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Overall Framework – Bag of Words!

Regularize RBM with Selectivity and Sparsity! Local Supervised Fine-Tuning!

RBM Regularization!
Our BoW architecture consists of            
five layers of representations, with 
the following operations:!
!

1) Local feature extraction!
2) Unsupervised RBM learning, !
3) Supervised fine-tuning,!
4) Low-level inference,!
5) Spatial pooling, and!
6) SVM training & classification.!

Unsupervised 
RBM Learning!

Supervised 
Fine-tuning!

Feed-Forward 
Local Coding!

Local Feature 
Extraction!

Classifier Training &!
Error Backpropagation!

SVM 
Classifier!

Local Feature 
Extraction!

Spatial Pyramids!
& Max-Pooling!

Local 
Features!Image!

Local 
Feature 
Codes!

Image 
Signature!

Image !
Category 

Label!

RBM-based Codebook!

Given a set of local descriptors 
extracted from images in a dataset,   
can we construct an accurate, small 
and fast visual codebook through 
unsupervised & supervised learning?!

•  Non-Learned Assignment Coding!
• Hard assignment [Lazebnik et al.]!
•  Kernel codebooks [van Germert et al.]!
•  Soft assignment [Liu et al.]!

•   Sparse Coding!
•  ScSPM [Yang et al.]!
•  LLC [Wang et al.]!
•  SC & max pooling [Boureau et al.]!
• Multi-way local pool [Boureau et al.]!

•  Restricted Boltzmann Machine (RBM)!
• CDBN [Lee et al.]!
•  Sparse RBM [Lee et al. / Sohn et al.]!
• CRBM [Sohn et al.]!

•  Supervised Learning!
• Discriminative codes [Boureau et al.]!
•  LC-KSVD [Jiang et al.]!
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Cross-Entropy Penalty (per descriptor & codeword)!

RBM (max. likelihood approx.)!

Descriptors!

Codewords!

Sparsity!

Selectivity!

•  Selectivity – each codeword should respond to 
only a small subset of input descriptors.!

•  Sparsity – each input descriptor should only have 
a small subset of codewords responding to it.!

•  We map the distributions of observed activations 
into long-tailed target distributions.!

•  Target matrix is jointly sparse and selective by 
mapping every column then remapping every row.!

•  Promotes diversity between codewords and 
discrimination between descriptors.!
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Visual Codewords Discovered!
•  Codewords capture 

local gradient structure 
of images!

•  Features are generic, 
diverse & discriminative!
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Performance Analysis & Summary!Image Categorization Results!

•  We achieved high accuracy, reaching state-of-the-art 
among the family of feature coding methods using a 
single descriptor-type.!

•  Supervised fine-tuning improved performances slightly.!
•  The codebooks are small and concise, and codewords 

are diverse and discriminative.!
•  Inference is fast since RBMs by nature are encoders, 

unlike sparse coding where reoptimization is needed.!
•  Codebook size: 1024!
•  Local features: Macro features from SIFT!

"Unsupervised "Supervised!
Caltech-101 (15 tr.) " "70.2% " "71.1%!
Caltech-101 (30 tr.) " "78.0% " "78.9%!
15 Scenes (100 tr.) " "85.7% " "86.0%!
!

•  Supervised learning is performed on the codebook 
initialized by the unsupervised reguarized RBM.!

•  The error backpropagation algorithm is used to fine-tune 
the local descriptor codebook using image labels.!
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Prediction!Coding!

•  Train RBMs as visual codeboks.!
•  Regularize RBMs for desired coding 

– jointly selective & sparse for 
codebook conciseness.!

•  Fine-tune codebook with supervision 
using image labels.!

•  Evaluate on accuracy, codebook size 
and inference speed.!


