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Introduction: Visual learning 
•  A lot of recent successful 

applications of Machine 
Learning to Visual 
Understanding 

•  Supervised classification 
on large dataset ImageNet 
⚬  1M images 
⚬  1000 classes 
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Introduction: Visual learning 
•  Data for training 
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Introduction: Visual learning 
•  Beyond classification image+label 
•  Data for training : image pairs, triplets, … 

⚬  Pairs+label YES/NO (LFW) 

 
 
 
⚬  Class information 
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Introduction: Metric learning 

Metrics in Machine Learning and Computer Vision 
•  Clustering 
•  Information/Image retrieval 
•  kNN classification, Kernel methods 

Commonly used metrics:  Euclidean distance, chi2 for histograms, … 
 
[Bellet et al., A Survey on Metric Learning for Feature Vectors and Structured Data, Tech. report, 2013] 
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Outline 
1.  Introduction 
2.  Metric Learning 

⚬  Data and Metric models: Mahalanobis, … 
⚬  Learning schemes: 

▸  Constraints :Pairs, triplets … 
▸  Objective function: regularization, optimization … 
▸  Examples 

3.  Computer Vision Applications 
⚬  Relative attribute learning 
⚬  Web page comparison 
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Metric Learning 
•  Key ingredients of  metric/similarity learning: 

⚬  Data representation including both:  
▸  Feature space  

»  Gist 
»  Bag of visual word representation BoW 
»  Deep features 
IMAGE REPRESENTATION == VECTOR 

▸  Similarity function / Metric 

⚬  Learning framework  
▸  training data, type of labels and relations,  
▸  Optimization formulation  
▸  Solvers  
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Metric Learning 
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Notations:

Vector representations x 2 Rd
(visual BoWs)

Widely used approach: Mahalanobis-like Distance Metric Learning

xi,xj 2 Rd,M 2 Sd+, D2
M(xi,xj) = (xi � xj)

>
M(xi � xj) (1)

Since for all M 2 Sd+ with rank(M) = e  d, there exists L 2 Re⇥d
such

that M = L

>
L:

xi,xj 2 Rd,M 2 Sd+, D2
M(xi,xj) = (xi � xj)

>
L

>
L(xi � xj)

= kLxi � Lxjk22
(2)



Metric Learning 
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DeVISE system  (google NIPS 2013) 

•  Non-linear extension 
•  Comparison of heterogeneous objects 



Metric Learning 

•  PairWise Constraints for learning 
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Metric Learning 

•  Learning scheme for parwise constraints 
•  Xing et al: Distance metric learning, with application 

to clustering with side-information, NIPS 2002  

12 

min
M2Sd+

X

(xi,xj)2S

D2
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Metric Learning 
•  TripletWise [Weinberger LMNN NIPS06] 
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Metric Learning 
•  QuadrupletWise [Law ICCV 2013] (from taxonomy): 
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8q = (xi,xj ,xk,xl) 2 N , D(xi,xj) + �q  D(xk,xl)



Web page ML 
•  Qwise Constraints: 

⚬  Fully unsupervised ML, but temporal information available 
⚬  Constraints by comparing  screenshots of successive webpage versions 
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Metric Learning 

16 

`(M,N ) loss over set of constraints N

• Pairs:

N = S [D =)
⇢

8(xi,xj) 2 S DM(xi,xj) < 1

8(xi,xj) 2 D DM(xi,xj) > 1

• Triplets:

N = {(xi,x
+
i ,x

�
i )}Ni=1 =) 8(xi,x

+
i ,x

�
i ) 2 N , DM(xi,x

+
i )+�  DM(xi,x

�
i )

• Quadruplets:

N = {q = (xi,xj ,xk,xl)} =) 8q 2 N , DM(xi,xj) + �q  DM(xk,xl)

Classic Mahalanobis-like distance metric problem formulation:

min

M2Sd+
µR(M) + `(M,N )

With R(M) : regularizer



Metric Learning 
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Large margin optimization 
•  Qwise optimization framework 

 
 
•  Triplet optim: 

min

M2Sd+
µR(M) + CQ

X

q2N
⇠q

s.t. 8q = (xi,xj ,xk,xl) 2 N , D2
M(xk,xl) � D2

M(xi,xj) + �q � ⇠q

8q 2 N , ⇠q � 0

• R(M): regularization term

• CQ > 0: trade-o↵ between fitting and regularization.

min
M2Sd+

X

(xi,x
+
i )2S

D2
M

(xi,x
+
i ) + Ct

X

(xi,x
+
i ,x�

i )2T

⇠i

s.t. 8(xi,x
+
i ,x

�
i ) 2 T , D2

M

(xi,x
�
i ) � 1 +D2

M

(xi,x
+
i )� ⇠i



Metric Learning 
•  Objective function  

•  Regularization term to express prior, to control complexity … 
•  Low rank solution? 

⚬  Controling overfitting  
⚬  Sparsity of the singular values 
⚬  Exploiting correlation between features 
⚬  Fast/efficient solution  
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min
M2Sd+

µR(M) + `(M,N )



Metric Learning 
Formulation of R(M)

• Frobenius norm R(M) = kMk2F =

P
M2

ij

– matrix analog of the standard `2 regularizer in SVM

– does not promote low-rank solutions

– useful when M is a diagonal matrix

• Schultz, Learning a Distance Metric from Relative Comparisons, NIPS 2003

• Nuclear norm regularization R(M) = kMk⇤ = tr(M):

– rank NP-hard to optimize

– convex envelope of rank(M) on the set {M 2 Rd⇥d
: kMk  1}

– `1 norm of vector of singular values �(M)

• McFee, Metric Learning to Rank, ICML 2010
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Metric Learning 

•  M Law, Fantope regularization in ML, CVPR 2014: 

⚬  Explicit control of the rank of M 

 
⚬  Reformulation 
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By noting, 8M 2 Sd+, R(M): sum of the k smallest eigenvalues of M

R(M) = 0 () rank(M)  d� k

min

M2Sd+
µR(M) + `(M,N ) =) min

M2Sd+
µhW,Mi+ `(M,N )

with W rank-k projector on the eigenvectors of M with k smallest eigenvalues



Metric Learning 
Construction of W 

• M = VMDiag(�(M))V>
M eigendecomposition ofM 2 Sd+, VM orthogonal

matrix

• We construct w = (w1, . . . , wd)
> 2 Rd

:

wi =

(
0 if 1  i  d� k (the first d� k elements)

1 if d� k + 1  i  d (the last k elements)

W = VMDiag(w)V>
M (1)

min
M2Sd+

µR(M)+`(M,N ) =) min
M2Sd+

µhW,Mi+`(M,N ) s.t. W = VMDiag(w)V>
M



Metric Learning 
•  Algorithm: alternating optimization procedure 

Input: Training constraints N , hyper-parameter µ and step size ⌘ > 0
Output: M 2 Sd+
Initialize M1 2 Sd+, iteration n = 1
Repeat until convergence

1. Wn  VMnDiag(w)V>
Mn

2. Fix Wn in Eq. (1)

3. Wn 2 @(hWn,Mni)

4. Gn 2 @`(Mn,N )

5. Mn+1  ⇧Sd+ (Mn � ⌘(µWn +Gn))

6. n n+ 1



Results on face verification pb 
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Method Accuracy (in %)

ITML 76.2 ± 0.5

LDML 77.5 ± 0.5

PCCA 82.2 ± 0.4

Proposed method 83.5 ± 0.5

2 images => same face ? 
Labeled Faces in the Wild (LFW)-- 27 SIFT descriptors concatenated 
10-fold Cross Validation (600 pairs per fold) 
 



Bad results: Should be similar 
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Bad results: Should be dissimilar 
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Hierarchical Image Classification  
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Taxonomy ML 
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• Qwise constraints sampling:

1. Images in the same class more similar than images in sibling classes

2. Images in sibling classes more similar than images in cousin classes

• xi 2 Rd: 1,000 dimensional SIFT BoW descriptor

• Diagonal PSD matrix framework: w � 0

• Convex Optimization Problem:

min
w

µkwk22 +
X

(pi,pj ,pk,pl)

`(w> [ (pk, pl)� (pi, pj)])

with  (pi, pj) = (xi � xj) � (xi � xj) Hadamard product



Taxonomy ML 
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Subtree Dataset [Verma 2012] Qwise

Amphibian 41% 43.5%
Fish 39% 41%
Fruit 23.5% 21.1%

Furniture 46% 48.8%
Geological Formation 52.5% 56.1%
Musical Instrument 32.5% 32.9%

Reptile 22% 23.0%
Tool 29.5% 26.4%

Vehicle 27% 34.7%

Global Accuracy 34.8% 36.4%

Table 1: Standard classification accuracy for the various datasets.

• 9 datasets from ImageNet, for each dataset: from 8 to 40 di↵erent classes,

from 8,000 to 54,000 images for training



Outline 
1.  Introduction 
2.  Metric Learning 

⚬  Data and Metric models: Mahalanobis, … 
⚬  Learning schemes: 

▸  Constraints :Pairs, triplets … 
▸  Objective function: regularization, optimization … 
▸  Examples 

3.  Computer Vision Applications 
⚬  Relative attribute learning 
⚬  Web page comparison 
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CV app: Scarlett and others  
•  Best Paper (Marr Prize) at 

ICCV 2011:   
Relative attributes,  

D. Parikh (TTI Chicago) and  
K. Grauman (Texas Univ) 

  

Relative Attributes

Devi Parikh
Toyota Technological Institute Chicago (TTIC)

dparikh@ttic.edu

Kristen Grauman
University of Texas at Austin

grauman@cs.utexas.edu

Abstract

Human-nameable visual “attributes” can benefit vari-
ous recognition tasks. However, existing techniques restrict
these properties to categorical labels (for example, a per-
son is ‘smiling’ or not, a scene is ‘dry’ or not), and thus
fail to capture more general semantic relationships. We
propose to model relative attributes. Given training data
stating how object/scene categories relate according to dif-
ferent attributes, we learn a ranking function per attribute.
The learned ranking functions predict the relative strength
of each property in novel images. We then build a genera-
tive model over the joint space of attribute ranking outputs,
and propose a novel form of zero-shot learning in which the
supervisor relates the unseen object category to previously
seen objects via attributes (for example, ‘bears are furrier
than giraffes’). We further show how the proposed relative
attributes enable richer textual descriptions for new images,
which in practice are more precise for human interpreta-
tion. We demonstrate the approach on datasets of faces and
natural scenes, and show its clear advantages over tradi-
tional binary attribute prediction for these new tasks.

1. Introduction
While traditional visual recognition approaches map

low-level image features directly to object category labels,
recent work proposes models using visual attributes [1–
8]. Attributes are properties observable in images that have
human-designated names (e.g., ‘striped’, ‘four-legged’),
and they are valuable as a new semantic cue in various
problems. For example, researchers have shown their im-
pact for strengthening facial verification [5], object recog-
nition [6, 8, 16], generating descriptions of unfamiliar ob-
jects [1], and to facilitate “zero-shot” transfer learning [2],
where one trains a classifier for an unseen object simply by
specifying which attributes it has.

Problem: Most existing work focuses wholly on at-
tributes as binary predicates indicating the presence (or ab-
sence) of a certain property in an image [1–8, 16]. This may
suffice for part-based attributes (e.g., ‘has a head’) and some

(a) Smiling (b) ? (c) Not smiling

(d) Natural (e) ? (f) Manmade
Figure 1. Binary attributes are an artificially restrictive way to describe
images. While it is clear that (a) is smiling, and (c) is not, the more in-
formative and intuitive description for (b) is via relative attributes: he is
smiling more than (a) but less than (c). Similarly, scene (e) is less natural
than (d), but more so than (f). Our main idea is to model relative attributes
via learned ranking functions, and then demonstrate their impact on novel
forms of zero-shot learning and generating image descriptions.

binary properties (e.g., ‘spotted’). However, for a large va-
riety of attributes, not only is this binary setting restrictive,
but it is also unnatural. For instance, it is not clear if in Fig-
ure 1(b) Hugh Laurie is smiling or not; different people are
likely to respond inconsistently in providing the presence
or absence of the ‘smiling’ attribute for this image, or of the
‘natural’ attribute for Figure 1(e).

Indeed, we observe that relative visual properties are a
semantically rich way by which humans describe and com-
pare objects in the world. They are necessary, for instance,
to refine an identifying description (“the ‘rounder’ pillow”;
“the same except ‘bluer”’), or to situate with respect to ref-
erence objects (“‘brighter’ than a candle; ‘dimmer’ than a
flashlight”). Furthermore, they have potential to enhance
active and interactive learning—for instance, offering a bet-
ter guide for a visual search (“find me similar shoes, but
‘shinier’.” or “refine the retrieved images of downtown
Chicago to those taken on ‘sunnier’ days”).

Proposal: In this work, we propose to model relative at-
tributes. As opposed to predicting the presence of an at-
tribute, a relative attribute indicates the strength of an at-
tribute in an image with respect to other images. For exam-

To appear, Proceedings of the International Conference on Computer Vision (ICCV), 2011.



CV app:  Attribute Models 
xi Real value 

 

“I am 60% sure this person is smiling” 
(Binary Classifier Confidence) 

Density, 
Smiling, 

…. 

“This person is smiling 60%” 
(Attribute Strength) 

Slide credit: Devi Parikh 
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CV app:  Relative Attributes 

> 
natural 

< 
smiling 

“Person A is smiling more than Person B” 
(Relative Attribute, Parikh and Grauman ICCV 2011) 
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Scarlett 

•  Training sets: 
Attributes labeled 
at category level 
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CV app:  Attribute Models 

•  Ranking functions for relative attributes 
For each attribute 

Supervision = all pairs as: 

open 
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CV app:  pairwise ranking 

•  Coarse labeling at 
category level => 
noisy pair sampling 

OK 

? 

NO 

•  Quadruplet to minimize this artefact 
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Scarlett Johansson vs Miley Cyrus 



CV app:  Quadruplet-wise ML 

    

•  Relative attributes => (Dis)similarity Learning under Qwise constraints 
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Relative attribute learning 
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• Learning a feature space

D2
M(pi, pj) = �(pi, pj)

>
M�(pi, pj)

= (xi � xj)
>
L

>
L(xi � xj)

• Corresponds to learn a linear transformation parameterized by L 2 RM⇥d

such that hi = Lxi where the m-th row of L is w

>
m

• Application to Actor retrieval and classification:



Relative attribute learning 
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min

w
µkwk22 +

X

(pi,pj ,pk,pl)

`
�
w

>
[ (pk, pl)� (pi, pj)]

�

• xi 2 Rd
: GIST (+ color) descriptor

•  (pi, pj) = xi � xj

• Relative attributes am for m 2 {1, . . . ,M}: smiling, masculine-looking,

young...

• Learning a wm for each attribute am using Qwise optimization

• Resulting in learning a linear transformation parameterized by L 2 RM⇥d
:

L =

2

64
w1,1 . . . w1,d
.

.

.

.

.

.

.

.

.

wM,1 . . . wM,d

3

75 =

2

64
w

>
1
.

.

.

w

>
M

3

75 , w

>
m : m-th row



Relative attribute experiments 
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•  Outdoor Scene Recognition 
OSR [Oliva 01] 

•  8 classes, ~2700 images, GIST 
•  6 attributes: open, natural … 

•  Public Figures Faces PubFig 
[Kumar 09] 

•  8 classes, ~800 images, GIST
+color 

•  11 attributes: smiling, shubby … 



Relative attribute experiments 

•  Baselines 
⚬  RA Relative attribute method (Parikh and Grauman)  

▸  annotations on class relationships with pairwise constraints 

⚬  LMNN Linear transformation learned [Wein.09] 
▸  class membership information used only unlike RA 

⚬  RA + LMNN: Combination of the first two baselines  
1.  Relative attribute annotations to learn attribute space 
2.  Metric in attribute space with LMNN 

•  Qwise Method:  
⚬  Qwise constraints generated as pairwise 
⚬  Qwise output alone or combined Qwise + LMNN 

 
[Wein.09] K.Q. Weinberger, and L.K. Saul, Distance metric learning for large margin nearest 
neighbor classication, In JMLR 2009 
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Relative attribute experiments 
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OSR Pubfig
Parikh’s code 71.3± 1.9% 71.3± 2.0%
LMNN-G 70.7± 1.9% 69.9± 2.0%
LMNN 71.2± 2.0% 71.5± 1.6%

RA + LMNN 71.8± 1.7% 74.2± 1.9%

Qwise 74.1± 2.1% 74.5± 1.3%
Qwise + LMNN-G 74.6± 1.7% 76.5± 1.2%
Qwise + LMNN 74.3± 1.9% 77.6± 2.0%

Table 1: Test classification accuracies on the OSR and Pubfig datasets for dif-
ferent methods.



Relative attribute experiments 
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Query Top 5 



Relative attribute experiments 
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Query Top 5 



Outline 
1.  Introduction 
2.  Metric Learning 

⚬  Data and Metric models: Mahalanobis, … 
⚬  Learning schemes: 

▸  Constraints :Pairs, triplets … 
▸  Objective function: regularization, optimization … 
▸  Examples 

3.  Computer Vision Applications 
⚬  Relative attribute learning 
⚬  Web page comparison 
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Web page ML 
•  Context: 

⚬  For Web crawling purpose, useful to understand the change behavior of websites 
over  time [AWUPCP11]  

⚬  Significant changes between successive versions of a same webpage => revisit the 
page 

•  Web page comparison 
⚬  Qwise to learn Web page metric and significant webpage regions 47 



Web page ML 
•  Focus on news websites 

⚬  Advertisements or menus not 
significant  

⚬  News content significant 

•  Find a metric able to properly 
identify significant changes 
between webpage versions  

•  Localize changes inside pages 
[Song04]:  
⚬  semantic spatial structure 
⚬  significant to capture  
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Web page ML 
•  Qwise Constraints: 

⚬  Fully unsupervised ML, but temporal information available 
⚬  Constraints by comparing  screenshots of successive webpage versions 
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Web page ML 
⚬  Descriptors: GIST on m-by-m grid over 

screenshots 
⚬  Ψ is a m-by-m vector of Euclidean 

distance between blocks 
⚬  Diagonal PSD matrix: w represents block 

weights 
⚬  Optimization over w 

▸  Learning of spatial weights of webpage regions 
using temporal relationships 

▸  Automatically  
»  Discovering important change regions  
»  Ignoring menus and advertisements 
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Web page ML 

•  Evaluation and Comparison 
⚬  Crawling 50 days Several sites CNN, NPR, BBC, … 
⚬  Manual change detection (news updates) for GT on 5 days 
⚬  Baselines: Euclidean Dist, LMNN 
⚬  GIST on 10x10 
⚬  Mean Average Precision on succ. Web page Metric scores 

Site CNN NPR New York Times BBC

Eval. APS APD MAP APS APD MAP APS APD MAP APS APD MAP

Eucl. 68.1 85.9 77.0 96.3 89.5 92.9 69.8 79.5 74.6 91.1 76.7 83.9
Dist. ±0.6 ±0.6 ±0.5 ±0.2 ±0.5 ±0.3 ±0.9 ±0.4 ±0.5 ±0.3 ±0.6 ±0.4
LMNN 78.8 91.7 85.2 98.0 92.5 95.2 83.2 89.1 86.1 92.5 80.1 86.3

±1.9 ±1.7 ±1.8 ±0.6 ±1.1 ±0.9 ±1.4 ±2.7 ±2.0 ±0.4 ±1.0 ±0.6
Qwise 82.7 94.6 88.6 98.6 94.3 96.5 85.5 92.3 88.9 92.8 79.3 86.1

±4.1 ±1.8 ±2.9 ±0.2 ±0.6 ±0.4 ±5.4 ±4.1 ±4.6 ±0.4 ±1.3 ±0.8
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Web page ML 
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Web page ML 
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•  Not connected to the structural layout of the Web page 



Web page ML 

•  Detect significant changes using the source code of 
pages (Segmentation) + Qwise 
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Conclusion 

•  Key issues in Metric Learning: 
⚬  Modeling: Data representation, form of the metric (linear, non lin., local) 
⚬  Learning Paradigm: unsupervised, semi-supervised, transfer, type of 

constraints 
▸  Temporal/spatial  relationships, class relationships => rich context to learn metrics or 

semantic embedding  

⚬  Optimization issues: Global/local solution, Convexity, Scalability, dim. 
Reduction 
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•  M.T. Law, N. Thome and M. Cord. Fantope Regularization in Metric Learning, CVPR 2014 
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