$

How to define Φ ?

Deep Convolution Neworks

• The revival of an old (1950) idea: Y. LeCun, G. Hinton

Optimize the L_k with support constraints: over 10^9 parameters Exceptional results for *images, speech, bio-data* classification. Products by FaceBook, IBM, Google, Microsoft, Yahoo... Why does it work so well ?

- Deep multiscale networks: invariant and stable metrics on groups
- Image classification
- Models of audio and image textures: information theory
- Learning physics: quantum chemistry energy regression

Image Metrics

• Low-dimensional "geometric shapes"

Deformation metric: (classic mechanics) Grenander Diffeomorphism action: $D_{\tau}x(u) = x(u - \tau(u))$

$$\Delta(x, x') \sim \min_{\tau} \|D_{\tau}x - x'\| + \|\nabla \tau\|_{\infty} \|x\|$$
Invariant to translations
diffeomorphism
amplitude

Image Metrics

• High dimensional textures: X(u) ergodic stationary processes

2D Turbulence

Highly non-Gaussian processes

- A Euclidean metric is a Maximum Likelihood on Gaussian models.
 - Can we find Φ so that $\Phi(X)$ is nearly Gaussian, without loosing information ?

• Stability to additive perturbations:

$$\left\|\Phi x - \Phi x'\right\| \le C \left\|x - x'\right\|$$

• Invariance to translations:

$$x_c(u) = x(u-c) \Rightarrow \Phi(x_c) = \Phi(x)$$

• Stability to deformations:

$$x_{\tau}(u) = x(u - \tau(u)) \implies \|\Phi x - \Phi x_{\tau}\| \le C \|\nabla \tau\|_{\infty} \|x\|$$

Failure of Fourier and classic invariants

Wavelet Transform

• Dilated wavelets: $\psi_{\lambda}(t) = 2^{-j/Q} \psi(2^{-j/Q}t)$ with $\lambda = 2^{-j/Q}$

Q-constant band-pass filters $\hat{\psi}_{\lambda}$

• Wavelet transform: $Wx = \begin{pmatrix} x \star \phi_{2^J}(t) \\ x \star \psi_{\lambda}(t) \end{pmatrix}_{\lambda \leq 2^J}$: average frequencies

Preserves norm: $||Wx||^2 = ||x||^2$.

Scale separation with Wavelets

• Complex wavelet: $\psi(t) = g(t) \exp i\xi t$, $t = (t_1, t_2)$ rotated and dilated: $\psi_{\lambda}(t) = 2^{-j} \psi(2^{-j}r_{\theta}t)$ with $\lambda = (2^j, \theta)$

• Wavelet transform: $Wx = \begin{pmatrix} x \star \phi_{2^J}(t) \\ x \star \psi_{\lambda}(t) \end{pmatrix}_{\substack{\lambda \leq 2^J}}$: average frequencies

Preserves norm: $||Wx||^2 = ||x||^2$.

 2^{J}

Scale

Wavelet Translation Invariance

Modulus improves invariance: $|x \star \psi_{\lambda_1}(x) \star \psi_{\lambda_1}(x) \star \psi_{\lambda_1}(x) \star \psi_{\lambda_1}(x) \star \psi_{\lambda_1}(x) + \frac{1}{2} (\psi_{\lambda_1}^a ($

Second wavelet transform modulus

$$|W_2| |x \star \psi_{\lambda_1}| = \left(\begin{array}{c} |x \star \psi_{\lambda_1}| \star \phi_{2J}(t) \\ |x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}(t)| \end{array} \right)_{\lambda_2}$$

Scattering Transform

Scattering Transform

Scattering Neural Network

 W_k is unitary $\Rightarrow |W_k|$ is contractive

Theorem: For appropriate wavelets, a scattering is contractive $||S_J x - S_J y|| \le ||x - y||$ (**L**² stability) preserves norms $||S_J x|| = ||x||$

translations invariance and deformation stability:

if
$$x_{\tau}(u) = x(u - \tau(u))$$
 then

$$\lim_{J \to \infty} \|S_J x_{\tau} - S_J x\| \le C \|\nabla \tau\|_{\infty} \|x\|$$

Digit Classification: MNIST

Joan Bruna

3681796691 6757863485 2179712845 4819018894

 $\longrightarrow y = f(x)$

Classification Errors

Training size	Conv. Net.	Scattering
50000	0.5%	0.4 %
	LeCun et. al.	

Classification of Textures

CUREt database 61 classes

 ${\mathcal X}$

Scattering Moments of Processes

The scattering transform of a stationary process X(t)

Representation of Random Processes

$$\mathbb{E}(SX) = \begin{pmatrix} \mathbb{E}(X) &= \mathbb{E}(U_0X) \\ \mathbb{E}(|X \star \psi_{\lambda_1}|) &= \mathbb{E}(U_1X) \\ \mathbb{E}(||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|) &= \mathbb{E}(U_2X) \\ \mathbb{E}(||X \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}|) &= \mathbb{E}(U_3X) \\ \dots \end{pmatrix}_{\lambda_1,\lambda_2,\lambda_3,\dots}$$

Theorem (Boltzmann) The distribution p(x) which satisfies $\int_{\mathbb{R}^N} U_m x \ p(x) \ dx = E(U_m X)$

with a maximum entropy $H_{\max} = -\int p(x) \log p(x) dx$ is

$$p(x) = \frac{1}{Z} \exp\left(\sum_{m=1}^{\infty} \lambda_m \cdot U_m x\right)$$

 $H_{\max} \ge H(X)$ (entropie of X) Little loss of information: $H_{\max} \approx H(X)$

Ergodic Texture Reconstructions

Joan Bruna

Original Textures

2D Turbulence

Gaussian process model with same second order moments

Second order Gaussian Scattering: $O(\log N^2)$ moments $\mathbb{E}(|x \star \psi_{\lambda_1}|)$, $\mathbb{E}(||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|)$

Representation of Audio Textures

Cocktail Party

Failures: Harmonic Sounds V. Lostanlen

Need to express frequency channel interactions: time-frequency image

Speech

Bird

Harmonic Spiral V.Lostanlen

Need to capture frequency variability and structures.

• Alignment of harmonics in two main groups. More regular variations along (θ, j) than λ

Spiral Scattering V.Lostanlen ENS λ θ *t* 3D separable Spiral wavelet transform W_2 $\psi_{\lambda_{\theta}}(\theta) \quad \theta \quad \psi_{\lambda_{t}}(t) \, \psi_{\lambda_{\theta}}(\theta) \, \psi_{\lambda_{j}}(j)$ $\psi_{\lambda_j}(j)$

 $\psi_{\lambda_t}(t)$

Shepard-Risset Glissando

ENS

3D separable Spiral wavelet transform W_2

Rotation and Scaling Invariance

UIUC database: 25 classes

ENS

Laurent Sifre

Training	Scat.	Translation
20		20~%

Extension to Rigid Mouvements

Laurent Sifre

Need to capture the variability of spatial directions.

- Group of rigid displacements: translations and rotations
- Action on wavelet coefficients:

rotation & translation rotation & translation , angle translation
$$x(r_{\alpha}(u \, x(u)) \longrightarrow |W_1| \longrightarrow x_j(u_{\alpha}(\theta) = c_{\beta}, \theta \, \psi_2 \rho_{\theta})(u)|$$

Extension to Rigid Mouvements

Laurent Sifre

• To build invariants: second wavelet transform on $L^2(G)$: convolutions of $x_j(u, \theta)$ with wavelets $\psi_{\lambda_2}(u, \theta)$

$$x_j \circledast \psi_{\lambda_2}(u,\theta) = \int_{\mathbb{R}^2} \int_0^{2\pi} x_j(v,\alpha) \,\psi_{\lambda_2}(u-v,\theta-\alpha) \,dv \,d\alpha$$

• Scattering on rigid mouvements:

Wavelets on Translations Wavelets on Rigid Mvt. Wavelets on Rigid Mvt. $x(u) \longrightarrow |W_1| \longrightarrow x_j(u, \theta) \longrightarrow |W_2| \longrightarrow |x_j \circledast \psi_{\lambda_2}(v, \theta)| \longrightarrow |W_3| \longrightarrow \int x_j(u, \theta) \, du d\theta \qquad \int |x_j \circledast \psi_{\lambda_2}(v, \theta)| \, du d\theta$

Rotation and Scaling Invariance ENS

UIUC database: 25 classes

Laurent Sifre

Scattering classification errors

Complex Image Classification CalTech 101 data-basis: Edouard Oyallon

Arbre de Joshua Castore Nénuphare Metronome Bateau Ancre $S_J x$ Rigid Mvt. Linear Classif. \mathcal{X} **>** *Y* computes invariants variable selection : 2000 **Classification Accuracy** Data Basis Deep-Net Scat.-2 85% 80% CalTech-101 State of the art

90%

CIFAR-10

Unsupervised

80%

Learning Physics: N-Body Problem

• Energy of d interacting bodies:

N. Poilvert Matthew Hirn

Can we learn the interaction energy f(x) of a system with $x = \{ \text{positions, values} \}$?

Astronomy

Quantum Chemistry

- A system of d particles involves d^2 interactions
- Multiscale separation into $O(\log^2 d)$ interactions

Electronic density $\rho_x(u)$: computed by solving Schrodinger

Quantum Chemistry

Hydrogne, Carbon Nitrogen, Oxygen Sulfur, Chlorine

Density Functional Theory

Kohn-Sham model:

At equilibrium:

$$f(x) = E(\rho_x) = \min_{\rho} E(\rho)$$

• f(x) is invariant to isometries and is deformation stable

- **Atomization Density**
- We do not know the electronic density ρ_x at equilibrium.

approximated by the sum of the densities of all atoms:

$$\tilde{\rho}_x(u) = \sum_{k=1}^d \rho_{z_k}(u - r_k)$$

Electronic density $\rho_x(u)$

Approximate density $\tilde{\rho}_x(u)$

• Sparse regression computed over a representation invariant to action of isometries in \mathbb{R}^3 :

 $\Phi x = \{\phi_n(\tilde{\rho}_x)\}_n : \left| \begin{array}{c} \text{Fourier modulus coefficients and squared} \\ \text{scattering coefficients and squared} \end{array} \right.$

Partial Least Square regression on the training set:

$$f_M(x) = \sum_{k=1}^M w_k \,\phi_{n_k}(\tilde{\rho}_x)$$

M: number of variables

Scattering Regression

ENS

Data basis $\{x_i, f(x_i) = E(\rho_{x_i})\}_{i \leq N}$ of 4357 planar molecules

Regression:
$$f_M(x) = \sum_{m=1}^M w_m \phi_{k_m}(\tilde{\rho}_x)$$

- A major challenge of data analysis is to find Euclidean embeddings of metrics \Leftrightarrow build Gaussian models
- Continuity to action of diffeomorphisms \Rightarrow wavelets
- Known geometry \Rightarrow no need to learn. Unknown geometry: learn wavelets on appropriate groups.
- Can learn physics from prior on geometry and invariants.
- Applications to images, audio and natural languages

www.di.ens.fr/data/scattering