

Weakly Supervised Object Recognition with Convolutional Neural Networks

Ivan Laptev

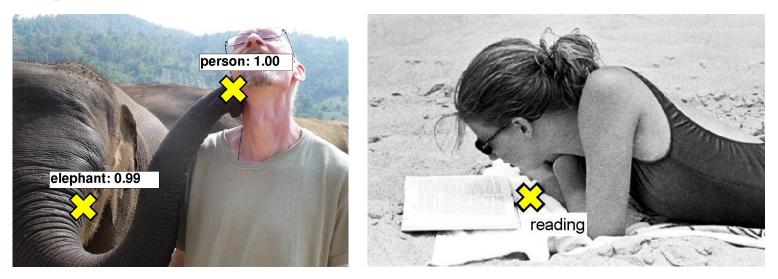
ivan.laptev@inria.fr WILLOW, INRIA/ENS/CNRS, Paris

Joint work with: Maxime Oquab - Leon Bottou - Josef Sivic

Summary

Training input

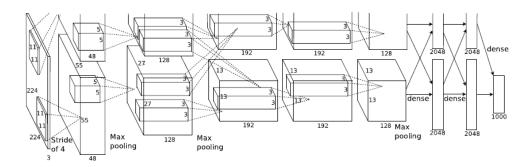
Test output



More details in http://www.di.ens.fr/willow/research/weakcnn/

Recent Progress: Convolutional Neural Networks

- Success in character recognition [LeCun'88].
- Limited performance on natural images until 2012.



• [Krizhevsky et al. 2012]: break-through in ImageNet object classification.

ILSVRC'12: 1.2M images, 1K classes

mite	container ship	motor scooter	leopard
mite	container ship	motor scooter	leopard
black widow	lifeboat	go-kart	jaguar
cockroach	amphibian	moped	cheetah
tick	fireboat	bumper car	snow leopard
starfish	drilling platform	golfcart	Egyptian cat

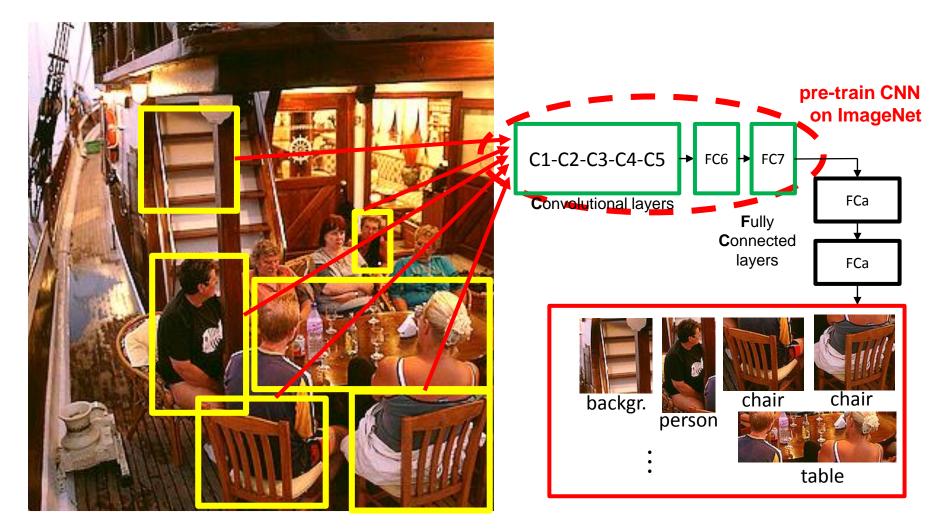
2012

Method:	Top 5 error:	
SIFT + FVs [7]	26.2%	
1 CNN		
5 CNNs	16.4%	
1 CNN*		1
7 CNNs*	15.3%	
2014-2015		
GoogLeNet:	6.6%	
VGG:	6.8%	
BAIDU	5.3%	
Human	5.1%	

Let's look at the data

A typical image with chairs and tables on Flickr.com

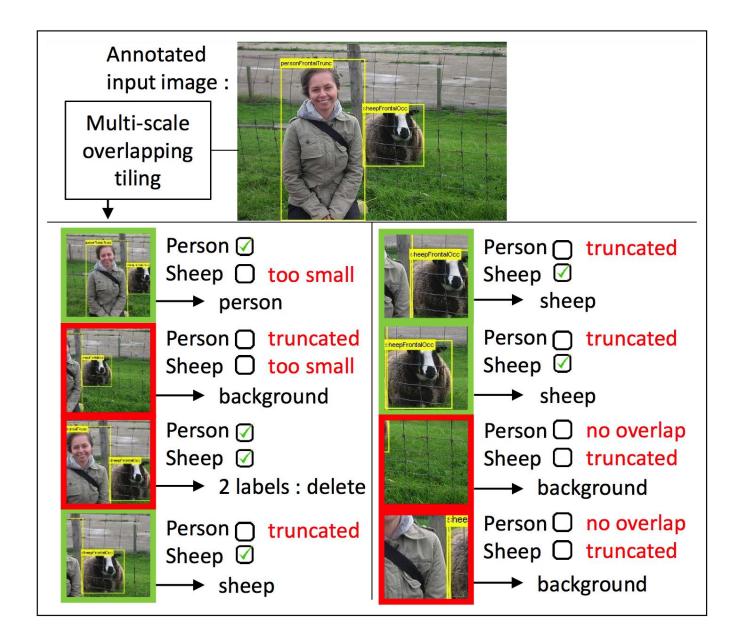
How to use CNNs for cluttered scenes?



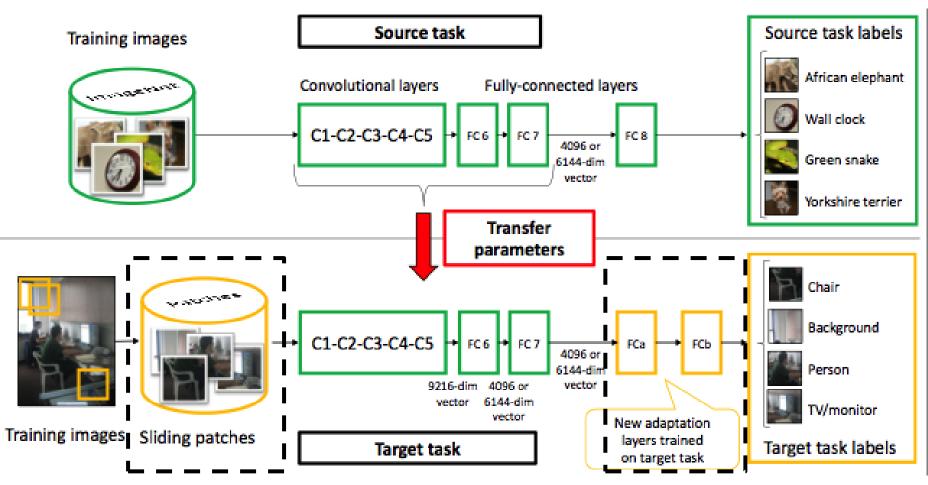
Use ImageNet pre-trained CNN \rightarrow Post-train on the new task

[Girshick et al.'14], [Oquab et al.'14], [Sermanet et al.'13], [Donahue et al. '13], [Zeiler & Fergus '13] ...

Approach – sliding window training / testing



Approach



- 1. Design training/test procedure using sliding windows
- 2. Train adaptation layers to map labels

Oquab, Bottou, Laptev and Sivic **CVPR 2014**

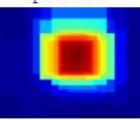
chair

pottedplant

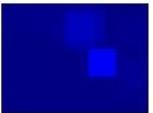
diningtable

sofa

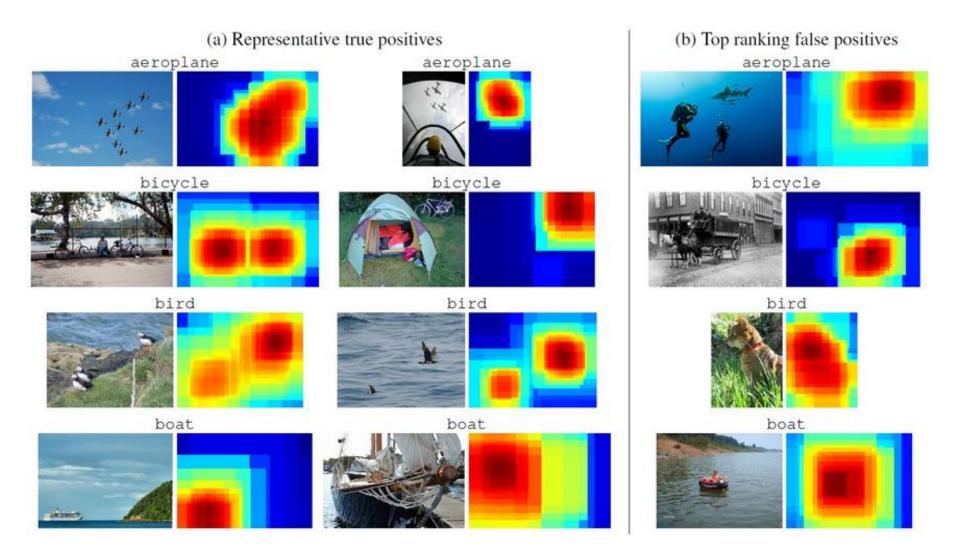
person



tymonitor

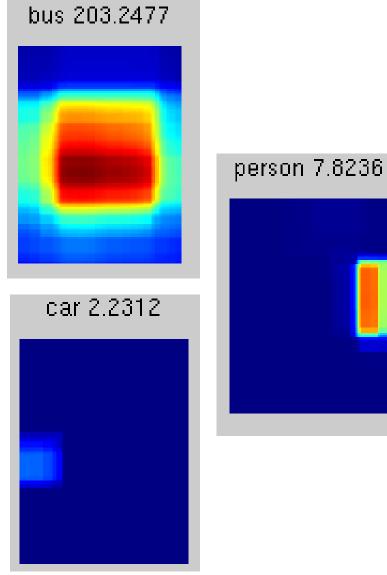


Results



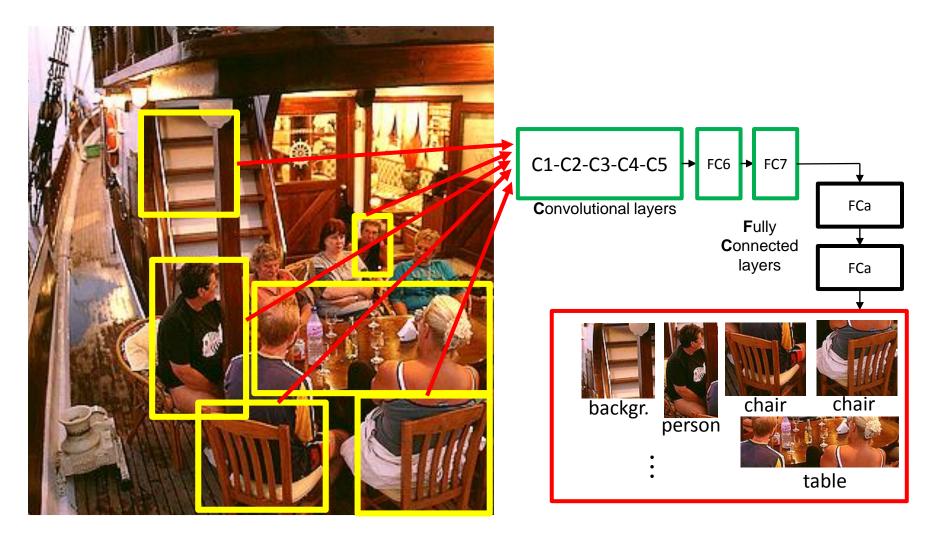
[Oquab, Bottou, Laptev and Sivic, CVPR 2014]

Results



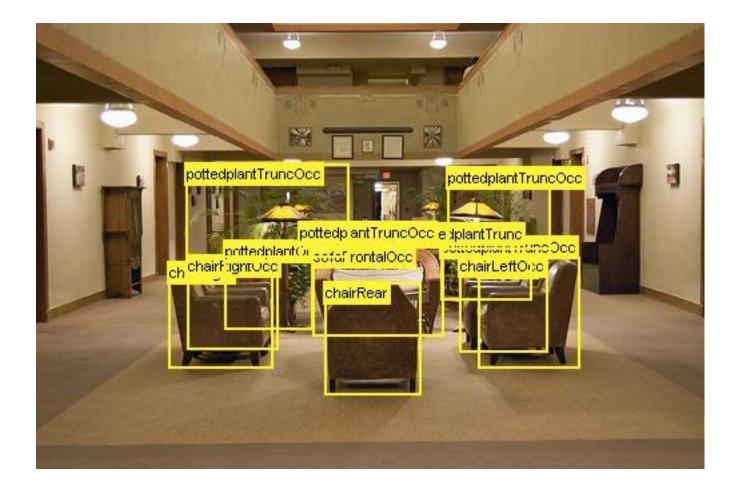
[Oquab, Bottou, Laptev and Sivic, CVPR 2014]

How to use CNNs for cluttered scenes?



Problem: Annotation of bounding boxes is (a): subjective (b): expensive

Motivation: labeling bounding boxes is tedious



Are bounding boxes needed for training CNNs?

Image-level labels: Bicycle, Person

Motivation: image-level labels are plentiful

"Beautiful red leaves in a back street of Freiburg"

[Kuznetsova et al., ACL 2013] http://www.cs.stonybrook.edu/~pkuznetsova/imgcaption/captions1K.html

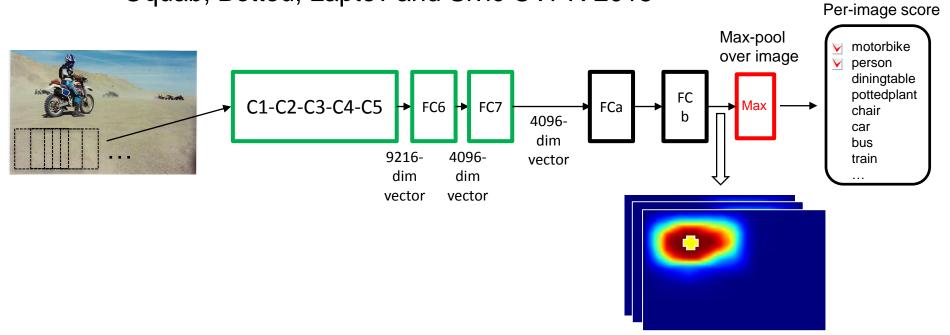
Motivation: image-level labels are plentiful

"Public bikes in Warsaw during night"

https://www.flickr.com/photos/jacek_kadaj/8776008002/in/photostream/

Approach: search over object's location at the *training time*

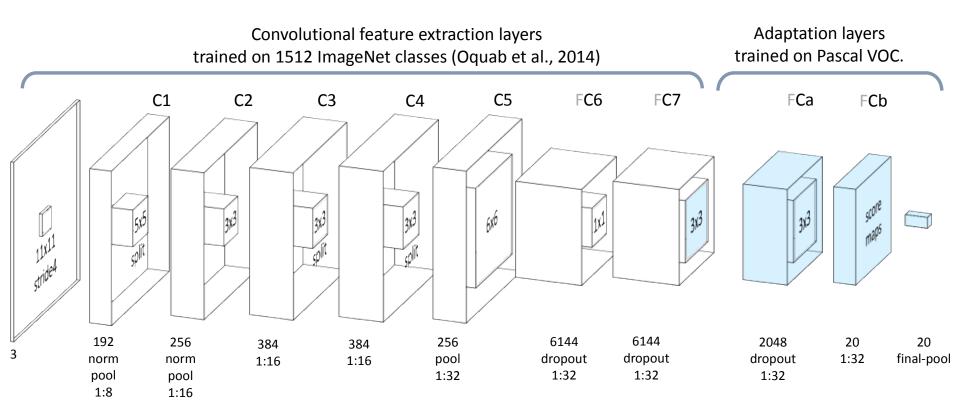
Oquab, Bottou, Laptev and Sivic CVPR 2015

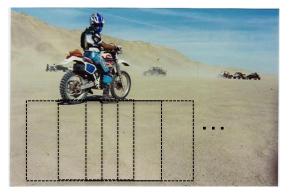


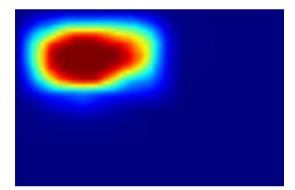
- 1. Efficient window sliding to find object location hypothesis
- 2. Image-level aggregation (max-pool)
- 3. Multi-label loss function (allow multiple objects in image)

See also [Kokkinos et al. '15, Sermanet et al. '14, Chaftield et al.'14]

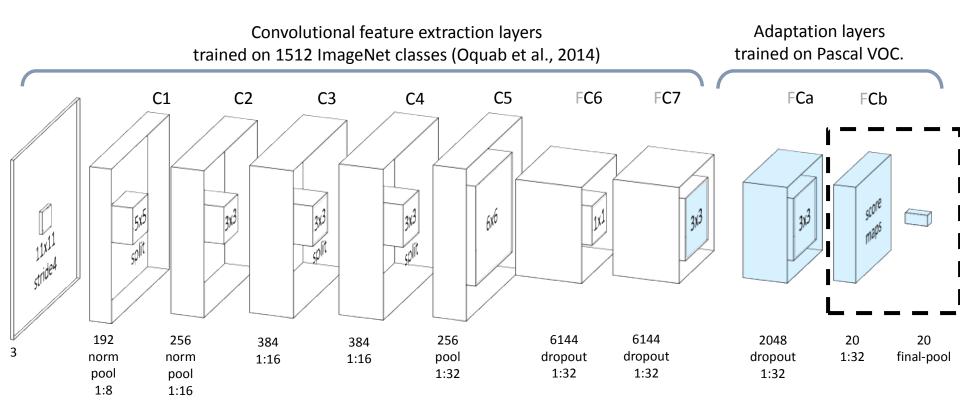
1. Efficient window sliding to find object location

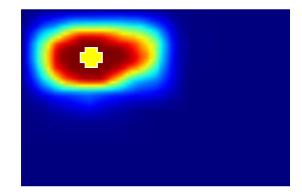




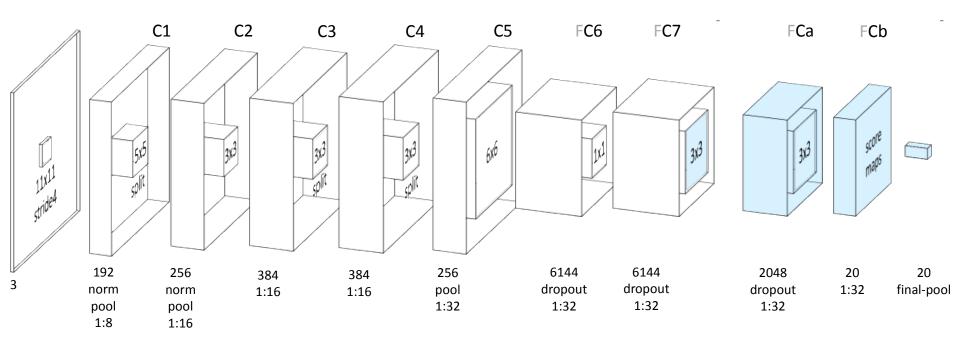


2. Image-level aggregation using global max-pool





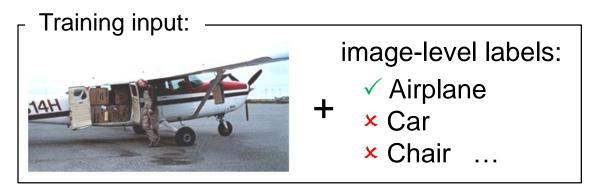
3. Multi-label loss function(to allow for multiple objects in image)



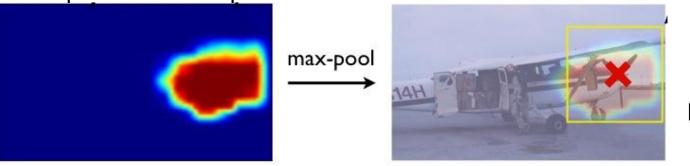
Cost function: Sum of log-loss functions over K classes:

$$\ell(f(\mathbf{x}), y) = \sum_{k} \log(1 + e^{-y_k f_k(\mathbf{x})})$$

Training with global max-pooling

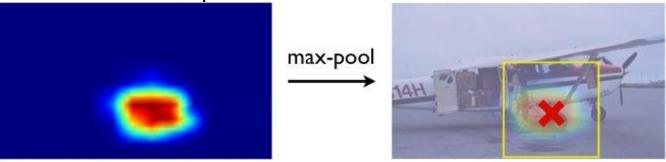


Airplane score map



Correct label: increase score Learn discriminative object parts

Car score map

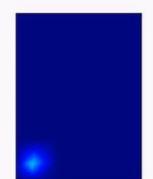


Incorrect label: decrease score

Suppress Hard Negatives

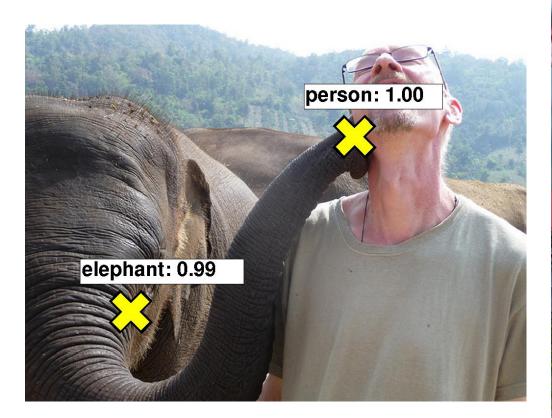
Training Motorbikes

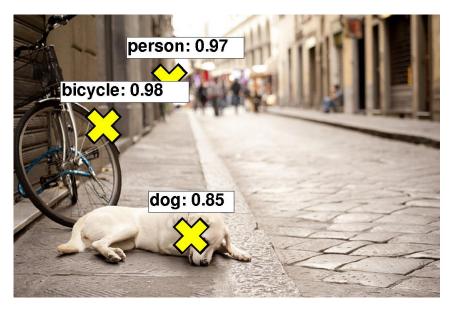
Evolution of localization score maps over training epochs

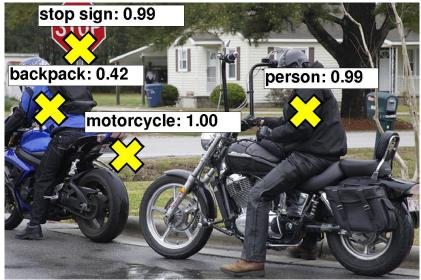


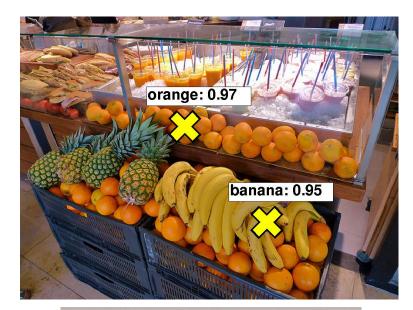
motorbike - training iteration 0030

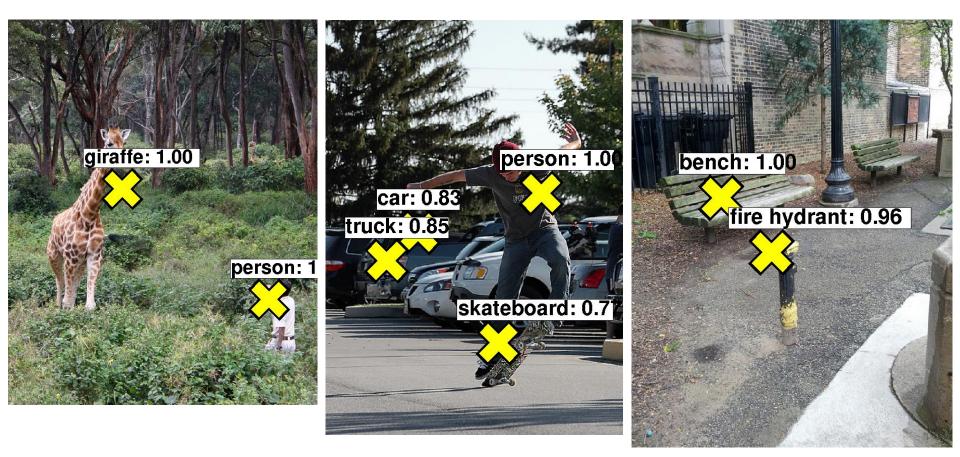
Results for weakly-supervised object recognition in Microsoft COCO dataset

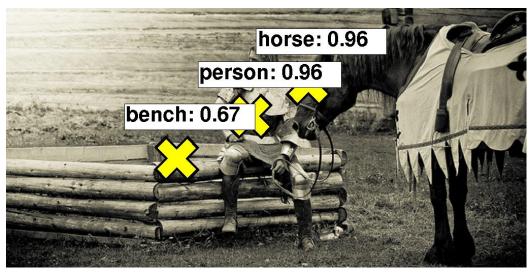


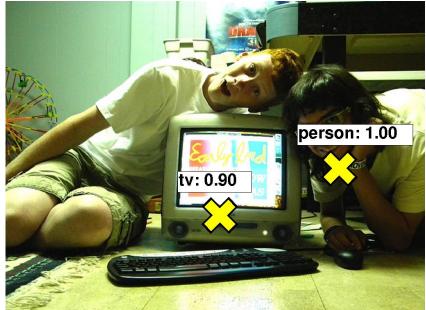


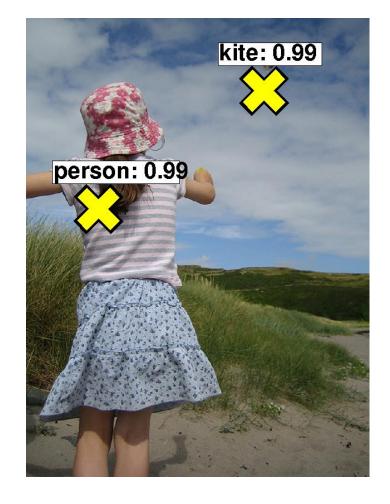


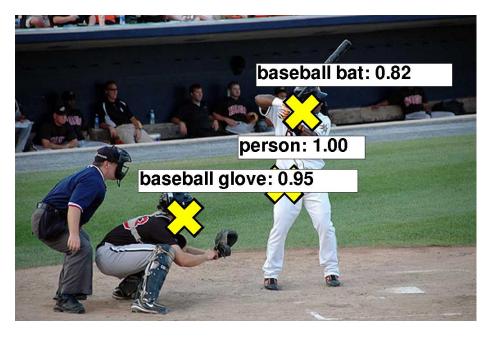


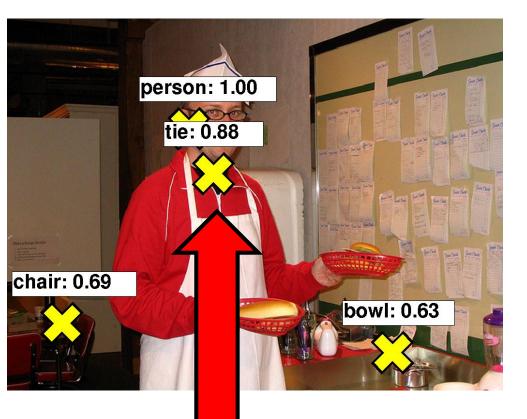


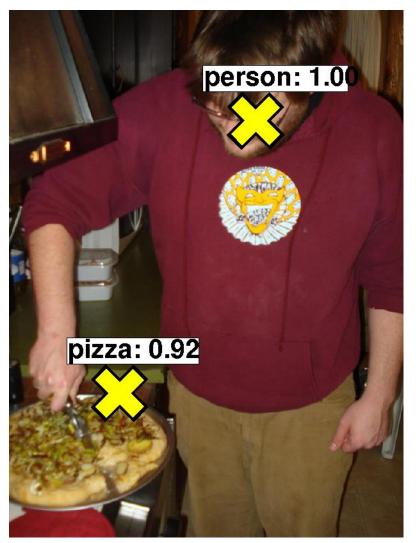




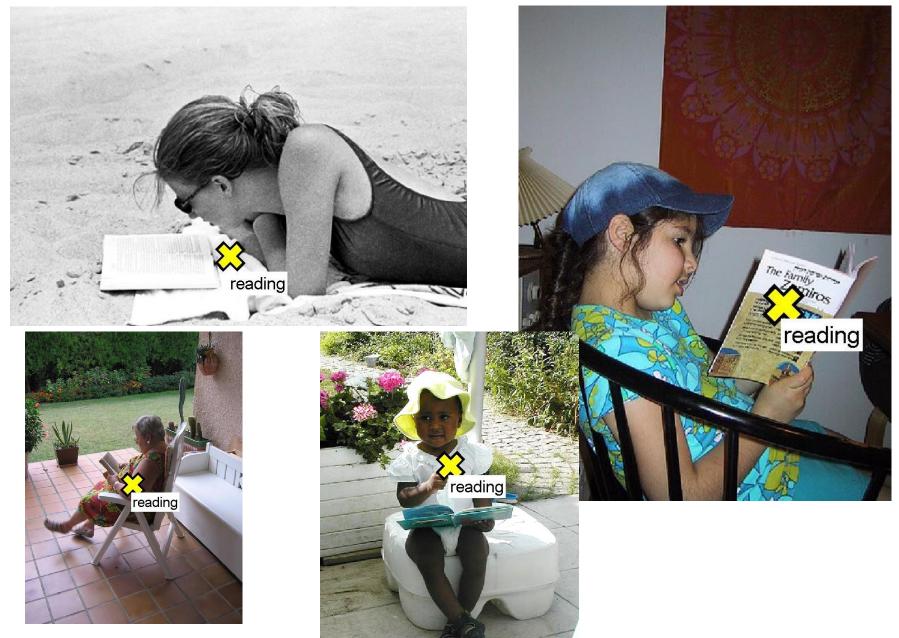








Results for weakly-supervised action recognition in Pascal VOC'12 dataset



Results PASCAL VOC 2012

Object classification

Object-level sup.	plane	bike	bird	boat	btl	bus	car	cat	chair	cow	table
A.NUS-SCM [43]	97.3	84.2	80.8	85.3	60.8	89.9	86.8	89.3	75.4	77.8	75.1
B.OQUAB [31]	94.6	82.9	88.2	84.1	60.3	89.0	84.4	90.7	72.1	86.8	69.0
Image-level sup.	plane	bike	bird	boat	btl	bus	car	cat	chair	cow	table
C.Z&F[51]	96.0	77.1	88.4	85.5	55.8	85.8	78.6	91.2	65.0	74.4	67.7
D.CHATFIELD [4]	96.8	82.5	91.5	88.1	62.1	88.3	81.9	94.8	70.3	80.2	76.2
E.NUS-HCP [47]	97.5	84.3	93. 0	89.4	62.5	90.2	84.6	94.8	69.7	90.2	74.1
F.FULL IMAGES	95.3	77.4	85.6	83.1	49.9	86.7	77.7	87.2	67.1	79.4	73.5
G.WEAK SUP	96.7	88.8	92.0	87.4	64.7	91.1	87.4	94.4	74.9	89.2	76.3

dog	horse	moto	pers	plant	sheep	sofa	train	tv	mAP
83.0	87.5	90.1	95.0	57.8	79.2	73.4	94.5	80.7	82.2
92.1	93.4	88.6	96.1	64.3	86.6	62.3	91.1	79.8	82.8
dog	horse	moto	pers	plant	sheep	sofa	train	tv	mAP
87.8	86.0	85.1	90.9	52.2	83.6	61.1	91.8	76.1	79.0
92.9	90.3	89.3	95.2	57.4	83.6	66.4	93.5	81.9	83.2
93.4	93.7	88.8	93.2	59.7	90.3	61.8	94.4	78.0	84.2
85.3	90.3	85.6	92.7	47.8	81.5	63.4	91.4	74.1	78.7
93.7	95.2	91.1	97.6	66.2	91.2	70.0	94.5	83.7	86.3

VGG 89.3

[Oquab, Bottou, Laptev and Sivic, CVPR 2015]

Summary

Training input

Test output

More details in http://www.di.ens.fr/willow/research/weakcnn/

What's next?

a dog **sitting beside** a red fire hydrant in a dog park.

a dog **holding** a skateboard trotting down a street.

