Learning Music, Images and Physics with Deep Neural Networks

Joan Bruna, Matthew Hirn, Stéphane Mallat Vincent Lostanlen, Edouard Oyallon, Nicolas Poilvert,

Laurent Sifre, Irène Waldspurger
École Normale Supérieure www.di.ens.fr/data

High Dimensional Learning

- High-dimensional $x=(x(1), \ldots, x(d)) \in \mathbb{R}^{d}$:
- Classification: estimate a class label $f(x)$
given n sample values $\left\{x_{i}, y_{i}=f\left(x_{i}\right)\right\}_{i \leq n}$
Image Classification $d=10^{6}$

Huge variability inside classes

High Dimensional Learning

- High-dimensional $x=(x(1), \ldots, x(d)) \in \mathbb{R}^{d}$:
- Classification: estimate a class label $f(x)$
given n sample values $\left\{x_{i}, y_{i}=f\left(x_{i}\right)\right\}_{i \leq n}$

Audio: instrument recognition
Huge variability inside classes

High Dimensional Learning

- High-dimensional $x=(x(1), \ldots, x(d)) \in \mathbb{R}^{d}$:
- Regression: approximate a functional $f(x)$ given n sample values $\left\{x_{i}, y_{i}=f\left(x_{i}\right) \in \mathbb{R}\right\}_{i \leq n}$

Physics: energy $f(x)$ of a state vector x

Astronomy

Quantum Chemistry

Curse of Dimensionality

- $f(x)$ can be approximated from examples $\left\{x_{i}, f\left(x_{i}\right)\right\}_{i}$ by local interpolation if f is regular and there are close examples:

- Need ϵ^{-d} points to cover $[0,1]^{d}$ at a Euclidean distance ϵ $\Rightarrow\left\|x-x_{i}\right\|$ is always large

Huge variability inside classes

Learning by Euclidean Embedding

Data: $x \in \mathbb{R}^{d}$

$\left\|x-x^{\prime}\right\|:$ non-informative

Representation
$\Phi x \in \mathcal{H}$
Linear Classifier

$$
\left\|\Phi x-\Phi x^{\prime}\right\|
$$

Equivalent Euclidean metric:

$$
C_{1}\left\|\Phi x-\Phi x^{\prime}\right\| \leq \Delta\left(x, x^{\prime}\right) \leq C_{2}\left\|\Phi x-\Phi x^{\prime}\right\|
$$

How to define Φ ?

Deep Convolution Neworks

- The revival of an old (1950) idea: Y. LeCun, G. Hinton

Optimize the L_{k} with support constraints: over 10^{9} parameters Exceptional results for images, speech, bio-data classification. Products by FaceBook, IBM, Google, Microsoft, Yahoo... Why does it work so well ?

Overview

- Deep multiscale networks: invariant and stable metrics on groups
- Image classification
- Models of audio and image textures: information theory
- Learning physics: quantum chemistry energy regression

Image Metrics

- Low-dimensional "geometric shapes"

Deformation metric: (classic mechanics) Grenander
Diffeomorphism action: $D_{\tau} x(u)=x(u-\tau(u))$

$$
\Delta\left(x, x^{\prime}\right) \sim \min _{\tau}\left\|D_{\tau} x-x^{\prime}\right\|+\|\nabla \tau\|_{\infty}\|x\|
$$

Invariant to translations
diffeomorphism amplitude

Image Metrics

- High dimensional textures: $X(u)$ ergodic stationary processes

2D Turbulence

Highly non-Gaussian processes

- A Euclidean metric is a Maximum Likelihood on Gaussian models.
- Can we find Φ so that $\Phi(X)$ is nearly Gaussian, without loosing information?

Euclidean Metric Embedding

- Stability to additive perturbations:

$$
\left\|\Phi x-\Phi x^{\prime}\right\| \leq C\left\|x-x^{\prime}\right\|
$$

- Invariance to translations:

$$
x_{c}(u)=x(u-c) \Rightarrow \Phi\left(x_{c}\right)=\Phi(x)
$$

- Stability to deformations:

$$
x_{\tau}(u)=x(u-\tau(u)) \Rightarrow\left\|\Phi x-\Phi x_{\tau}\right\| \leq C\|\nabla \tau\|_{\infty}\|x\|
$$

Failure of Fourier and classic invariants

Wavelet Transform

- Dilated wavelets: $\psi_{\lambda}(t)=2^{-j / Q} \psi\left(2^{-j / Q} t\right)$ with $\lambda=2^{-j / Q}$

Q-constant band-pass filters $\hat{\psi}_{\lambda}$

- Wavelet transform: $\quad W x=\binom{x \star \phi_{2^{J}}(t)}{x \star \psi_{\lambda}(t)}_{\lambda \leq 2^{J}} \begin{aligned} & \text { : average } \\ & : \begin{array}{l}\text { higher } \\ \text { frequencies }\end{array}\end{aligned}$

Preserves norm: $\|W x\|^{2}=\|x\|^{2}$.

$\mathrm{DNS}_{\mathrm{ENS}}$ Scale separation with Wavelets

- Complex wavelet: $\psi(t)=g(t) \exp i \xi t$, $t=\left(t_{1}, t_{2}\right)$
rotated and dilated: $\psi_{\lambda}(t)=2^{-j} \psi\left(2^{-j} r_{\theta} t\right)$ with $\lambda=\left(2^{j}, \theta\right)$
real parts

imaginary parts
- Wavelet transform: $W x=\binom{x \star \phi_{2^{J}}(t)}{x \star \psi_{\lambda}(t)}_{\lambda \leq 2^{J}} \begin{aligned} & \text { : average } \\ & \text { higher } \\ & \text { frequencies }\end{aligned}$ Preserves norm: $\|W x\|^{2}=\|x\|^{2}$.

Wavelet Transform

ENS

How to make everything invariant to translation?

Wavelet Translation Invariance

ENS Wavele
First wavelet transform

 but covariant

$$
\left|x \star \psi_{\lambda_{1}}\right| \star \phi_{2^{J}}(t)
$$

Scattering Transform

Scattering Neural Network

 \title{
Scattering Properties
 \title{

Scattering Properties
 $$
S_{J} x=\left(\begin{array}{c}
x \star \phi_{2^{J}} \\
\left|x \star \psi_{\lambda_{1}}\right| \star \phi_{2^{J}} \\
\left|\left|x \star \psi_{\lambda_{1}}\right| \star \psi_{\lambda_{2}}\right| \star \phi_{2^{J}} \\
\left|\left|x \star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{3}} \mid \star \phi_{2^{J}} \\
\cdots
\end{array}\right)_{\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots}=\ldots\left|W_{3}\right|\left|W_{2}\right|\left|W_{1}\right| x
$$

}
W_{k} is unitary $\Rightarrow\left|W_{k}\right|$ is contractive
Theorem: For appropriate wavelets, a scattering is
contractive $\left\|S_{J} x-S_{J} y\right\| \leq\|x-y\| \quad\left(\mathbf{L}^{2}\right.$ stability $)$
preserves norms $\left\|S_{J} x\right\|=\|x\|$
translations invariance and deformation stability:

$$
\text { if } x_{\tau}(u)=x(u-\tau(u)) \text { then } \quad \begin{aligned}
& \lim _{J \rightarrow \infty}\left\|S_{J} x_{\tau}-S_{J} x\right\| \leq C\|\nabla \tau\|_{\infty}\|x\|
\end{aligned}
$$

Digit Classification: MNIST

$368 / 796691$ Joan Bruna
6757863485
2179712845
4819018894

Classification Errors

Training size	Conv. Net.	Scattering
50000	0.5%	$\mathbf{0 . 4} \%$

LeCun et. al.

Classification of Textures

J. Bruna

CUREt database
61 classes

Scat. Moments

Linear Classifier $\longrightarrow y=f(x)$

Classification Errors $\quad 2^{J}=$ image size

Training per class	Fourier Spectr.	Histogr. Features	Scattering
46	1%	1%	$\mathbf{0 . 2} \%$

Representation of Random Processes

$$
\mathbb{E}(S X)=\left(\begin{array}{rcc}
\mathbb{E}(X) & =\mathbb{E}\left(U_{0} X\right) \\
\mathbb{E}\left(\left|X \star \psi_{\lambda_{1}}\right|\right) & =\mathbb{E}\left(U_{1} X\right) \\
\mathbb{E}\left(| | X \star \psi_{\lambda_{1}}\left|\star \psi_{\lambda_{2}}\right|\right) & =\mathbb{E}\left(U_{2} X\right) \\
\mathbb{E}\left(| |\left|X \star \psi_{\lambda_{2}}\right| \star \psi_{\lambda_{2}}\left|\star \psi_{\lambda_{3}}\right|\right) & =\mathbb{E}\left(U_{3} X\right) \\
\cdots &
\end{array}\right)_{\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots}
$$

Theorem (Boltzmann) The distribution $p(x)$ which satisfies

$$
\int_{\mathbb{R}^{N}} U_{m} x p(x) d x=E\left(U_{m} X\right)
$$

with a maximum entropy $H_{\max }=-\int p(x) \log p(x) d x$ is

$$
\begin{aligned}
p(x)=\frac{1}{Z} \exp & \left(\sum_{m=1}^{\infty} \lambda_{m} \cdot U_{m} x\right) \\
& H_{\max } \geq H(X)(\text { entropie of } \mathrm{X})
\end{aligned}
$$

Little loss of information: $H_{\max } \approx H(X)$

Cocktail Party

Need to express frequency channel interactions: time-frequency image
Bird

Speech

Cello

Harmonic Spiral

Need to capture frequency variability and structures.
 octave

- Alignment of harmonics in two main groups.

More regular variations along (θ, j) than λ

3D separable Spiral wavelet transform W_{2}

Shepard-Risset Glissando
 ENS

$$
\hat{\uparrow}^{j} \quad x(t)=a(t) e \star h(t)
$$

Scattering classification errors

Training	Scat. Translation
20	20%

Extension to Rigid Mouvements

Need to capture the variability of spatial directions.

- Group of rigid displacements: translations and rotations
- Action on wavelet coefficients:
rotation \& translation

$$
\begin{aligned}
& x\left(r _ { \alpha } (u x (u)) \longrightarrow \underset { \downarrow } { | W _ { 1 } | } \longrightarrow x _ { j } \left(x_{\alpha \theta}(\theta)=\phi \dot{x}, \theta \not \psi_{2} \alpha_{,},(u) \mid\right.\right. \\
& \int x(u) d u
\end{aligned}
$$

Extension to Rigid Mouvements

Laurent Sifre

- To build invariants: second wavelet transform on $\mathbf{L}^{2}(G)$: convolutions of $x_{j}(u, \theta)$ with wavelets $\psi_{\lambda_{2}}(u, \theta)$

$$
x_{j} \circledast \psi_{\lambda_{2}}(u, \theta)=\int_{\mathbb{R}^{2}} \int_{0}^{2 \pi} x_{j}(v, \alpha) \psi_{\lambda_{2}}(u-v, \theta-\alpha) d v d \alpha
$$

- Scattering on rigid mouvements:

Wavelets on Translations Wavelets on Rigid Mvt. Wavelets on Rigid Mvt.

$\int x(u) d u$
$\int x_{j}(u, \theta) d u d \theta$
$\int\left|x_{j} \circledast \psi_{\lambda_{2}}(v, \theta)\right| d u d \theta$

Scattering classification errors

Training	Scat. Translation	Scat. Rigid Mouvt.
20	20%	$\mathbf{0 . 6} \%$

Complex Image Classification

CalTech 101 data-basis:

Arbre de Joshua

Ancre

Castore

Edouard Oyallon

Bateau

Classification Accuracy

Data Basis	Deep-Net	Scat.-2
CalTech-101	$\mathbf{8 5 \%}$	80%
CIFAR-10	$\mathbf{9 0 \%}$	80%

State of the art Unsupervised

As Learning Physics: N-Body Problem-
 - Energy of d interacting bodies:

Can we learn the interaction energy $f(x)$ of a system with $x=\{$ positions, values $\}$?

Astronomy

Quantum Chemistry

同

- A system of d particles involves d^{2} interactions
- Multiscale separation into $O\left(\log ^{2} d\right)$ interactions

Quantum Chemistry

Electronic density $\rho_{x}(u)$: computed by solving Schrodinger

Organic molecules with
Hydrogne, Carbon Nitrogen, Oxygen Sulfur, Chlorine

$\frac{\sqrt{1 / i}}{\mathrm{ENS}}$
 Density Functional Theory

Kohn-Sham model:

$$
E(\rho)=T(\rho)+\int \rho(u) V(u)+\frac{1}{2} \int \frac{\rho(u) \rho(v)}{|u-v|} d u d v+E_{x c}(\rho)
$$

Molecular Kinetic electron-nuclei electron-electron Exchange energy energy attraction Coulomb repulsion correlat. energy

At equilibrium:

$$
f(x)=E\left(\rho_{x}\right)=\min _{\rho} E(\rho)
$$

- $f(x)$ is invariant to isometries and is deformation stable

Atomization Density

- We do not know the electronic density ρ_{x} at equilibrium.
approximated by the sum of the densities of all atoms:

$$
\tilde{\rho}_{x}(u)=\sum_{k=1}^{d} \rho_{z_{k}}\left(u-r_{k}\right)
$$

Electronic density $\rho_{x}(u)$
Approximate density $\tilde{\rho}_{x}(u)$

- Sparse regression computed over a representation invariant to action of isometries in \mathbb{R}^{3} :
$\Phi x=\left\{\phi_{n}\left(\tilde{\rho}_{x}\right)\right\}_{n}:$
Fourier modulus coefficients and squared scattering coefficients and squared

Partial Least Square regression on the training set:

$$
f_{M}(x)=\sum_{k=1}^{M} w_{k} \phi_{n_{k}}\left(\tilde{\rho}_{x}\right)
$$

M: number of variables

Scattering Regression

Data basis $\left\{x_{i}, f\left(x_{i}\right)=E\left(\rho_{x_{i}}\right)\right\}_{i \leq N}$ of 4357 planar molecules

$$
\text { Regression: } \quad f_{M}(x)=\sum_{m=1}^{M} w_{m} \phi_{k_{m}}\left(\tilde{\rho}_{x}\right)
$$

Testing error
$2^{-1} \log _{2} \mathbb{E}\left|f_{M}(x)-y(x)\right|^{2}$

Conclusion

- A major challenge of data analysis is to find

Euclidean embeddings of metrics \Leftrightarrow build Gaussian models

- Continuity to action of diffeomorphisms \Rightarrow wavelets
- Known geometry \Rightarrow no need to learn.

Unknown geometry: learn wavelets on appropriate groups.

- Can learn physics from prior on geometry and invariants.
- Applications to images, audio and natural languages
www.di.ens.fr/data/scattering

