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Abstract: This paper presents RETIN, a new system for automatic image indexing and interactive content-based image retrieval. The
most original aspect of our work rests on the distance computation and its adjustment by relevance feedback. First, during an offline
stage, the indexes are computed from attribute vectors associated with image pixels. The feature spaces are partitioned through an
unsupervised classification, and then, thanks to these partitions, statistical distributions are processed for each image. During the online
use of the system, the user makes an iconic request, i.e. he brings an example of the type of image he is looking for. The query may be
global or partial, since the user can reduce his request to a region of interest. The comparison between the query distribution and that
of every image in the collection is carried out by using a weighted dissimilarity function which manages the use of several attributes. The
results of the search are then refined by means of relevance feedback, which tunes the weights of the dissimilarity measure via user
interaction. Experiments are then performed on large databases and statistical quality assessment shows the good properties of RETIN for
digital image retrieval. The evaluation also shows that relevance feedback brings flexibility and robustness to the search.
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1. INTRODUCTION

In our contemporary society, the place taken by digital
documents, especially digital images, is essential. The quan-
tity of such documents, produced by television, press agenc-
ies, hospitals, museums, police, etc. is always growing. These
images or videos are often compressed and stored in different
databases. They may be accessible by telecommunication
networks, such as the Internet. Because of the tremendous
size of these databases, there is a need for image indexing
methods, search algorithms and data classification tech-
niques.

Researchers are now able to produce effective tools for
information retrieval in textual documents (Text Retrieval),
for instance, the search engines used to access web sites.
But if a text is represented by words (words can easily be
interpreted), an image is a set of pixels, and it is not easy
to interpret a set of numerical values. For example: how
can the French president be automatically recognised in
a picture?

Even if this question is still under investigation, progress
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in image processing and interpretation has led researchers
to take an interest in this field since the beginning of the
1990s. Image indexing was first done by keywords and search
was achieved through text retrieval techniques. The main
advantage of such a representation is that it is ‘high level’
(semantic level), but keywords are external information
which is often manually assigned to images. Researchers
now use image content to automatically index and retrieve
information from digital image libraries.

However, there is still a gap between the user’s request,
which can be expressed in semantic terms, and the reality
of the low level attributes usually extracted from images.
One of the most exciting goals in image indexing and
retrieval is to fill this gap, and link high level interpretation
and low level features. Because human beings are at the
end of the image retrieval chain, and as they are the only
ones to judge the retrieval quality, it is necessary (and it
offers potential) to develop interactive systems (see Salton
and Buckley [1] for text retrieval, and Nastar et al [2] for
image retrieval).

1.1. Related Work

There are some interesting systems which now enable us to
achieve an effective search guided by image content. We
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can distinguish two approaches for image retrieval. The first
approach is search-by-similarity (search-by-example), where the
goal is to find images which are similar to an example given
by the user [3–7]. The other approach is called target search.
The problem is to lead the system to the target image(s)1

by validating a displayed set of images [8–10].
The aim of this section is not to present an exhaustive

survey of the existing systems in CBIR (the interested reader
can refer to Veltkamp and Tanase [11]), rather to give a
few details about the main references of our work.

One of the most exhaustive works on image similarities
is presented by Nastar et al, and synthesised in the search
engine named Surfimage [3]. This system is generic, and
based on pre-attentive similarities between the request and
any other image in the collection. It gathers a wide choice
of image signatures and similarity measurements, allowing
the user to define and refine his query. It enables one to
search any type of image database, either general or specific,
and it involves the user in the retrieval process.

Another interesting system based on interactivity is
presented by Schröder et al [12]. It deals with image
indexing and retrieval in remote sensing image archives. In
a pre-processing stage, an unsupervised Bayesian clustering
of the data is done in different attribute spaces (spectral,
texture, etc). Then, during the use of the system, the
‘interactive learning’ step allows us to build up links between
the low level clusters and a label defined by the user. For
instance, if the user is looking for images containing lakes,
by clicking on different pixels of a lake (in the example
image), he has built meta-clusters representing a lake. After
each click, a posterior probability of being a lake is attributed
to every pixel in this image, so the user can visually
supervise the learning process. After this learning step,
different probabilistic criteria are used as a retrieval score.
Furthermore, the system gives the possibility of refining the
learning process, and then the search, via feedback. This
method is flexible, and gives good results for remote sensing
image retrieval.

Another interesting system, FourEyes, has been developed
by Minka and Picard [13]. Based on a learning algorithm
that selects and combines feature groupings, this system uses
the notion of positive and negative examples (given by the
user). Thanks to a large choice of image features, this
method is presented as a competition within ‘a society of
models’. As in the two previous systems, interactivity allows
for flexibility and query refinement.

A final illustration of an interactive system is PicHunter
[8]. Developed by Cox et al, it is designed to find an image
similar to what the user has in mind. An original feedback
approach which takes the past (all the annotations provided
by the user) into account is introduced. The algorithm is
based on a stochastic-comparison search: the probability of
each image in the database being the target is updated
thanks to comparisons carried out by the user. This Bayesian
relevance feedback process is interesting, since it is not
based on binary decisions (relevant or irrelevant). This kind

1 Here the target image is the image(s) the user has in mind.

of information is easier to assess, less arbitrary than the
binary one, and it takes into account the uncertainty of
human judgment.

1.2. Overview of Our System: RETIN (REcherche et
Traque INteractive d’images-Retrieval and
Interactive Tracking of Images)

Recognising the essential importance of the user in the
retrieval process, in this paper we focus on two different
aspects of interactivity: the user’s adaptive formulation of
the request; and the relevance feedback process. Moreover,
our goal is to introduce a generic system applied to image
or object search without any restrictions on the type of
image contained in the collection.

Our system architecture consists of two stages, the offline
processing of the database (indexing stage), and the online
search (eventually completed by a relevance feedback step).
Figure 1 shows an overview of the system.

In Sections 2 and 3, we focus on the offline processing,
from the classification to the image signature computation.
Then, Sections 4 and 5 deal with the request formulation
and the search process. Sections 6 and 7 emphasise the
relevance feedback for result refinement, and finally, Section
8 produces some results and quality assessment.

2. IMAGE SIGNATURES: RELATED
WORK

In search-by-similarity, the goal is to find images which are
‘close’ to the example. It is done with respect to a given
similarity measurement, and thanks to image indexes com-
puted on image features. These features may be of various
kinds (points, segments, regions, etc.), and may have differ-
ent properties such as scale invariance, rotation invariance
etc. They are also linked to the database’s content (general
or specialised database). For example, the indexes used in
medical applications are different from those used for image
retrieval on the web.

A signature is computed for each image in the database,
from the set of features. This signature is a structured
representation of the image, and is used as an index (it
enables searches in a set of images). A lot of image trans-
formations, such as filtering, segmentation [14], and interest
points detection [15] can be used to extract features. Four
attributes are currently employed in image retrieval – colour,
texture, shape and position – and a lot of papers try to find
the optimal colour space, or the best texture measurement.

There are a lot of ways to structure features in order to
build the image signature. In Surfimage [3], the user may
use texture or colour histogram. As Biernacki and Mohr
[16] show, the image colour distribution can be modelled
by a mixture of Gaussians, where each component stands
for a dominant colour associated with its variability.
Although the results are not as good as with classical
histograms, this signature is economical (it is short and
allows a faster search). Nastar [31] sets out an original
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Fig. 1. The whole architecture of our system: an offline step provides the indexed image database. Given a query, an online search is
performed in the indexed database. Then, a feedback step allows us to refine the set of results.

signature dedicated to object and face recognition: the Image
Shape Spectrum. This index is a histogram of a function of
the two principal curvatures processed on the local shape
of the intensity surface. It provides an effective shape
measurement, invariant in scale, in translation and in
rotation, robust to noise, to occlusion and to small viewpoint
changes. Another image representation is the eigenimage,
introduced by Pentland, Picard and Sclaroff [4]. It is based
on the calculation of the eigenvectors of the covariance
matrix of the set of image features. The aim is to identify
which features are the most effective for image recognition,
and thus it provides an efficient similarity measurement for
object recognition.

Instead of using a global characterisation, it is interesting
to focus on particular areas into images. In Blobworld,
Carson et al [14] introduce a system which works on blobs,
i.e. regions. After the image segmentation, based on the
estimation (using the EM algorithm) of the parameters of a
mixture of Gaussians, the system calculates colour, texture
and position features on the regions. Wood, Campbell and
Thomas [18] also use regions, but with colour, texture, size,
position and orientation features. Since the relative position
of blobs is effective for image classification (categorisation),
the image composition and, especially, the transitions
(between blobs) can be very informative. Smith and Li [19]
present a new signature called CRT (Composite Region
Templates), which is a matrix of frequencies of the vertical
transitions between the colour regions. For calculation of
this kind of colour co-occurrence, the image is segmented
using colour information and cut into five vertical strips.
The problem is that these indexes are segmentation-

dependent, which remains an unsolved problem without a
human supervisor (not feasible for large image collections).
Consequently, some authors look for a rigid partition of
images. For example, Minka and Picard [13] divide the
image into small sub-images, which are then gathered using
a flexible learning algorithm based on the competition
within a ‘society of models’. Malki et al [20] introduce a
multi-resolution signature based on a quadtree, in which
every localised and structured region is then indexed by a
feature histogram.

Another way to compute indexes is to detect and focus
on interest points. They are processed in order to concen-
trate the most informative image areas. After detection, a
lot of features can be computed on local patches around
these points. For instance, Schmid [21] uses local grey scale
invariants, but colour invariants may also be employed, as
presented by Mindru [22]. Spatial location can be very
informative for image retrieval, especially when working on
interest points, which is why Huet and Hancock [23] intro-
duce an extension of a classical histogram which takes into
account the relative positions of the points. This signature
has also been employed by Heinrichs et al [15].

3. RETIN: CLASSIFICATION AND
INDEXING

One of our goals is to compute a compact signature in order
to speed up the search. A compact but ineffective index
has no interest, which is why we have tried to take into
account both efficiency and effectiveness. The signature we
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Fig. 2. Partition of the attribute space. f1, f2 are the two components of this space and Ci are the clusters.

have chosen is the statistical distribution of the image, i.e.
the proportions of the clusters processed in a previous clus-
tering stage (for different attribute spaces).

3.1. Attributes

RETIN uses colour and texture attributes. For colour, the
user chooses one or several spaces (used in parallel) from
the following: RGB, normalised colour rgb, HSV, CIELAB
or CIELUV.

Texture is a local attribute computed thanks to Gabor
filters [24]. It consists of a spectral decomposition of the
signal thanks to a filter bank designed to select different
frequencies and orientations. These filters are often used for
texture analysis in image indexing and retrieval [25,26,15].
They have the property to model the receptive field of
neurons in the visual cortex. We use a bank of 12 filters

corresponding to four orientations (0,
p
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p

2
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3p

4
) and

three frequencies (from medium to low frequencies, i.e. 0.2,
0.1 and 0.05). For every pixel, we have obtained a vector
of 12 values, representing the energy of the response of the
corresponding filter.

3.2. Classification

Goal and Protocol. Classification is often used for segmen-
tation in image indexing. For instance, Pauwels and Frederix
[27] present a non-parametric clustering algorithm for seg-
mentation, but also for region grouping. In our case, classi-
fication is just made to partition the attribute spaces. Since
data are not uniformly distributed (in the attribute spaces)
for a given database, we think it is interesting in terms of
efficiency and effectiveness of the signature to use a data
adaptive division of the attribute spaces.

The offline processing has to be fully automatic, which
is why classification has to be unsupervised. We use a
Kohonen neural network [28] for data clustering. It is a
simple and well-known architecture which has already pro-
ven to be effective. The learning stage of the Kohonen map
uses a learning set composed of a large number of pixels
extracted from the digital image library. This set of pixels
is randomly sampled in the images, and punctual (colour)
or local (texture) attributes are computed for each of these.
This set is considered as being representative of the data-

base’s content. Figure 2 shows a synoptic scheme of the
classification process.

Results and Discussion. Figure 3 shows the 10 3 10
Kohonen maps obtained for a classification in the HSV
(Hue-Saturation-Value) colour space for the Columbia data-
base2 [29] and for a general image library3.

Features are not uniformly distributed in the feature space;
data are gathered in dense regions, while other regions are
completely empty. The two previous maps display the spatial
repartition of the neurons in the weight space, here the
HSV colourimetric space. The irregularity in the spatial
locations of neurons shows the irregular and data adaptive
partition of the attribute space. This irregular division is
justified for effectiveness of signatures: in dense areas a fine
partition is needed for a good data separation, whereas in
others, the partition may be coarser without loss of infor-
mation.

In conclusion, clustering is warranted in order to take
into account the diversity of the collection’s content. Any
unsupervised classification algorithm such as LVQ (Learning
Vector Quantisation), k-means, fuzzy C-means or Bayesian
clustering, for example, can be used. Nevertheless, one of
the main advantages of the Kohonen map is that it embeds
a notion of topology. The fact that neighbouring neurons
stand for neighbouring features could be integrated into the
retrieval process. The main drawback is that the user has
to manually set the number of neurons (the number of
clusters). We thought is not essential, since this parameter
can be experimentally adjusted, but as noticed by Schröder
et al [12], it may be interesting to automatically tune this
parameter using a Bayesian classifier with an informative
criterion (such as BIC or MDL, etc.), for instance.

3.3. Indexing

Signature. Indexing is the attachment of a signature to an
image. This index is external information standing for the
image in the retrieval, so its relevance is crucial for the
effectiveness of the search. The choice of a signature is
often constrained by the retrieval goal and the database

2 7200 colour images of single objects.
3 This database contains 1200 colour images of various origins – see
Section 8.1.
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Fig. 3. Self Organising Maps (10 3 10) obtained for the Columbia database (a) and our general database (b).

Fig. 4. Indexing process. For each image in the database, the index is of the following form: I = {Ii, 1 # i # N}, where N is the number
of clusters.

type. For instance, it is obvious that a colour histogram is
useless when looking for a shape, or when the library
contains grey level images.

Our system indexes the image by its statistical distribution
for the previously found clusters. Each pixel is classified by
the Kohonen map and the set of frequencies of each cluster
constitutes the signature. The procedure is summarised in
Fig. 4.

Discussion. Figure 5 shows an example of statistical distri-
bution for a landscape image. The Kohonen map contains
100 neurons (10 3 10) and its inputs are the values in the
three colour channels of the pixel in the HSV colour space.

Fig. 5. A landscape image (a), its statistical distribution projected on the 2D Kohonen map (b) and its 3D representation (c) (the locations
of the points correspond to the locations of the neurons in the HSV colour space, and the size of the centres is proportional to the
cluster population).

We can notice that data are gathered on a few neurons
of the Kohonen map. Two groups of clusters concentrate
all the information: they correspond to the sea and the
mountains. Although the clustering has been computed for
the whole database, grouping within images is effective. This
clustering could also be used to perform the segmentation
of any image in the collection.

We have compared our statistical distribution with a
classical 166-bins colour histogram computed according to
Smith and Chang’s method [30]. Actually, colour histograms
create a lot of small population clusters, whereas our signa-
ture groups the data better. This is the result of the data
adaptive partition of the attribute spaces, compared with
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Fig. 6. The retrieval process: the user interacts with the system to formulate a query (more or less complex). Then the request signature is
computed, and similar images are retrieved by comparing this signature with those of the indexed database.

the regular partition performed by classical histograms. Since
it needs fewer clusters to suit the data, our signature is
shorter. It is less heavy on storage, and it also reduces the
computational cost of search.

4. SEARCH-BY-SIMILARITY: RELATED
WORK

The search-by-similarity retrieves images according to their
similarity to a request given by the user. There are two
steps: the query formulation (by the user); and the search
(based on a similarity function). The retrieval process is
summarised in Fig. 6.

There is a strong relationship between the image signa-
ture, the request and the metric. For instance, if indexing
is based both on textual information and image content, as
in Westerveld [31], the system has to combine these two
information sources for the final retrieval. The query is
sometimes built thanks to a complex interaction with the
user. As an illustration, the user can point out a region in
the request image and/or choose the attributes.

Focusing on content-based image retrieval using search-
by-similarity, there are two main approaches: the global
query and partial query. In the first case, the whole image
is taken into account for signature computation, so the
retrieval is limited to a global similarity measurement. If
the user wants to find images of a particular object or
person, a partial similarity is more adequate.

In Carson et al [14], the authors search for regions, and
the request is not an image but a region. The user may
also ask for several regions at the same time, and specify
the relative weights of every processed attribute. In this
way, the system becomes flexible and allows for the retrieval
of a part of an image, which can correspond to an object.

Image segmentation is an ill-posed problem, which is why
partial request without segmentation, as proposed by Malki
et al [20] or Minka and Picard [13], is an effective alterna-
tive. The user now specifies the blocks of interest in the
stamped query image. For Malki et al, the request is multi-
resolution (quadtree). It brings flexibility to the system,
since it allows several sizes of blocks, and allows one to
look for a particular object in a given background.

A similarity (or dissimilarity) function aims at comparing
the request to the target4 signatures. There are many possi-
bilities of similarity or dissimilarity function; the choice of
a particular one is important, and has to suit the user’s
goal. As Schröder et al [12] have noticed, different proba-
bilistic metrics lead to different results. Nevertheless, in
some cases, the metric has no real importance. For example,
Nastar [32] noticed that the choice of the dissimilarity
function is of minor importance, since its signature (Image
Shape Spectrum) is scale, translation and rotation invariant.

Another key point in CBIR is the combination or compe-
tition between features or image models. This problem is
discussed in some papers [13–15], and is often viewed as a
feature weighting problem solved in a more or less automatic
way, thanks to user interaction. As an illustration, while
FourEyes [13] and Heinrichs’ [15] systems try to automati-
cally integrate the user’s expertise, in Blobworld [14] the
weighting stage is manually driven.

There are a lot of different query formulations, and almost
every system introduces a new one. For instance, the query
can be a sketch given by the user [5,33]. Researchers are
now working on ‘hybrid’ queries (and searches) mixing
different information sources like image content, text and
user interaction. Schröder et al [12] propose an interactive

4 Here the target image is the image currently compared to the request.
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learning procedure which builds a probabilistic query associa-
ted with an object or a semantic label (a cover-type5 in
remote sensing images). The request is translated into a set
of weights of a Bayesian network linking the user’s high
level goal and the low-level index. It becomes obvious that
user interaction (for the query formulation or during the
feedback (see Section 6)) is useful to guide the search.
Actually, a partial request offers a great flexibility and a lot
of possibilities for the formulation and for user interaction.
The drawback is that it is difficult to manage.

The visualisation of the resulting set of images appears as
an important aspect of the search. The most commonly
used display of result is the ranked list of images [3,12]
(eventually with their respective similarity/dissimilarity
values). However, some authors studied a more sophisticated
visualisation scheme. For instance, Rubner [26] introduced
a method that displays the set of result images as a 2D or 3D
mosaic, giving an intuitive model of the whole collection. It
allows us to better appreciate similarities between images,
and it enables the user to easily choose to infer or not in
the search by navigating in the database (through the
feedback process).

An important constraint for the search is the processing
complexity (it is linked to the retrieval speed). A structured
image library (for instance, achieved using a tree structure
[34,35]) can speed up the search, and lead to improved
results.

5. RETIN: REQUEST AND SIMILARITY
MEASUREMENT

This section aims at describing our request formulation and
our online search process.

5.1. Query Formulation

Our system offers two types of query-by-example: the global
request and the partial request (request on a part of an
image):

I Global request: the user only brings in an example image,
and the system retrieves similar ones in the database.
The similarity (or dissimilarity) measurement is based on
the signature presented in Section 3.3. This kind of search
only deals with global similarities, and can be used for
category search.

I Partial request: this kind of request is more flexible, and
allows for the retrieval of objects or regions. This approach
is close to a classical pattern recognition problem.

Our request is built on three steps: the user brings in an
example image; draws a polygon of interest around an object
or a region; and finally, gives a textual label to this query

5 Lake, forest, etc.

(‘bearded man’ for the partial request presented in Fig. 7).
The request statistical distribution is only computed for the
polygon of interest. For instance, Fig. 7 compares the statisti-
cal distributions of a global and a partial request.

This example clearly shows the changes in the request
statistical distribution. The clusters corresponding to the
background (i.e. the dark colours) have been removed from
the request signature. The retrieval process will only focus
on the face’s signature.

Actually, the formulation of the query enables us to build
the links between the low level clusters and a semantic
label. As Schröder et al [12] show, it can be interpreted as
the weighting stage of a network linking high and low level
analysis of the request (see Fig. 8).

Notes.

I Our request distribution is normalised: ON
i=1

wi = 1, where

N is the number of clusters. So, the image size has no
influence on the retrieval.

I Both label and partial request distributions are saved,
allowing a third request type by keyword.

5.2. Dissimilarity Functions

Let us now detail the search process. Our problem is to
compute a similarity (or dissimilarity) measurement between
two statistical distributions. Heinrichs et al [36] and Sarrut
and Miguet [37] give an overview of the main alternatives.
The most commonly used distances are the Minkowski
metrics (L-metrics), the Kullback–Leibler distance, for
instance. To achieve a more robust distance (robust to shifts,
expansions of distributions, etc.), Rubner [26] developed the
Earth Mover Distance (EMD), which sees the problem of
distribution matching as a transportation cost problem. Even
if this metric has ‘good properties’ for image retrieval, its
computational cost remains important.

The request image is just an example of what the user is
looking for. The similarity function has to allow a flexible
matching between the request distribution R = {Ri, 1 # i
# N} and the target distribution T = {Ti, 1 # i # N}
(where N is the number of clusters). To solve this problem,
we propose two simple dissimilarity functions (d1 and d2)
derived from the L-metrics (of order p).

Dissimilarity d1:

d1 (R, T) = SON
i=1

aiuRi − TiupD1
p

with ON
i=1

ai = 1 (1)

and ai $ 0

In the case of the partial query, the request distribution
includes only a few non-null clusters. So, all the empty
clusters in the request distribution are set to 0 in the target

distribution, which is then normalised to 1 SON
i=1

Ti = 1D. If

the distribution obtained is not statistically significant (i.e.
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Fig. 7. Comparison between the statistical distributions of a global and a partial request. The clustering is made in CIELAB colour space
through a 100 neurons Kohonen map (100 clusters).

Fig. 8. Network linking the pre-processed clusters and the semantic
labels. The weights w1, w2, . . ., wN (where N is the number of
clusters) correspond to the frequencies of each cluster for the
given label.

the number of remaining clusters includes less than 25% of
the pixels of the target image), the corresponding target
image is discarded (in other words, the corresponding target
image cannot be retrieved). This test speeds up the search,
since it avoids useless calculations and improves perform-
ances through the elimination of critical candidates for
matching.

Dissimilarity d2:

d2(R, T) = SON
i=1

ON
j=1

aijuRi − TjupD1
p

with ON
i=1

ON
j=1

aij = 1 (2)

and aij $ 0

This second dissimilarity measurement is more flexible,

since it allows cross matching between the two statistical
distributions. The key idea is that a bin-to-bin matching
(as done by d1) is not robust to small changes (like a shift)
between the request and the target distribution. Because of
the great flexibility provided by this function (d2), some
constraints have to prevent incoherent matchings between
distant clusters. Moreover, in this case, the empty clusters
(in the request distribution) are not set to 0 in the target
distribution (it would break the interest of this metric).

The sets of weights a = {ai, 1 # i # N} and a = {aij,
1 # i # N, 1 # j # N} used in the dissimilarity functions
settle the influence of each cluster. Since these measure-
ments are designed to improve the statistical distribution
matching, tuning of weight values (in the sense of result
refinement) is necessary and crucial. This is achieved
through user interaction (relevance feedback – see Section
7). Before the feedback process, the initial set of weights is
fixed as shown in Table 1 (where R = {Ri, 1 # i # N} is
the request distribution).

Notes.

I According to this initialisation (see Table 1), d1 and d2

are equivalent to the L-metrics, except for the modifi-
cation of the target distribution.

I Our dissimilarity function d1 is a metric since it respects
the properties of non-negativity, symmetry, identity and
triangular inequality. Nevertheless, if it is a metric for
distributions, it is not a metric for images, since two
different images may have the same statistical distribution.

5.3. Dissimilarity Functions for Model Competition

The previous section presented our dissimilarity functions
for one image model. As mentioned in Section 3.1, the
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Table 1. Initial set of weights (see text)

Global request Partial request

Dissimilarity d1
ai =

1
N 5ai =

1

ON
j=1

IIRj±0

if Ri ± 0

ai = 0 otherwise

Dissimilarity d2 5aij =
1
N

∀i = j

aij = 0 otherwise 5aij =
1

ON
j=1

IIRj±0

∀i = j and Ri ± 0

aij = 0 otherwise

* IIRj±0 is the indicator function: 5 IIRj±0 = 1 if Rj ± 0

IIRj±0 = 1 if Rj = 0

user of RETIN can put several image attributes in parallel.
We are now proposing to extend these matching schemes
for cooperation of (or competition between) several models.

a is an intra-model weight set adjusting the importance
of each cluster in the dissimilarity function (for a single
image model). Let us now introduce b = {bk, 1 # k # M},
the inter-model weight set tuning the influence of each
model in the final dissimilarity measurement. This formalism
allows a consistent joint updating of the intra- and inter-
model weights. As mentioned in the previous section, their
values are settled due to relevance feedback. Let us call
R(k) = {R(k)

i , 1 # i # N(R)} and T(k) = {T(k)
i , 1 # i # N(R)},

respectively the request and the target distributions for the
model number k (1 # k # M and 1 # M # 6, where M
is the number of models used and N(k) is the number of
clusters for the model number k).

In the context of model competition, our dissimilarity
functions is:

Dissimilarity D1:

D1 (R, T) = OM
k=1

bk SON(k)

i=1

a(k)
i uR(k)

i − T(k)
i upD (3)

with ON
(k)

i=1

a(k)
i = 1, OM

k=1

bk = 1 and a(k)
i $ 0, bk $ 0.

Dissimilarity D2:

D2 (R, T) = OM
k=1

bk SON(k)

i=1

ON
(k)

j=1

a(k)
ij uR(k)

i − T(k)
j upD (4)

with ON
(k)

i=1

ON
(k)

j=1

a(k)
ij = 1, OM

k=1

bk = 1 and a(k)
ij $ 0, bk $ 0.

The sets a(k) = {a(k)
i , 1 # i # N(k)} and a(k) = {a(k)

ij , 1 #

i # N(k), 1 # j # N(k)} (1 # k # M) are the intra-model
weights for the model number k; their initialisation is the
same as in Section 5.2. The inter-model weights b = {bk,
1 # k # M} are initialised with the same value:

bk =
1
M

(1 # k # M).

6. RELEVANCE FEEDBACK: RELATED
WORK

The set of initially retrieved images includes wrong answers.
It may be explained by a problem in the request definition,
in the signature or in the similarity function. The wrong
images cannot be automatically interpreted as outliers, since
they are ‘similar’ to the request according to the similarity
function. Even if the system suits the target application, the
search-by-similarity may not satisfy the user’s intention. This
is due to a gap between the semantic request and the
syntactical information extracted from images. The user’s
expertise allows one to overcome this problem and refine
the search. Moreover, it is obvious that the retrieval depends
upon the user’s aim: a subjective goal is hard to reach
through an objective search process. So, there is no satisfac-
tory search without a strong interaction involving the user.

The result refinement guided by the user is called relevance
feedback. Research in text retrieval has already proven its
utility [1], and image retrieval effectiveness can also be
improved through relevance feedback. It brings flexibility
and adaptability to the search through the integration of the
user’s expertise and subjectivity. The first proposed approach
directly uses the technique developed in TR [38]. It is based
on the calculation of an optimal request by additions and
subtractions of the relevant and irrelevant image vectors, to
the initial query vector [39].

Another technique for feedback is used in QBIC [5] and
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Blobworld [14]. The user is considered as an expert who
manually adjusts the weights of the attributes. The problem
with this approach is that it relies on complex and uncertain
human expertise.

As mentioned in Section 1, we can distinguish between
two types of systems integrating relevance feedback. On the
one hand, there are search-by-similarity systems [2,15] that
try to extract images close to a query. On the other hand,
there are systems for target search [8,9] where the goal is
to look for an image that the user has in mind without any
initial example image. It is repeatedly guided by the user’s
reactions on a set of displayed images.

In search-by-similarity, the example image stands for a
seed in the search space. There are two ways to refine the
results in this case. In the first, the feedback allows us to
shift the seed because of the user’s reactions [2,40,12]. Nastar
and Meilhac [2,40] compute a new query which takes into
account both the positive and negative examples given by
the user after the initial search. It is based on a parametric
[2] or a non-parametric [40] estimation of the probability
distributions of the relevant and irrelevant images. Accord-
ing to these estimations, a new query is drawn at random
according to the estimated probability densities. In Schröder
et al [12] (see Section 4), the user selects one of the result
images to refine his/her query via an interactive learning
procedure. There is no fusion of queries. The second manner
in which to refine the results is to tune the similarity
function. For instance, Heinrichs [15] uses the rank (in the
retrieved list of images) of the labelled images to compute
a new set of feature weights. The main idea is that a feature
which better ranks relevant images has to be reinforced
contrary to that which better ranks irrelevant ones. Minka
and Picard [13] also use this kind of competition between
models. For this second approach, the seed is fixed, but the
shape of the search neighbourhood (the neighbourhood in
which similar images are retrieved) changes with the reac-
tions of the user.

In the target search strategy, as there is no initial request,
there is no seed. Every image of the database has an equal
probability of being the target. Then, according to the user’s
reactions on a set of result images, the system updates these
probabilities. Cox et al [8] try to build a probabilistic model
of the human behaviour, based on a ‘stochastic-comparison
search’ algorithm which enables comparisons like: ‘image A
is more relevant than image B’. The relative judgments
make the algorithm more flexible and effective, because it
takes into account the notion of uncertainty of the human
judgment. Geman and Moquet [9] carry out a similar kind
of Bayesian relevance feedback, but with a stochastic search
providing a sequence of random metrics. Since they do not
deal with query drift, Müller et al [10] propose the extension
of these Bayesian methods in the case of moving targets,
i.e. when the feedback annotations are inconsistent with
the earlier ones.

7. RETIN: FEEDBACK PROCESS

Since RETIN is based on search-by-similarity, as explained
in Section 6, we can refine the query or the metric. Our

relevance feedback optimises the metric in a particular
feature space (i.e. for a given model), but also manages the
competition between image models.

7.1. Feedback Rule

Our dissimilarity functions for a single image model (see
Section 5.2) are weighted sums of the cluster-to-cluster
dissimilarities (one distribution for the request and one
distribution for the target image). The preliminary retrieval
gives a set of results that the user annotates (in this frame-
work, to annotate means to label the images as relevant or
irrelevant). Then, the system computes a new set of weights
adapted to the user’s reactions.

The aim is to increase the weights of the reliable clusters,
and to decrease the others. We consider that a cluster is
reliable if the matching between the request and the target
is correct (for this cluster). We use the Least Mean Squares
(LMS) rule [41] to perform the weights updating. The
minimisation of the LMS criterion allows the system to
learn the statistics of the target distributions. It minimises
the quadratic error between the dissimilarity measurement
obtained for a target image T (compared with the request
R) and the desired output for this image Sd. The desired
output is set through the user’s relevance annotation. An
image considered as relevant should have a small dissimi-
larity (d1, d2 P [0, 1] with respect to the query:

HSd = 0 if T is relevant
Sd = 1 otherwise

Given m(m . 0), a learning rate (it may be constant or
it may decrease) and N, the number of clusters of the
statistical distribution, the updating rules are (see the simi-
larity functions in Section 5.2):

I For dissimilarity d1:

ap
i = ai + m(Sd − (d1(R, T))p)uRi − Tiup 1 # i # N

I For dissimilarity d2:

ap
ij = aij + m(Sd − (d2(R, T))p)uRi − Tjup 1 # i # N,

1 # j # N

Note. The LMS criterion provides a strict theoretical
framework (especially for convergence), which explains its
use in many contexts and applications.

7.2. Feedback Rule for the Competition Between
Models

We now present the feedback rules for the competition
between image models as an extension of the rules intro-
duced in Section 5.3. The LMS rules result from the mini-
misation of the Quadratic Error:

Err =
1
2

(Sd − Di)2 (i = 1, 2)

where Sd satisfies the conditions imposed in Section 7.1.
The optimisation of these criteria leads to the following
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updating rules (we use the notations introduced in Section
5.3):

I For dissimilarity D1:

bp
k = bk + m(Sd − D1(R, T)) (d(k)

1 (R, T))p

a(k)*
i = a(k)

i + m(Sd − D1(R, T))bkuR(k)
i − T(k)

i up

with 1 # i # N(k) and 1 # k # M.

I For dissimilarity D2:

bp
k = bk + m(Sd − D2(R, T)) (d(k)

2 (R, T))p

a(k)
ij = a(k)

ij + m(Sd − D2(R, T)) bkuR(k)
i − T(k)

j up

with 1 # i # N(k) and 1 # j # N(k) and 1 # k # M.

These rules are error back-propagation rules. The intra-
and inter-model weights are adapted, so it leads to the
intra-model dissimilarity optimisation and the models com-
petition, at the same time.

Note. This relevance feedback scheme allows us to track
the user’s goal, even if it changes through the time.

7.3. Feedback Protocol

The relevance feedback is based on a simple user interaction.
After a retrieval run, the system displays the best ranked
images (the number of displayed images is set by the user)
according to the dissimilarity function. Then, the user labels
all these images as relevant or irrelevant (he clicks on the
left button of the mouse for a relevant image and the right
button for an irrelevant one). Thanks to the annotated
images, the system sequentially updates the weights using
the rules presented in Sections 7.1 and 7.2, and discards all
the irrelevant images from the explored image set. It means
that these ‘wrong’ images will not disturb the future searches
(until the next query). After this step, the updated weights
allow the system to retrieve and display a new set of images
approximating the user’s guess.

In such a process, it is essential to check that the weight
values are not divergent. Figure 9 shows an example of the
weight evolution along 40 feedback iterations for a compe-
tition between three image models (HSV colour, CIELAB
colour and texture). This experiment has been done on our
general database (1200 colour images of various types), for
25-cluster classifications and for 10 annotated images (at
each feedback step).

This example provides a good illustration of the weight
evolution during the feedback process, because it clearly
shows that a hierarchy appears between the models (Fig.
9(a)) and between the clusters (Fig. 9(b, c, d)). It shows
how the search focuses on the most reliable models, and
on the most reliable clusters for a given model. Here, we
notice that texture is the most discriminant model, and that
a few clusters (for each model) are useless for the search.
Nevertheless, the evolution of the weights is often irregular,
and the convergence rate changes according to the m value:
the more m is large, the more the convergence is fast, but
the more the residual fluctuation phenomenon is enhanced.

In our system, the learning rate is constant and has been
empirically chosen.

Finally, the weight stability and the search coherence
depend upon the reliability of the user’s annotations; more-
over, the correct weight evolution does not ensure the user’s
satisfaction. Actually, the success of the retrieval is linked
to the signatures’ richness and flexibility, and is also linked
to the initial request. For the quality assessment (Section
8), we will try to quantify the convergence towards the
user’s goal.

8. RESULTS AND QUALITY
ASSESSMENT

8.1. Introduction

We have tested our system on four different databases. The
first is the Columbia database [29], which contains 7200
colour images of isolated objects (100 objects taken at 5
degrees incremented in pose = 72 shots per object). This
database is suitable to evaluate the performances of our
system for object recognition. The second database is our
man-made compound database. It contains 3000 images com-
bining two objects extracted from the Columbia digital
image library. It is used to evaluate the partial request ability
to separate two objects in the same image. The third is our
general database, it is made of 1200 images of different
origins (from the web, from the IGN aerial images set6,
from the VisTex database [42], etc. – it is composed of
animals, cars, textures, aerial images, portraits, landscapes,
etc.). This library is very interesting in order to appreciate
the retrieval effectiveness for categorisation because of its
wide content diversity. The fourth is the Annotated
groundtruth database (ANN) [43] of the University of Wash-
ington, which provides 493 photographs of different topics.
The statistics presented in this section only concern the
Columbia and the general database, because the ground
truth is not available on the compound digital library, and
because the ANN collection is too small.

First, evaluation of the retrieval without feedback is
presented (Section 8.2), then the quality improvement by
relevance feedback is assessed (Section 8.3).

8.2. Experiments without Relevance Feedback

This section focuses on the retrieval effectiveness without
relevance feedback. Based on a rigorous evaluation proto-
col, the performances of RETIN are compared with a
colour histogram-based method, and the parameter influ-
ence is estimated.

Some Results. Figure 10 shows the results for two global
queries on the Columbia database and on our general data-
base.

6 IGN: Institut Géographique National (French National Geographic
Institute).
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Fig. 9. The dissimilarity measurement weights as functions of the number of feedback iterations (40 iterations). (a) Inter-model weights, (b)
HSV-model weights (25 curves corresponding to 25 weights), (c) CIELAB-model weights, (d) texture-model weights.

Fig. 10. Results of the search for a global query. (a) Retrieval of cups in the Columbia database using colour attributes (100 clusters in the
HSV colour space); (b) retrieval of aerial images in the general database using colour and texture attributes (100 clusters in the HSV colour
space and 100 in the texture space). The request is the top left-hand image and the results are ranked by increasing dissimilarity values
(from left to right and top to bottom).
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Fig. 11. Results of the search for a partial request on the object pot. (a) Region of interest (corresponding to the pot) in the example image;
(b) ranked list of result images. The search is based on color attributes (100 clusters in HSV colour space).

We notice that all the retrieved images are relevant. For
the Columbia database, the first wrong image appears at the
37th position in the ranked list of results. Actually, accord-
ing to our tests, the system retrieves a wide number of
relevant images7 in the Columbia database, whereas the task
is harder in the general database.

Let us introduce results stemming from experiments for a
partial request on the compound database (see Fig. 11).

The nine retrieved images contain the pot. Generally,
the partial request allows us to retrieve a single object in
the compound database. In fact, the problem here is to
separate the statistical distributions of the two objects,
whereas for the global request, both distributions are mixed,
the partial query focuses on one particular object and builds
its own distribution. If the objects do not have too many
common clusters, a majority of relevant images are retrieved.

Evaluation Protocol. To quantitatively evaluate the
retrieval effectiveness of our system, we use the classical
and relevant [44] criteria: precision and recall. If A is the
whole set of relevant images contained in the database and
B is the set of retrieved images, precision and recall are
defined as:

I precision =
uA > Bu

uBu =
number of relevant images retrieved

number of retrieved images

7 A relevant image suits the user’s goal, i.e. it belongs to the category of
the request.

I recall =
uA > Bu

uAu
=

number of relevant images retrieved
number of relevant images

Note. uA > Bu is often called the number of detections.
A ground truth is necessary to provide the relevance of

any retrieved image. For the Columbia database, an image
is relevant if it belongs to the category of the request (i.e.
it is the same object). Nevertheless, for our general database,
it is more difficult to estimate if an image is good with
respect to a query. We have manually clustered the 1200
images into 14 categories (aerial images, lions, sunsets,
cars, etc.).

To assess the various performances of our system, precision
and recall are computed for an increasing number of
retrieved images (i.e. the search is done for 1, 2, 3, etc.,
until 200 retrieved images). For a given database and a
given image category, this protocol is repeated for several
requests, and the quality criteria are averaged over all these
queries. Three curves are then drawn: (average) precision
versus number of retrieved images; (average) recall versus
number of retrieved images; and (average) precision versus
(average) recall.

Note. In the Columbia database, there are 72 images per
object, that is to say, 72 relevant images per search. For
the general database, we separate the evaluation of each
image class because the number of relevant images is not
constant between categories.

Comparison between Colour Histograms and our Signa-
ture. We have compared the retrieval performances of our
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colour signature with a colour histogram-based method. This
last signature is presented by Smith and Chang [30]; it
partitions the HSV colour space into 166 bins (18 levels
on Hue, 3 on Saturation, 3 on Value and 4 on grey levels).

Let us first introduce the results for our general database.
Figure 12 shows the averaged quality criteria obtained for
global requests performed in three image categories (aerial
images, elephants and lions).

The first important fact is that our system performs better
than the colour histogram for every image category. Our
signature retrieves relevant images in the database better,
whatever the number of results. It is due to the fact that
for an equivalent number of clusters, our signature is adapted
to the database’s content diversity.

Another interesting issue is the absolute performances.
For aerial images, the absolute performances of the colour
histogram and our signature are superior to the other categ-
ories (here elephants and lions). Actually, aerial images are
well separated from the other images in the database, thanks
to colour attributes.

Fig. 12. Comparison between the colour histograms and our colour signature (169 clusters in the HSV colour space) for the general database.
The image distributions are compared using the same L1-metric, and the quality criteria are averaged over all the possible requests belonging
to the category. The number of relevant images is 30 for aerial images, 96 for elephants and 105 for lions.

Let us now study the retrieval performances for the
Columbia database. Figure 13 compares the evolution of the
quality criteria for three approaches: the colour histogram;
our signature with a global request (see Section 5.1); and
our signature with a partial request (see Section 5.1).

The first interesting observation is that the three curves
follow the same tendency. The retrieval properties are equiv-
alent for these methods, and the linear tendency of the
recall curves until 72 retrieved images shows that they all
allow us to find a large set of relevant images in a restricted
set of results. After 72, since the number of remaining
relevant images is weak, the recall grows less rapidly and
an inflexion point appears.

Our signature still performs better than the classical colour
histogram. We also notice that the partial request is more
effective and more appropriate for the search in this data-
base. It stems from the fact that this query mode focuses
on the object clusters, and eliminates all the disturbing
classes of the background.

Given these retrieval performances, the search appears
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Fig. 13. Comparison between the colour histograms, our global colour signature and our partial colour signature (169 clusters in the HSV
colour space) for the Columbia database. The image distributions are compared using the same L1-metric and the quality criteria are averaged
over 100 queries (1 query per object). The number of relevant images is 72 for each object.

Fig. 14. Comparison of the retrieval performances obtained for classifications (in the HSV colour space) using different numbers of clusters
(49, 100, 169, 400). (a) Results for the Columbia database (averaged over 72 global queries); (b) results for the general database (averaged
over 105 global queries on the lion category).

as more critical in the general database than in the
Columbia image collection. The search-by-similarity in
this last database is not the most difficult task, because it
contains isolated objects that are well discriminated due to
colour attributes. This is the reason why the gap between
the retrieval performances of our adaptive signature and the
colour histogram is not large. Our system is, in fact, designed
for the search in a general database. Nevertheless, since the
content differences are larger than in a specialised image
collection, the generalisation of the example provided by
the user is more difficult, and the performances decrease.

Parameter Influence. After the quality assessment of the
retrieval process without feedback, it is interesting to investi-
gate the influence of the parameter.

The first studied parameter is the number of clusters (the
number of neurons on the Kohonen map) or the number
of bins of our signature. Figure 14 provides a comparison
between the retrieval performances obtained for an increas-
ing number of clusters.

These results show that retrieval performances are close

whatever the number of clusters. The search is robust and
the best performances can be attained for only 49 clusters
on both collections. Our system allows us to build and use
short signatures, which decreases the search duration and
reduces the memory needed for the storage.

Another interesting input parameter of the system is the
dissimilarity function used for signature comparison. We
have tested five functions: L1, L2, L`, the Kullback–Leibler
distance [36] and the cross correlation (CC)8. The retrieval
performances are presented in Fig. 15.

Note. For the search without feedback based on one image
model, the L-metrics are equivalent to our dissimilarity
function d1 (see Section 5.2).

The general tendency points to a loss in the retrieval
quality when the order of the L-metrics grows. L1 gives
better results than L2, and L2 gives better results than L`.
When the order is high, the L-metric becomes more sensi-

8 To obtain a dissimilarity function, we use: 1-CC.
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Fig. 15. Comparison of the retrieval performances obtained for five metrics. The search is based on a 100-cluster classification in the HSV
colour space. (a) Results for the Columbia database (averaged over 72 global queries); (b) results for the general database (averaged over
105 global queries on the lion category).

tive to small changes between the target and the request
distributions. The Kullback–Leibler distance and the cross
correlation have similar behaviour and give interesting
results on the Columbia digital library. Nevertheless, for the
general database, the performances obtained with these two
distances are very low compared to the L1 effectiveness.

Finally, when we focus on the low recall values, the
absolute performances are not very different according to
the number of clusters, or according to the metric. It is
important, since the user wants to retrieve a maximum of
relevant images in a small set of retrieved images. Our
system is robust for the low recall values, i.e. for a small
set of results.

8.3. Experiments with Relevance Feedback

This section describes the relevance feedback influence on
the retrieval effectiveness. After a brief exhibition of some
search results and presentation of our evaluation protocol,
we study the feedback contribution to the absolute perform-
ances of the retrieval, and for the competition between mod-
els.

Some Results. Figures 16 and 17 show the results of two
searches with and without feedback in the Columbia datab-
ase and in the ANN digital image library. The user brings
an image as a query (the top left-hand image), the system
retrieves an initial set of results (a), user annotates as
relevant and irrelevant each of these images (the user’s
annotations are advisable on the images) and the system
performs a refined search (b).

In Fig. 16, we see that the initial search retrieves only
five ‘good’ images (Fig. 16(a)), and that three objects are
red, whereas the query object is yellow. Actually, in this
example, the classification has been made with only 25
clusters in the HSV colour space. It leads to a coarse
quantification where yellow and red are mixed. But thanks
to relevance feedback, all the outliers are removed (Fig.
16(b)). In the ANN image collection, the use of colour

alone (without texture attributes) can lead to inconsistent
retrievals (see Fig. 17(a)), but human expertise easily helps
in removing these wrong images. These two examples are
good illustrations of the retrieval improvement by relevance
feedback. Nevertheless, success is not ensured, and the sys-
tem sometimes needs more than one or two feedback steps
to significantly update the results.

Evaluation Protocol. There is no common quality assess-
ment protocol between the research teams working on image
retrieval refinement by relevance feedback and the prop-
ositions made by Salton [1] in text retrieval. We suggest
the use of the classical quality criteria (precision and recall)
for the running of the system close to real conditions (i.e.
only a few annotated images at each step).

Given n retrieved images, the system automatically labels
as relevant or irrelevant (thanks to the ground truth avail-
able on the database) the first images nl, updates the weights
of the dissimilarity metric and starts a new search. The
process can be iterated more than once.

Search Refinement by Relevance Feedback. Figure 18
gives the absolute performances obtained through relevance
feedback for searches performed on the general database and
for an increasing number of iterations. The first 30 images
are annotated at each step (i.e. nl = 30).

We notice that the retrieval effectiveness increases sig-
nificantly thanks to relevance feedback. After one step,
performances are better for low recall values (, 0.17), or
for a small set of results. For five steps, the tendency of the
precision-recall curve is totally different; precision tends to
be equal to 1 for recall values lower than 0.2. Since we are
interested in finding a high number of correct images in a
small number of results, these performances are satisfying.

The recall values are always lower than 0.41. In fact, the
absolute number of relevant images retrieved is limited by
large content variations within this image category. The
performances obtained thanks to relevance feedback show
that our process is effective to retrieve more relevant images
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Fig. 16. An example of the relevance feedback contribution for the retrieval in the Columbia database. The search uses a global request and
colour attributes (25 bins distributions in the HSV colour space). (a) Initial ranked set of results; (b) results after two feedback steps
(18 annotations).

Fig. 17. An example of the relevance feedback contribution for the retrieval in the ANN database. The search uses a global request and
colour attributes (100 bins distributions in the HSV colour space). (a) Initial ranked set of results; (b) results after two feedback steps
(18 annotations).
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Fig. 18. Retrieval refinement by relevance feedback. Comparison of
the performances without feedback, after one iteration (or one step)
and after five iterations. Criteria are averaged over 30 different
global queries of the bear category. Searches are based on colour
(100 clusters in the HSV colour space) and texture attributes (100
clusters) and D1 (5.3) is used as a dissimilarity function.

(the higher recall value increases), but also allows to better
rank the good images in the result list.

Relevance Feedback and Competition between Models.
Figure 19 compares the retrieval criteria obtained for two
single image models (colour and texture), and for the compe-
tition of these two models. As for the previous tests, 30
images are annotated at each feedback step (nl = 30).

Without feedback, the retrieval performances of the three
models (two singles and one compound model) are weak.
No clear tendency appears. The compound model is superior
to the others, but for low recall values, the colour alone
gives equivalent results. Moreover, the texture model

Fig. 19. Comparison of the performances for a single colour attribute (100 clusters in the HSV colour space), a single texture attribute (100
clusters) and competition between these two models. (a) Without feedback; (b) after five steps – criteria are averaged over 30 different global
queries of the lion category; d1 is used as a dissimilarity function for the single models, and D1 is used for the competition.

becomes better than the colour one for recall values higher
than 0.34. Due to relevance feedback, the absolute perform-
ances increase, and a clear hierarchy appears between the
three models. The texture model is greater than the colour
alone, and the competitive model overcomes the single ones.
It shows that our weighted metric is correctly updated, and
that the relevance feedback correctly manages the compe-
tition between the attributes.

Comparison with a Leading Relevance Feedback
Method. Heinrichs et al [15] introduce a new relevance
feedback method for the combination of similarities issued
from different image models. The goal is to increase the
weight of a model if it better ranks the relevant images
than the irrelevant ones. If r̃N

i (resp. r̃R
i ) is the mean rank

of model number i computed on the irrelevant (resp.
relevant) image set, and bi is the weight of the correspond-
ing model, the updating rule is:

bp
i = bi ×

r̃N
i

r̃R
i

Figure 20 shows the compared performances of Heinrichs’
technique and our feedback rule.

The absolute performances given by both methods are
very close. Our rule is slightly better than Heinrichs’ feed-
back, because of the intra-model metric optimisation. Never-
theless, the difference is very hard to appreciate, because
both methods provide a nice search behaviour. They do
improve the precision-recall curve tendency obtained with-
out feedback, by focusing on the most discriminant model.
The important issue in regard to this comparison is that
our relevance feedback is not in contradiction with another
feedback technique. We still have to study the convergence
duration of our rules in order to optimise the updating
scheme. For example, we have to effectively set the learning
rate (m – see Sections 7.1 and 7.2) employed by the
LMS rule.
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Fig. 20. Comparison of the performances of our relevance feedback
rule (associated with the metric D1) to Heinrichs’ leading method
for the competition between a colour model (100 clusters in the
HSV colour space) and a texture model (100 clusters). Criteria are
averaged over 15 different global queries of the elephant category.
Five steps of 30 annotations are done for each method.

8.4. Discussion

Our system is effective for the search in the general image
collection, as well as in the Columbia database. We have
shown that our colour signature gives better results than a
colour histogram, but we have also shown that it is robust
to the choice of the dissimilarity function, and to the
number of clusters used for the attribute space quantisation.
This last point is important, since it means that the use of
short signatures does not lead to a drop in retrieval perform-
ances. The online search is faster, and the memory space
required for signature storage is smaller.

It appears that the relevance feedback is effective to refine
the results of the search; it enables the user’s retrieval to
be less dependent on the initial query. It helps to pinpoint
the user’s goal through its annotations.

Our quality assessment is based on intensive and rigorous
statistics. For instance, thousands of searches have been
performed to obtain reliable results. Nevertheless, the proto-
col of evaluation is debatable, since the ground truth is
subjective. To take into account the notion of inaccuracy
and doubt in setting up the ground truth, the categories
could be fuzzy, i.e. a given image should belong to several
categories at the same time. Actually, there is a gap between
the subjectivity of the retrieval process and the rigidity of
the quality assessment. Given these issues, it seems to be
important for the CBIR community, as noticed by Müller
et al [45], to build a common test set with a strict evaluation
protocol and ground truth.

9. CONCLUSION AND FUTURE WORK

We have introduced a general system for digital image
retrieval. During the offline stage, an unsupervised classi-

fication is processed in each attribute space, thanks to a
learning set which takes into account the collection diver-
sity. The images are indexed by their statistical distributions
computed over an irregular partition of each attribute space;
the signature is self-adaptive to the database. The online
search is initialised through an example image provided by
the user, in which he can select a region of interest. Given
the first set of results, the user has the possibility to react
by specifying the relevance or irrelevance of each displayed
image. This user’s expertise is integrated by a relevance
feedback process which tunes the dissimilarity function. The
key notion of our system is the search flexibility introduced
through user interaction.

An intensive and rigorous quality assessment has been
carried out for two wide databases (a general one and an
object database) containing approximately 10,000 images.
The comparison with a colour histogram-based method
shows how effective our signature is. Our system is also
robust to parameter choices, particularly to the number of
partitions in the attribute spaces. It enables us to use
short image signatures, optimising memory space and
search processing time. Otherwise, the quality assessment
of the relevance feedback allowed us to quantify the result
improvement via the intra- and inter-model dissimilarity
optimisation.

Since our approach manages the competition between
image models, an extension of our work deals with the
integration of new attributes. For instance, image features
taking into account the spatial information could be useful
to the system.

Flexibility is also a very important aspect of the search.
We think that effectiveness can be improved by navigating
within the image collection. Actually, for a given query,
the search is restricted (by this query) to a small area in
the search space. The retrieval process will become more
efficient in terms of user’s satisfaction if the algorithm is
able to look for groups of images scattered in the whole
database. Moreover, the navigation provides a good way for
the user to find a request image into the collection.
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