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1 Introduction

Achieving artificial intelligence (AI) in computers has been a subject of countless theses, span-

ning years of research. We have made significant progress in computational “intelligence” via

information search techniques, that enable machines to beat chess grandmasters at their game

or more recently defeat jeopardy legends. However, computational power is hardly the solu-

tion for many tasks that are seemingly trivial to humans. This is especially so problems such

as visual perception.

The PhD thesis will be the marriage of two fields in AI – machine learning and computer vision.

While machine learning focuses on making sense of the deluge of available data, computer

vision aims to specifically tackle the visual aspects of image understanding. The aspiration

is that we can eventually discover abstractions from low-level image content to high-level

semantic concepts, either automatically or with as little human intervention as possible. In the

recent years, highly hierarchical deep architectures have been proposed to tackle exactly this

problem of bridging this semantic gap from image to semantics.

The main objective for this PhD project is to investigate how deep architectures, can help im-

prove the performance of computational visual tasks, such as image-based object recognition

and localization, scene understanding and visual search. We will be focusing our efforts on

two aspects, namely:

1. Automatic discovery of visual representations, and

2. Construction of deep architecture to facilitate visual processing.

2 Foundations of deep architectures

A typical deep architecture consists of many layers of basic operations combined into a hi-

erarchical network. The architecture takes raw input data at the lowest level and processes

them via a sequence of basic computational units until the data is transformed to a suitable

representation in the higher layers. The current approach of learning a deep architectures is

to consider each layer as an unsupervised module and stacking them in a greedy-layer wise

manner. Subsequently, an error-correcting supervised fine-tuning step can be performed to

optimize the architecture for the required task. The rest of this section introduces two exam-

ples of unsupervised energy-based building blocks, namely the restricted Boltzmann machine

and the encoder-decoder network.
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2.1 Encoder-decoder network

The encoder-decoder network forms a fully-connected bipartite graph between a layer of I in-

put (visible) units x and a layer of J latent (hidden) units z. The layers are linked via symmetric

weighted connections W ∈ RI×J . Additionally, each input xi and latent zj unit receives input

from a bias – ci or bj respectively. The latent layer is activated from the input layer using the

encoder, while the input layer is activated from the latent layer with the decoder, via encoding

fenc(·) and decoding fdec(·) functions respectively:

z = fenc(W
>x + b) (1)

x = fdec(Wz + c) (2)

The system is governed by an energy function E(x, z) that is low when the pair of input and

output vectors (x, z) exhibit compatibility or likelihood. The energy can be defined as a com-

bination of energies from the encoder and decoder:

E(x, z) = αe‖z− fenc(x)‖22 + αd‖x− fdec(z)‖22, (3)

where αe and αd are parameters proportional to the respective learning rates. The first term

attempts to make the code z similar to the output of the encoder, while the latter term tries

to minimize the reconstruction error of z. Thus, the optimization concurrently learns both the

encoder and the decoder.

2.2 Restricted Boltzmann machine

The restricted Boltzmann machine (RBM) is considered to be a special case of an encoder-

decoder network (Ranzato et al., 2007). For an RBM with binary units, the activation probabil-

ities of units in one layer are computed based on the states of the opposite layer, fed through a

sigmoid activation function sigm(·):

P (zj | x) = sigm

(
bj +

I∑
i=1

wijxi

)
, (4)

P (xi | z) = sigm

ci +
J∑
j=1

wijzj

 . (5)

The negative log probability of a configuration of states {x, z} can be defined by an energy

function:

E (x, z) = − logP (x, z) = −
I∑
i=1

J∑
j=1

xiwijzj −
I∑
i=1

cixi −
J∑
j=1

bjzj . (6)

2



By modifying the parameters W, b and c, the energy of samples from the data distribution can

be decreased, while raising the energy of reconstructions that the network prefers to real data.
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Figure 1: The RBM learning algorithm (CD-1). (a) In the positive phase, latent units Z+ are
activated based solely on inputs X+. The negative phase involves the reconstruction of X−

from Z+ and subsequently Z− from X−. (b) The parameters W, b and c are updated based on
the gradients from the positive and negative phases.

To train an RBM, one employs the contrastive divergence (CD) learning algorithm (Hinton,

2002) to approximate the maximum likelihood of the data and update parameters W, b and c.

The RBM learning algorithm with one iteration of stochastic sampling (CD-1) is described in

Figure 1. Given a batch of K training examples, X+ ∈ RI×K and Z+ ∈ RJ×K are input

and latent states resulting from sampling from the data distribution, while X− ∈ RI×K and

Z− ∈ RJ×K are reconstructed states. The parameters are updated after every iteration using

the following update rules:

∆wij = ε
(〈
x+i z

+
j

〉
−
〈
x−i z

−
j

〉)
, (7)

∆bj = ε
(〈
z+j

〉
−
〈
z−j

〉)
, (8)

∆ci = ε
(〈
x+i
〉
−
〈
x−i
〉)
, (9)

where ε is the learning rate and 〈·〉 is defined as the average over the set of K examples.

Often, the activation probabilities of xi and zj are used in place of their binary states for pa-

rameter updates (see Hinton, 2010). This process is known as Rao-Blackwellization (Blackwell,

1947) and the results in an estimator with lower variance than when using binary states (Swer-

sky et al., 2010). During parameter updates we will adopt this convention, where xi and zj are

directly their conditional probabilities.
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3 Selective and sparse image representations

There are several existing methods to induce selectivity in RBMs (Lee et al., 2008, Nair and

Hinton, 2009). In addition to the likelihood term, these methods couple a penalty term h(z)

with the original energy term in the optimization:

arg min
{W,c,b}

−
K∑
k=1

log
∑
z

Pr
(
x(k), z(k)

)
+ λh(z) , (10)

where λ is a regularization constant and h(z) is a penalty term. To achieve selectivity, Lee et al.

(2008) proposed to penalize the loss function based on the mean conditional expectation of

each latent unit over the set of K training examples as follows:

h(z) =

J∑
j=1

∣∣∣∣∣ p− 1

K

K∑
k=1

z
(k)+
j

∣∣∣∣∣
2

. (11)

The parameter p is used to control the intended selectivity of each unit. Meanwhile, Nair and

Hinton (2009) proposed to use the cross-entropy measure between the observed and desired

distributions to regularize the learning:1

h(z) =
J∑
j=1

−p log

(
1

K

K∑
k=1

z
(k)+
j

)
− (1− p) log

(
1−

(
1

K

K∑
k=1

z
(k)+
j

))
. (12)

There are theoretical drawbacks with these two approaches. For a latent unit to be selective,

it should respond strongly to only a few examples and have low activation probabilities for

the other examples. However, these methods merely regularize the learning such that the

latent activation probabilities are low on the average. Even when the selectivity objective p

is satisfied, the unit’s activation may not be selective (for example, z(k)+j = p,∀k ∈ K). As

such, the latent units are necessarily stochastic and binary. Furthermore, since the regularizer

considers only selectivity and not sparsity, we may get units that lack differentiation between

each other. A population of latent units that respond selectively to the same few examples will

still individually satisfy the regularization objective.

3.1 Precise regularization of Restricted Boltzmann machines

We aim to have a more precise control of the regularization process (Goh et al., 2010). The

objective p can be realised as a spatiotemporal matrix P ∈ RJ×K , where each element p(k)j ∈
[0, 1] is a latent activation bias encoding the desired zj in response to input example k. Each row

1In their work, Nair and Hinton (2009) preferred a more complex but conceptually similar exponentially decay-
ing conditional expectation of z(k)j over the standard conditional expectation as described in Equation 12.
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pj represents the desired temporal activation sequence of zj , while a column p(k) is defined

across the population of latent units given example k. More generally, P can be designed based

on any inductive principle, not just sparsity.

The optimization problem follows the framework of Equation (10), with h(z) now defined as

the cross-entropy loss, summmed over the new penalty matrix:

h(z) =

J∑
j=1

K∑
k=1

−p(k)j log z
(k)+
j −

(
1− p(k)j

)
log
(

1− z(k)+j

)
. (13)

Together with the maximum likelihood approximation provided by contrastive divergence,

the average updates for wij and bj for a set of K examples can be simplified to be:

∆wij = ε
(〈
x+i sj

〉
−
〈
x−i z

−
j

〉)
, (14)

∆bj = ε
(〈
sj

〉
−
〈
z−j

〉)
. (15)

Here,

s
(k)
j = φp

(k)
j + (1− φ) z

(k)+
j , (16)

can be seen as the revised code of z(k)+j , where φ is a hyperparameter denoting the relative

learning rate of the regularizer with respect to maximum likelihood estimation. The modified

algorithm is illustrated in Figure 2.

3.2 Inducing selectivity and sparsity

Now, unlike other methods, both selectivity and sparsity can be induced by designing an ap-

propriate P matrix. By adapting the activation probabilities of latent units to fit heavy tails

distributions, such as power-law, exponential and gamma distributions, in the lifetime (rows)

or population (columns) domains, we can model their latent activity biases P. For P to be both

sparse and selective, the latent activations are fitted to desired heavy-tailed distributions. Let

z ∈ RN be either row z+j for selectivity or column z(k)+ for sparsity. The latent activation bias

pn for zn is computed as

pn = (rank (zn, z))(1/µ)−1 . (17)

where rank (zn, z) assigns a value from 0 to 1 based on the rank of zn in z, with smallest given

a value of 0 and the largest with 1. The target mean 0<µ<1 creates the power-law expression

such that when µ < 0.5, the distribution will be positively skewed.

Instead of merely getting the RBM to have low average activations (Lee et al., 2008, Nair and

Hinton, 2009), the individual activations are biased such that collectively they form positively

skewed distributions that have only a few highly activated units while most remain silent.

5



This is more precise. By inducing both selectivity and sparsity, the networks attempts to more

explicitly relate specific examples to specific units.
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Figure 2: The modified RBM learning algorithm facilitated by latent activation biases. (a) In
the positive phase, latent units Z+ are re-activated as S with additional influences from latent
activation biases P interpoliated by φ. (b) When updating parameters W and b, the mod-
ified activation S replaces Z+, only the positive phase. ∆c is unmodified from the original
algorithm.

3.3 Evaluating sparse features

The RBMs were biased with selectivity and sparsity to efficiently represent natural images (Doi

et al., 2003) and handwritten digits (LeCun et al., 1998). Using natural images, the result a set of

Gabor-like edge detectors (Figure 3), consistent with other related methods (Doi and Lewicki,

2005, Lee et al., 2008, Olshausen and Field, 1996, Ranzato et al., 2007, Teh et al., 2004). With

handwritten digits, the learned filters appear to encode handwritten strokes (Figure 4).

Figure 3: An example of a filter bank learned by an RBM biased with selectivity and sparsity.
The filters are Garbor-like with varying orientation, spatial location and spatial frequency.
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Figure 4: Filters learned on handwritten digits resemble local handwritten strokes.

Biasing RBMs improves discriminative performance. For each latent unit, the activation

with respect to each class is totaled and normalized across classes. We then computed the

Shannon entropy of each latent unit and finally averaged it across the population. This metric

〈H〉 gives us an indication of the level of class-based discrimination of the latent units, where

lower 〈H〉 values signify fewer the number of classes each unit encodes. We also trained a sim-

ple multinomial logistic regression classifier from the activations of the latent layer (without

backpropogating the features) and computed the classification error rate. Since there are 10

classes, one for each digit and roughly uniformly distributed, we consider that for a unit to be

selective, it should respond to less than 10% of the samples. Hence, we conducted our study

in the range of 0.001≤µ≤0.12.

From Figure 5(a), we observe a monotonic relationship of 〈H〉 with respect to µ. When µ is

lowered, a unit responds to fewer examples. If examples from the same class have similar

appearances, then it is more likely that these examples belong to the same class, thus lowering

〈H〉. Figure 5(b) shows that the relation between the classification error and µ is no longer

monotonic. The model has poor generalization when µ nears 0 as units encode individual

examples too specifically (Gross, 2002). For this data set, the biased RBM achieves better result

than the standard RBM in the approximate range of 0.01≤µ≤0.1.
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Figure 5: Discriminative performance of RBMs biased with selectivity and sparsity. (a) 〈H〉
varies monotonically with µ. (b) Classification error is minimum when µ is low, but not at the
lowest. There is a range of µ whereby biasing the RBM improves generalization performance.
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4 Transformation invariant feature maps

Previously, RBMs are regularized by sparse priors to increase feature differentiation and dis-

criminative power (Goh et al., 2010, Lee et al., 2008, Nair and Hinton, 2009). However, the

representations might not be invariant to input transformations. We propose that if there is

structured similarity between the features, then representations will smoothly vary with re-

spect to the transformations and invariance can be achieved (Goh et al., 2011).

4.1 Inducing topographical organization

A two-layered scheme (Hyvärinen and Hoyer, 2001, Kavukcuoglu et al., 2009) is adapted to

regularize the RBM. From latent representation Z+, we first compute a new set of activations Ẑ

based on fixed pooling weights. Subsequently, sparsity is induced to obtain target activations

P. The output of the second step is used to regularize the learning of the RBM.

+

+Z

Figure 6: The framework for inducing both sparseness and topographical organization. From a
batch of pixel inputs X+, the latent units are activated Z+ via learned weights. The activations
are then topographically pooled based on the locality of zj in the feature map via fixed weights.
Subsequently, population and lifetime sparseness are induced to obtain P. Finally, P is used
to regularize the learning of the parameters.

The layer of latent units is structured into a 2-dimensional feature map. In the 2D feature map,

a topographical structural dependence is induced by introducing between the latent units via

a new layer Ẑ, where each ẑ(k)j pools activations from the neighborhood of z(k)+j . Each unit in

Z+ activates units in Ẑ depending on the relative locality of the units:

ĥ
(k)
j =

M∑
m=1

h(k)+m ω (j,m) (18)
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where the fixed topographic pooling weights ω (·, ·) are functions of the topographic distance

between two units. A Gaussian kernel with wrap around was used.

(a) Independent coding (b) Topographic coding

Figure 7: Comparing activations of independent coding (a) and topographic coding (b). Each
pixel shows the activation of a unit in the feature map, where darker color denotes a higher
activation. When topographic organization is induced, the activations are spatially grouped
within the 2D feature map.

4.2 Evaluating feature invariance

We trained an RBM with sparse topographic regularization using colored natural image patches

from the McGill Calibrated Colour Image Database (Olmos and Kingdom, 2004). The resulting

2D feature map (Fig. 8(a)) consists of Gabor-like filters with varying spatial frequency, position,

orientation and color (Fig. 8(b)). The visual appearance of filters vary smoothly across the fea-

ture map. To our knowledge, this is the first 2D feature map that models color information.

(a) 2D topographical feature map (b) Analyses of feature map
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Figure 8: (a) (b) Appearance of filters vary smoothly across the feature map when broken
down to their components such as orientation (above) and color saturation (below). (c) Com-
paring the invariance of between sparse topographic features and sparse independent features
for rotation (above) and varying illumination color (below).

We evaluate the features learned based on their invariance to affine transformations (transla-

tion, rotation, scaling) and changes to illumination color. Patches of varying degrees of trans-
9



formation, relative to a non transformed patch, were sampled from the data sets. For every

input patch, the output signature of latent unit activations was recorded. To quantitively mea-

sure invariance, we took the mean squared difference (MSD) between the signatures of the

transformed input and that of the untransformed input. The MSD was then averaged across

the samples and plotted in Fig. 8(c). In every evaluation task, when the transformation is

low, topographic features are more invariant than independent ones. There is little difference

between the two feature types under large transformations. The signature of a slightly trans-

formed input is highly similar to the original signature. As the amount of transformation

increases, the signature gradually shifts and invariance reduces.

5 Current work

There are two aspects to learning deep architectures, which are learning between layers and

system-level modeling. Having explored the manipulation of the feature coding process be-

tween two layers in a deep architecture, we will move on to constructing deep architectures

at a systems level and the combination of information processing modules. We want to the

architecture to specialize in image understanding tasks, particularly object recognition and

localization. We currently have a few research directions under investigation.

5.1 Learning hierarchical visual dictionaries

A popular method for modeling images for object recognition is to build visual dictionaries

from local image descriptors, like the histogram of oriented gradients (HOG) (Dalal and Triggs,

2005), scale invariant feature transform (SIFT) (Lowe, 1999) and speeded-up robust features

(SURF) (Bay et al., 2008). Although more abstract than image pixels, a semantic gap still exists

between the low-level image descriptors and higher-level concepts. Our objective is to bridge

this gap by further transforming bottom-up visual information by using modules such as the

sparse RBMs that we have described. This helps alleviate the role of the classifier in the later

stage in the architecture. In our experiments, we found that it is not a trivial problem to use

the RBM to encode SIFT descriptors. We are exploring various data normalization techniques

to seamlessly fit the modules together.

5.2 Combining bottom-up and top-down deep learning

So far, deep architectures are constructed by stacking unsupervised modules and adding a

supervised module in the last step. However, the object recognition task has supervised ele-

ments, such as the labels of objects. Although the labels are often coarse, we think that these
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information should not be discarded, even when learning lower level features. Based on the

current approaches, not knowing the nature of the supervised task, features that are automat-

ically discovered via unsupervised learning may not be suitable for the task. We hope to learn

the entire deep architecture as whole, instead of layer-by-layer. More importantly top-down

information from the labels should be employed to enhance the representation. In this sense,

as we do deeper into the architecture, it untangles the manifold of classes from image space to

higher level abstract or semantic spaces. Based-on our initial studies and experimentation, the

standard encoder-decoder network appears to be a good starting point to realize such deep

networks.

5.3 Attention-based feature pooling in image space

Image information manifest in 2-dimensional image space. However, this space is rarely ex-

ploited in the image modeling process. Current methods revolve around the use of the con-

volution operation followed by a pooling step to gain invariance to the spatial position of

features (Lee et al., 2009). Using cognitive-inspired concepts, such as visual saliency and top-

down attention, we hope to be able to perform visual scanning of images in a manner that is

more human-like. We believe that this will help greatly in object localization and visual search

tasks. Human retina vision consists of a highly-sensitive central fovea area used mainly for

appearance representation and the coarser peripheral vision used for attentional purposes. As

we fixate around different parts of the scene, we pool groups of local representations together.

This pooling operation models the intrinsic image-space structure of different objects in an

image.

6 Conclusion

For this PhD, we focus on the fusion of two research topics – deep learning and computer

vision. We approach the problem in two phases, attempting to tackle the problem at a micro

level and a systems level. The micro level problem revolves around the automatic discovery

of feature representations. In the last 18 months, we explored the discovery of representations

beneficial to vision tasks. The work on sparse coding, being more theoretical, has been pre-

sented at the NIPS workshop on deep learning and unsupervised feature learning in 2010 (Goh

et al., 2010). Meanwhile, the research on topographic coding is more image-oriented and was

just presented at the International Conference on Image Processing (Goh et al., 2011).

We are currently exploring the system level problem, which involves the combination of basic

processing modules in a manner that facilitates image understanding. Three complementary

approaches are currently under investigation, namely 1) learning hierarchical visual dictionar-

11



ies from image features, 2) combining bottom-up and top-down information during the deep

learning process, and 3) using attention to catalyze feature pooling in image space. The current

work is projected to be completed in about 15 months and cumulating in PhD defense in the

first quarter of 2013.
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