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a b s t r a c t 

This paper deals with Weakly Supervised Learning (WSL), i.e. performing image classification by lever- 

aging local information with models trained from global image labels. We propose a new WSL method 

which incorporates gaze features collected by an eye-tracker to guide the region selection policy. Our 

approach presents two appealing advantages: gaze features are cheap to collect, e.g. one order of magni- 

tude faster than bounding boxes, and our method only requires gaze features during training, while being 

gaze free at test time. For this purpose, the training objective is enriched with a gaze loss, from which we 

derive a concave-convex upper bound, leading to an off-the-shelf CCCP optimization scheme. Extensive 

experiments are conducted to validate the effectiveness of the approach for WSL image classification on 

two public datasets with gaze annotation, i.e. PASCAL VOC 2012 action and POET. In addition, we pub- 

licly release a new food-related dataset, the Gaze-based UPMC Food dataset (UPMC-G20), which covers 

20 food categories and 2,0 0 0 images. This dataset intends to promote the research in the food-related 

computer vision community. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Deep learning has achieved great success in the era of big

ata. The dominance of deep models is witnessed in the fields of

ace recognition [1] , machine translation [2] , speech recognition [3] ,

nd even the Go game [4] . One typical example is the success of

eep convolutional neural network (DCNN) in computer vision.

rom the AlexNet [5] to the state-of-the-art deep Residual Net-

orks [6] , the DCNN has much outperformed the traditional hand-

rafted feature-based machine learning methods, and now being

ven better than the human experts on the largest classification

ompetition ImageNet Large Scale Visual Recognition Competition

ILSVRC) [6,7] . Moreover, deep models trained on ImageNet can

lso be applied effectively to different target domain or differ-

nt tasks by transfer learning [8] . As a result, state-of-the-art re-

ults on standard benchmarks are nowadays obtained with deep

eatures as input. Recent studies show that fine-tuning and data-

ugmentation can further boost the performance of the transferred

odels [9] . Although deep models are leading the state-of-the-art

f computer vision, current DCNN architectures have limited capa-

ilities in capturing local information in clutter images. However,

or the real-world images, local information is critical for identi-
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ying the existence of the target object in a clutter environment.

ecently, attempts have been made to overcome this limitation

y encoding local information by following the design of Bag-of-

ords (BoW): [10,11] propose BoW models with deep features as

ocal region activations and [12] developed BoW layers. Despite the

ncoding contains information locally, the entire image is encoded

nto the final representation, which may include the irrelevant in-

ormation. Such clutter information decreases the discriminative

ower of the model. In this case, expensive annotations such as

ounding boxes are often used to localize the target object. Clutter

nformation is subsequently filtered out by omitting the informa-

ion outside the bounding boxes. 

One promising option is to develop weakly supervised learn-

ng (WSL) model. Weakly supervised learning (WSL) is a general

earning problem which attempts at making accurate predictions

rom coarse annotations. For instance, using only image label for

egmentation or using the preference relationships between exam-

les for dimensionality reduction problem [13] . In this paper, we

ocus on applying WSL methods on object classification improved

y weakly supervised region selection. Our model learns to remove

he clutter background information by selecting the relevant re-

ions without explicit localization information. 

Multiple Instance Learning (MIL) [14] is one of the main

aradigms for training WSL models. Following this paradigm, an

mage is described as a bag containing a certain number of

http://dx.doi.org/10.1016/j.patcog.2017.07.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.07.001&domain=pdf
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Fig. 1. Illustration of our model. Multi-scale latent regions are generated in a sliding-window scheme, e.g. green (resp. blue) large scale (resp. small scale) regions. Our model 

can automatically select multiple semantically meaningful regions, e.g. those containing the target object class of different scales, from global image labels, e.g. french toast. 

To improve the quality of the region selection, G-LSVM supports regions with gaze information (shown as the heatmap), e.g. high density of gaze of positive example for 

training. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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instances. Under the hypothesis of MIL, a bag is positive if there

is at least one positive instance in the bag, while a bag is negative

if all the instances in the bag are negative. Deformable part model

(DPM) [15] is a well-known instantiation of MIL, which achieves

excellent performance for object detection. 

However, selecting relevant regions from images with only

image-level annotations is a very challenging task. Intuitively, hu-

man gaze is a promising extra information for guiding the search

of local semantic information. We consider here gaze features

recorded by an eye-tracker device, which presents two useful prop-

erties. One is that gaze features, when collected from people asked

to identify a semantic category in an image, contain useful infor-

mation about the position of the target objects or relevant regions

for classification. Another appealing property of gaze features is

that they are cheap to collect, especially compared to traditional

annotation such as bounding box, typically 1s vs 26s [16] . Human

gaze carries certain amount of object localization information, but

compared with traditional bounding-box annotations, it is weaker

for high noise rate and sparse distribution. 

Towards a more robust classification model, combining multi-

ple features is a promising choice [17,18] . In this paper, we propose

a new weakly supervised learning model which attempts at incor-

porating gaze feature collected by an eye-tracker to improve clas-

sification performance. Our model, named as G(aze)-LSVM, gener-

alizes latent SVM [15] by exploiting human gaze for localizing ob-

jects. Fig. 1 illustrates the rationale of our model for exploiting lo-

cal information. Latent regions correspond to a set of sub-regions

in the image generated by a sliding window scheme. By assigning a

scale (size) of the sliding window for each single-scale model, e.g.

green (resp. blue) large scale (resp. small scale) regions, we then

combine a multi-scale model by adapting the object bank repre-

sentation [19] . 

G-LSVM is able to automatically select semantically meaning-

ful regions, e.g. those containing the target object class of differ-

ent scales, from global image labels, e.g. french toast or pancakes

or grilled salmon. To improve the quality of the region selection,

G-LSVM supports regions with gaze information, e.g. high den-

sity of gaze for positive example. Our model is then optimized

by reducing a loss function incorporating gaze penalization using

the Concave-Convex Procedure (CCCP) [20] . The optimization pro-

cedure ensures that our model only needs gaze for training rather

for test. 

A preliminary version of our model was described in the confer-

ence paper [21] . We extend this work at several levels. Firstly, our

contributions regarding the WSL model are two-fold: we take into

account gaze features for negative images ( Section 3.3 ) whereas

only positive images are used in [21] , and also extend the region

selection policy from a single region to several regions for perform-
 g  
ng prediction ( Section 3.4 ), leading to a generalization of top k la-

ent SVM model [22] . Beyond model extension, we also provide a

uch more thorough experimental analysis for validating the pro-

osed contributions. Last but not least, we publicly release a new

ood-related dataset with gaze annotation: Gaze-based UPMC Food

ataset (UPMC-G20), which will be useful for the community to

valuate gaze models in food oriented applications. 

This paper is organized as follows. In Section 2 , we review gaze

nalysis and weakly supervised learning methods for computer vi-

ion . In Section 3 we formally introduce our weakly supervised

earning image classification models. In Section 4 , we introduce the

ptimization procedure. In Section 5 , we present our experimen-

al results to validate our models. Specifically, in Section 5.2.3 , we

ntroduce our new food-related gaze dataset UPMC-G20 in detail.

he conclusion is provided in Section 6 . 

. Related works 

.1. Eye-tracking gaze 

Gaze features are appealing since they can reflect the salient

arts of the image [23,24] . People usually use gaze as an extra in-

ormation channel for solving computer vision problems, such as

ction recognition [25,26] , object detection [24,27] , saliency predic-

ion [28,29] and segmentation [16,30] . In video analysis, since sub-

ects tend to watch at the moving objects, gaze are also widely

sed to localize important objects [31–34] . 

Another appealing property of gaze is that generating gaze by

he human is at almost zero-cost. Collecting gaze is more user-

riendly and less time-consuming than collecting traditional anno-

ations: it takes about 1 s to collect gaze for one image [16] , com-

aring to 26 s for drawing a bounding box [35] and 15–60 min for

abeling the segmentation mask for an image [36] . 

To acquire gaze annotations for different applications, people

esign various collection protocols [16,27,37,38] . The collection pro-

ocols can be grouped into two categories: task-driven and free-

iewing . Task-driven means the annotators are given a specific se-

antic to look at, e.g. a dog. Free-viewing means the annotators

iew the image freely without specific purpose. As an example of

ree-viewing , Lopez et al. [37] expose simultaneously two images on

he screen for evaluating the annotator’s visual preference. The aim

f this protocol is to collect the gaze features of left and right im-

ge for classifying the visual preference. Papadopoulos et al. [16]

se an instantiation task-driven protocol. Specifically, this proto-

ol first group image categories into visual-similar pairs. Then the

nnotation interface exposes to the annotator one image from a

elected pair. The annotator should make a decision on the cate-

ory of the image. The advantage of this protocol is that it does
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Fig. 2. The rationale of the definition of gaze loss. When the color of heatmap is 

closer to red, the density of gaze is higher. The region contains the maximum den- 

sity of gaze is shown as z i (shown as the green rectangle). The gaze loss of z i is 

thus defined as 0. The red region z 1 contains a smaller density of gaze with respect 

to the blue region z 2 , leading to a larger gaze loss. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.) 
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ot need the target-absent image to avoid guess, which further re-

uces unnecessary labeling time. Similarly, Mathe et al. [38] anno-

ate two concepts: actions and context . One image is exposed to

he annotator. Then the annotator is told to find all the actions in

he image. Since then, gaze in one image are related to all cate-

ories. Gilani et al. [39] use a similar protocol as [38] . But addition-

lly, they have an extra free-viewing protocol for comparing the in-

ernal connection with the task-driven protocol. In this paper, we

ropose a new dataset, UPMC-G20, with gaze annotation using a

imilar task-driven protocol as in [16] . This dataset is based on the

arge-scale food-related dataset UPMC Food-101 [40] . The detail of

PMC-G20 is described in Section 5.2.3 . 

.2. Weakly supervised learning 

Multiple Instance Learning (MIL) [14] is one of the main

aradigms for training WSL models. Under the assumption of MIL,

 bag is positive if there is at least one positive instance in the

ag, while a bag is negative if all the instances in the bag are neg-

tive. Several attempts have been devoted to applying MIL for ob-

ect detection [15,41,42] , scene recognition [43,44] and dictionary

earning [45,46] . As an instantiation of MI-SVM [47] , the latent Sup-

ort Vector Machine (LSVM) [15] introduces a theoretically sound

ormalism for WSL. One challenge with LSVM is due to the intro-

uction of latent variables, which makes the resulting optimization

roblem non-convex. When using sliding window approaches for

enerating the candidate regions, the size of the latent space be-

omes enormous. To overcome this issue, incremental exploration

trategies have been proposed in [4 8,4 9] . Finally, recent works fo-

us on enriching the prediction function, by using several (top) in-

tance scores instead of using a single max [22] , or by incorporat-

ng negative evidence [50–52] . 

A growing interest is incorporating gaze information into WSL

odels. Mathe et al. [53,54] proposes using reinforcement learning

o find a latent space sampling policy from gaze. This method is

fficient at the cost of prediction accuracy. Karthikeyan et al. [27]

roposes to train a face and text detector from only gaze infor-

ation. Although this work does not use image features, it still

equires bounding boxes to segment out face and text regions.

hcherbatyi et al. [55] integrates gaze into Deformable Part Model

or selecting one relevant object location. Their model require gaze

nnotations for test. Shapovalova et al. [32] and Wang et al. [21] fo-

us on WSL recognition by penalizing region selection with gaze.

owever, the gaze information is not sufficiently exploited because

nly positive examples are penalized with gaze. In this paper, com-

aring to the previous works, our model is generalized to capture

he gaze information related to both positive and negative exam-

les. Our model only needs gaze for training rather for test. Since

hen, our model combines the gaze feature and image feature, but

oes not use bounding box as input. We also find that the gener-

lization to top k region selection strategy much benefits from the

aze information. 

. G-LSVM: weakly supervised gaze latent SVM 

.1. Latent SVM 

We consider the problem of learning with weak supervision in

 binary classification context based on the Latent SVM model [15] .

The prediction function f : X → Y takes as input an image x ,

nd outputs a binary y ∈ { +1 , −1 } . Each image x is associated with

atent variables z ∈ Z ( x ), which corresponds to a set of sub-regions.

or each region z in image x , we extract a visual feature vector

(x, z) ∈ R 

d , e.g. deep features. Our model is linear with respect

o �, i.e. each region z is assigned the score 〈 w , �( x, z ) 〉 , where w

s learned from data. The problem is weakly supervised since the
egion-specific labels are unknown during training. Our prediction

akes the maximum score over the latent variables: 

f w 

(x ) = max 
z∈ Z(x ) 

〈 w , �(x, z) 〉 . (1)

A standard classification metric is the 0/1 loss, which means the

oss equals 0/1 if the classification is correct/false. However, 0/1

oss is difficult to optimize. As in LSVM, we use the hinge loss as a

onventional upper-bound of 0/1 loss. As a result, a classical-SVM

ike loss is proposed for LSVM: 

 LSV M 

(w ) = 

1 

2 

‖ w ‖ 

2 + 

n ∑ 

i =1 

max (0 , 1 − y i f w 

(x i )) , (2)

here y i is the true label of image x i , ˆ y i = sgn ( f w 

(x i ) ) is the la-

el predicted by our model, hinge loss is defined as �c ( ̂  y i , y i ) =
ax (0 , 1 − y i f w 

(x i )) and 

1 
2 ‖ w ‖ 2 is the standard max margin regu-

arization term. 

.2. Positive gaze latent SVM 

This model generalizes latent SVM [15] by biasing the selection

f latent regions based on the gaze information during the training

cheme. The training objective of G + LSVM is as follows: 

 G + (w ) = 

1 

2 

‖ w ‖ 

2 + 

n ∑ 

i =1 

�c ( ̂  y i , y i ) + γ · δg ( ̂ z i , x i , y i ) , (3)

here z i is the region with the maximum total duration of fix-

tions, ˆ z i = arg max 
z∈ Z(x i ) 

〈 w , �(x i , z) 〉 interpreted as the relevant region

elected by our model. For each training example, Eq. (3) includes

 classification hinge loss and a gaze loss δg , with a scalar trade-off

arameter γ ≥ 0. 

The novelty in our training scheme is the introduction of a gaze

oss δg defined as: 

g ( ̂ z i , x i , y i ) = 

{
1 − g (x i , ̂ z i ) 

g + (x i ) 
if y i = 1 

0 if y i = −1 , 
(4)

here g( x i , z ) is the density of fixations in the region z for image

 i , g + (x i ) is the maximum density of fixations among all the re-

ions of image x i . Fig. 2 illustrates the proposed gaze loss. In this

xample, when the color of heatmap is closer to red, the density of

aze is higher. The region contains the maximum density of gaze

s shown as z i (shown as the green rectangle). The gaze loss of z i 
s thus defined as 0. The red region z 1 contains a smaller density

f gaze with respect to the blue region z 2 , leading to a larger gaze

oss. 



62 X. Wang et al. / Pattern Recognition 72 (2017) 59–71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f  

t

 

s  

d  

p  

n  

t  

r  

e

 

t  

c  

r  

t  

m

L  

i  

E  

p  

s

L

 

w

�

δ

z

w  

{

4

 

a

L  

o  

t  

t  

a  

s  

o  

E

 

W  

i

 

s  

i  

t  

e  

c  

p  

p

 

The intuition of training G + LSVM is straightforward. Our train-

ing objective in Eq. (3) is biased by the gaze loss δg , so that

G + LSVM learns a different model parameter w which tends to

minimize gaze loss compared to LSVM. The final decision of our

model is to learn a unique w by compromising between classifi-

cation loss and gaze loss. In other words, G + LSVM tries to solve

the task of classification and localization simultaneously, thus the

relevant region is presumed to contain the object of interest, which

leads to a better classification result. 

Note that given a model parameter w , the relevant region ˆ z only

depends on image feature as LSVM, without any gaze information

( Eq. (1) ). The benefit of this modeling strategy is that G + LSVM

only uses gaze loss for training, not for the test. This idea is in-

spired from learning using Privileged Information (LUPI) [56,57] . The

problem addressed by LUPI is that the privileged information is

available only at the training stage and is not available at the test

stage. By including privileged information into training we obtain a

better model, which commits lower generalization error thanks to

the localization information for human gaze. This modeling strat-

egy is also practical because models trained with gaze can be ap-

plied without gaze annotations. This strategy is also applicable to

the following models in Sections 3.3 and 3.4 . 

3.3. Positive negative latent SVM 

One drawback of G + LSVM is the absence of gaze information

in negative image. However, a straightforward application of pos-

itive gaze loss on the negative image may not work. The reason

is that for the positive image, the model should tend to local-

ize where the foreground object is. For the negative image, how-

ever, the model should tend to localize where the background

is [50] . That’s because the overlapping instances between positive

and negative example are likely to be the background. According to

the task-driven protocol, image semantic is related with gaze dis-

tribution. Indicated by the gaze, the region with lower density of

gaze is more likely to be background. Since then, we should heavily

penalize the object region of negative image. This intuition leads to

a generalization of G + LSVM, called G ± LSVM. In G ± LSVM we de-

fined a negative gaze loss, which prefers the region where there is

less objectness . Contrary to positive image, if a region of negative

image contains more gaze, it is force not to be the relevant region

of the negative image. 

Based on this assumption, we propose a negative gaze loss de-

fined as follows: 

δg ( ̂ z i , x i , y i ) = 

{
1 − g (x i , ̂ z i ) 

g + (x i ) 
if y i = 1 

g (x, ̂ z i ) −g −(x i ) 
g + (x i ) −g −(x i )+ ε if y i = −1 

(5)

where g −(x i ) is the minimum number of gaze among all regions

of image x i , ε is set to be 10 −6 . We subtract the term g −(x i ) from

the numerator and denominator only to normalize the minimum

negative gaze loss to be 0. 

We introduce independent parameters γ+ and γ− for trading

positive gaze loss and negative gaze loss. Assembling all together

we get the objective function of G ± LSVM: 

L G + − (w ) = 

1 

2 

‖ w ‖ 

2 + 

n ∑ 

i =1 

�c ( ̂  y i , y i ) + ( [ y i = 1] γ+ 

+[ y i = −1] γ−) · δg ( ̂ z i , x i , y i ) (6)

3.4. Top k instance model 

Taking only the maximum scored region as the representative

is rigid because one region may be too small to fit an object. To

soften the constraint, [22] proposes the definition of soft bags of

top k instances. In soft bags, example is represented by the average
eature of the top k instances. This method is proved to be robust

o the noise in the examples and generalized better than LSVM. 

An useful property of top k related to gaze information is its

mooth functionality for sparse gaze limitation . This limitation is

ue to the truth that gaze on an image often focus on a small

art of the image. For a given example, the gaze loss term has

o difference on regions with the same gaze loss. Selection among

hese regions is random in previous single instance models. This

andomness can be eliminated by taking them all via top k strat-

gy. 

Fig. 3 illustrates the rationale of our final model. Remind that

he goal is to select semantically meaningful regions, e.g. those

ontaining the target object class ( eggs benedict region or its sub-

egions in Fig. 3 a). By assuming that gaze features are related

o regions relevant for the recognition task, gaze and object are

atched for positive example. For negative example, top k G ±
SVM further supports regions with low density of gaze, by assum-

ng that no gaze features are related to classify negative images.

xtending the model to top k instances latent SVM can further im-

rove the quality of region selection and reduce the effect of the

parseness of gaze. 

The objective function of top k G ± LSVM is as follows: 

 kG + − (w ) = 

1 

2 

‖ w ‖ 

2 + 

n ∑ 

i =1 

�c ( ̂  y i , y i ) + ( [ y i = 1] γ+ 

+[ y i = −1] γ−) · δg ( ̂ z i , x i , y i ) (7)

here 

c ( ̂  y i , y i ) = max (0 , 1 − y i f w 

(x i )) 

g ( ̂ z i , x i , y i ) = 

1 

k 

k ∑ 

j=1 

δg ( ̂ z i j , x i , y i ) 

ˆ  i = arg max 
z ∈ Z (x i ) 

〈 w , �(x i , z ) 〉 , 

here z is a vector of latent variables, Z ( x i ) the hypothesis space

0, 1} k �{ 0 }. �(x i , z ) = 

1 
k 

∑ k 
j=1 �(x i , z i j ) . 

. G-LSVM optimization 

In the Section 3 we have revised the baseline LSVM, G + LSVM,

nd proposed three variations, G ± LSVM, top k G + LSVM, top k G ±
SVM. Each of the five models has a different objective function to

ptimize. However, notice that when k = 1 , top k models reduce to

he single instance model. Furthermore, when γ− = 0 , the objec-

ive function of G ± LSVM ( Eq. (6) ) reduces to G + LSVM ( Eq. (3) ),

nd when γ+ = 0 , G + LSVM reduces to LSVM ( Eq. (2) ). For the rea-

on above, without losing the generality, we only explain how to

ptimize the most generalized top k G ± LSVM objective function

q. (7) in this section. 

Eq. (7) is a sum of hinge loss (classification loss) and gaze loss.

e first derive a concave-convex upper bound of Eq. (7) by follow-

ng steps: 

1) Classification loss part: For negative example, y i = −1 . The

econd term 1 − y i f w 

(x i ) in its classification loss is convex because

t is a sum of a constant and a maximum over a set of convex func-

ions. As a result, the sum of the classification loss of all negative

xamples are convex. For positive example, since y i = 1 , it is not

onvex. We propose to optimize by decomposing the hinge loss of

ositive example into a difference of two convex functions by ap-

lying the following theorem: 

max (0 , u − v ) = max (u, v ) − v , (8)
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Fig. 3. Illustration of top k G ± LSVM model. Human gaze density is represented by the heat map. In our models, positive example emphasize the latent regions with high 

gaze density (inside the solid boxes), while negative example emphasizes the regions with low gaze density (outside the dashed boxes). Different colors of regions indicate 

different scales. For one scale, our model takes multiple highest scored regions as the relevant regions. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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Algorithm 1: Concave-Convex Procedure. 

Output : w 

∗

1 Set t = 0 , stopping criterion ε and initialize w by w 0 , u (w ) 

and v (w ) are defined as Eq. 12 and Eq. 13. 

2 repeat 

3 Find hyperplane v t to linearize −v (w ) : 

−v (w ) ≤ −v (w t ) + (w − w t ) · v t , 

4 Solve w t+1 = argmin w 

u (w ) + w · v t , 

5 Set t = t+1, 

6 until [ u (w t ) − v (w t )] − [ u (w t−1 ) − v (w t−1 ))] < ε; 
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ter are fixed as 2049. 

1 http://www.vlfeat.org/matconvnet/pretrained/ . 
here u, v are two convex functions. The non-convex classification

oss of every positive example is thus decomposed as: 

ax (0 , 1 − f w 

(x )) = max (1 , f w 

(x )) − f w 

(x ) . (9)

The maximum of a set of linear functions is convex, so Eq. (9) is

 difference of two convex functions. 

2) Gaze loss part: δg ( ̂ z i , x i , y i ) is difficult to optimize, because the

ependency on w is complex and non-smooth. To overcome this

ssue, we derive a convex upper-bound �g , inspired from margin-

escaling [58] : 

g ( ̂ z , x i , y i ) ≤ δg ( ̂ z , x i , y i ) + w · �(x i , ̂  z ) − w · �(x i , z i ) 

≤ max 
z ∈ Z (x i ) 

[ δg (z , x i , y i ) + w · �(x i , z )] − w · �(x i , z i ) 

:= �g ( ̂ z , x i , y i ) (10) 

here max z ∈ Z (x i ) 
[ δg (z , x i , y i ) + w · �(x i , z )] is a max over linear

unctions, so it is convex. The second term w · �( x i , z i ) is linear.

s a result, the difference of the two terms is convex. 

Aggregating Eqs. (9) and (10) together, the concave-convex up-

er bound of the objective function of top k G ± LSVM is Eq. (11) : 

 kG + − (w ) ≤ L kG + − (w ) 

= 

1 

2 

‖ w ‖ 

2 + C 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 

n n 

n n ∑ 

i n =1 

max (0 , 1 + f w 

(x i n )) 

︸ ︷︷ ︸ 
cn (w ) 

+ 

1 

n p 

n p ∑ 

i p =1 

max (1 , f w 

(x i p )) 

︸ ︷︷ ︸ 
cp 1 (w ) 

− 1 

n p 

n p ∑ 

i p =1 

f w 

(x i p ) 

︸ ︷︷ ︸ 
cp 2 (w ) 

+ 

n ∑ 

i =1 

(
[ y i = 1] 

γ+ 
n p 

+ [ y i = −1] 
γ−
n n 

)
· �g ( ̂ z , x i , y i ) 

︸ ︷︷ ︸ 
g (w ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

(11) 

here n p , n n are respectively number of positive examples and

egative examples. The losses of positive example and negative ex-

mple are also balanced according to their quantity. 

For brevity, we rewrite Eq. (11) as u (w ) − v (w ) , where: 

 (w ) = 

1 ‖ w ‖ 

2 + C(cp 1 (w ) + cn (w ) + g(w )) . (12)

2 
 (w ) = Ccp 2 (w ) . (13)

We then optimize u (w ) − v (w ) by CCCP ( Algorithm 1 ). The

CCCP algorithm is guaranteed to decrease the objective function

t every iteration and to converge to a local minimum or saddle

oint [20] . In Algorithm 1 , the line 3 involves linearizing the con-

ave part −v (w ) . We calculate the supergradient v t of −v (w ) at

he point w t , where v t = − ∑ n p 
i p =1 

�(x i , ̂  z i ) . At line 4, the problem

ecomes convex, we can use any convex optimization tool for solv-

ng this problem. 

. Experiments 

.1. Weakly supervised classification setting 

In our models, the first step is generating the latent regions.

atent region set corresponds to square image regions extracted

ith a multi-scale sliding window strategy. Region size vary from

0% to 30% of the whole image area. For a given scale, a window

lides from the upper-left to the bottom-right of the image with a

tep size 10% in both directions. As a result, for each image, the

ize of sub-region space varies among {4, 9, 16, 25, 36,
9, 64} . Each region is described by the deep features extracted

rom the FC7 layer of the pre-trained imagenet-vgg-m-2048
eep model, 1 which are subsequently L2-normalized and add a

ias term. In this setting, the size of feature and model parame-

http://www.vlfeat.org/matconvnet/pretrained/
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Fig. 4. Gaze annotations. left : sample image of POET dataset, right : sample image of Action dataset. Different colors indicate different observers. 
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For training the multi-scale model, we adapt the object bank

representation [19] for our setting. For a given category, we first

train the models independently for all 8 scales (including the full

image scale). We then form an 8-dimensional vector for each im-

age by the classification scores and train a linear SVM with C =
10 as the multi-scale model. Finally, the multi-scale classification

score of all categories are averaged to give an mAP to show the

overall performance of our models. 

5.2. Datasets 

We validate our ideas on three datasets, PASCAL VOC Action

dataset annotated with gaze (short for Action) [38] , PASCAL VOC

Object dataset annotated with gaze (short for POET) [16] and our

dataset UPMC-G20. Action contains 4588 images, covering 10 cat-

egories. POET contains 6131 images, covering 10 categories out of

20 categories of PASCAL VOC Object dataset. The origin of these

images is the train+val split of PASCAL VOC dataset. Two sam-

ple images of POET and Action are shown with gaze annotations

in Fig. 4 . UPMC-G20 contains 20 0 0 images, covering 20 food cate-

gories. The detail of UPMC-G20 is described in Section 5.2.3 . 

5.2.1. Acquisition protocols of POET and action 

The gaze annotations over these datasets are all collected in

task-control manners with slight variations. 

1. POET uses the category specific protocol , which means that each

subject has a specific category of object, e.g. cat, to look at.

Images in POET may have multiple categories. These multiple

classes images are annotated with more than one set of annota-

tions. In out tests, for a positive image, we use the correspond-

ing set of annotations, for a negative image, we calculate the

fixation duration for each region of each category, then take the

maximum fixation duration across the categories as the fixation

duration of this region. 

2. Action uses the category group protocol , which means the sub-

ject is required to find a specific group of categories, i.e. actions

or context. In other words, if a subject is required to find ac-

tions, the subject should find all possible actions in the image.

The setting of Action is weaker than POET because annotations

are only related with a person, not a specific action. 

5.2.2. Qualitative analysis of gaze information 

We provide a detailed analysis of the gaze data consistency

with respect to ground truth bounding boxes on Action and POET.

Currently, UPMC-G20 does not have bounding box, so we do not

provide the results. We compute statistics for the proportion of

gaze falling into or outside of the bounding boxes and compare

it to the proportion of image pixels ( Fig. 5 ). Statistically, for action

dataset, 68.8% of the gaze fall into the ground-truth bounding-box,

while the score of pixels is only 30.6%. Similarly, the scores of ob-

ject dataset are 77.3% vs. 36.9%. This preliminary study provides a
uantitative validation that human gaze are highly related to ob-

ect localization, and convey relevant features for classification. 

.2.3. UPMC-G20 food gaze dataset 

PMC-G20 content. UPMC-G20 is a food-related gaze anno-

ated dataset based on a multi-modal large scale food dataset

PMC-food 101 [40] . We select 20 food categories from UPMC-

ood 101, resulting in 2,0 0 0 images. The images selected do not

ontain text, because it’s verified that texts attract attention

ost [59] . For each image, about 15 fixations across 3 subjects

in average) with a total duration of 2.5 s are collected. In total,

e have collected 31104 fixations. The categories selected are

pple-pie/bread-pudding, beef-carpaccio/beet-salad, chocolate-

ake/chocolate-mousse, donuts/beignets, eggs-benedict/croque-

adame, gnocchi/shrimp-and-grits, grilled-salmon/pork-chop,

asagna/ravioli, pancakes/french-toast, spaghetti-bolognese/pad-

hai. 

Samples of images and gaze annotations are shown in the Fig. 6 .

or full visualization of UPMC-G20, we refer our reader to this page

f our dataset: http://webia.lip6.fr/ ∼wangxin/upmcg20/ . 

pparatus. Our eye-tracker is a non-invasive Tobii X2-30 with a

ouble eyes gaze sampling rate 30 Hz. Eye-tracker is fixed under

 12.6” laptop screen with resolution 1366 × 768. The subject sits

t a distance of about 60cm to the screen. The test environment

s quiet and of suitable temperature for not introducing physiolog-

cal error. The experiment was conducted with the software Tobii

tudio (V3.4.5) [60] . Before annotating, for each subject, dominant

ye, gender, age are recorded. Before every experiment, Tobii X2-

0 is calibrated and validated with a standard nine-point proce-

ure to ensure the coordinate of the gaze recorded matches where

he subject is looking at. They are taught the procedure of annota-

ion with a clear explanation and validate a simulation test before

he formal experiment. Subject record his classification answer by

licking the corresponding option on the screen after viewing an

mage using a mouse. Comparing to pressing a button to indicate

he category as in [16] , using the mouse is useful because mousing

oving leads to eye moving after every image. The subject then

reak the possible steady fixating strategy. 

PMC-G20 collection protocol. Our collection protocol is shown in

ig. 7 . It is inspired by the two-alternative forced choice object dis-

rimination [16] . This protocol is simple to the annotators and can

ave the time because no irrelevant images for distracting the at-

ention are shown. 

The protocol is composed of steps: 

1. randomly selecting an image from a pair of categories and ex-

posing for 2.5 s, recording the gaze data. 

2. making the subject answering a multiple choice question of

which the category the image belongs to is shown using a

mouse. 

http://webia.lip6.fr/~wangxin/upmcg20/
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Fig. 5. Proportions of gaze and pixel numbers in (outside) the ground-truth bounding boxes. 

Fig. 6. Sample images of apple pie (left column) and bread pudding (right column) 

in UPMC-G20. 
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3. After exposing every 20 images, a page indicates the progress

of the task is shown to heal the anxiety of annotators. 

4. After exposing a whole set of images, annotator gets an ade-

quate rest then recalibrate for the next set of images. 

.2.4. Gaze data 

Each gaze is classified into fixation, saccade, or unclassified

aze. For Action and POET, the classification results are already

iven in the dataset. For UPMC-G20, I-VT filter [61] is used to clas-
Fig. 7. Food gaze coll
ified the gaze. Gaze is then represented by fixation in the form of

 triplet ( x, y, duration ). ( x, y ) is the coordinate of fixation, duration

s the duration time of this fixation. Fixation duration is important

ince higher exposure time of a fixation reflects a deeper under-

tanding of the local content of the image [62] . The total valid fix-

tion time duration of each subject on each image is normalized

o a fixed value. By considering the gaze consistency across sub-

ects, for each region, the fixation duration is summed for all sub-

ects. Gaze loss is calculated for each region using the re-weighted

ummed fixation. 

.2.5. Dataset split 

In order to compare with the state-of-the-art methods, we fol-

ow the standard split of train , val , test set as indicated in

ASCAL VOC 2012 development kit [63] . Since POET contains only

0 out of 20 categories of Pascal VOC 2012 Object, we add back the

mages of the absent categories in the train+val set for train-

ng, without gaze information. Finally, our model can be evaluated

ollowing the standard protocol. For Action, since by default stan-

ard test set requires to identify every person in an image with a

ounding box, we conventionally train our model on the training

et and test on the validation set. Except for the comparison with

he state-of-the-art methods, our experiments are performed by 5

andom folds test on the train+val set of POET, Action, and the

hole dataset of UPMC-G20. 

.3. Comparison with the state-of-the-art 

In our model, we set k -G ± LSVM with the parameters C = 10 4 ,

+ = 0 . 2 , γ− = 0 . 05 for each scale. In a heuristic manner, for top

 models, we set k = 2 , 4 , 6 , 8 for scale 90% to 60%, and k = 10 for

cale 50% to 30%. A multi-scale model is trained as indicated in

ection 5.1 . In all experiments, we use the standard metric mean

verage Precision (mAP) as for PASCAL VOC classification. 
ection protocol. 
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Table 1 

Comparison with the state-of-the-art methods on the test set of Pascal VOC 2012 

Object, and the validation set of Action . Our model outperforms other methods even 

when they use global label + training bounding box . We also achieve 

comparable results with respect to the models using accurate annotations such as 

test bounding box and/or human part annotation . 

Action POET label train BB test BB part gaze 

Deep Fishing [64] – 79.9 � 

Z&F [65] – 81.2 � 

RMP [69] 65.1 – � 

NUS-SCM [66] – 84.3 � � 

Oquab [67] – 84.5 � � 

Action part [68] 64.6 – � � 

RMP [69] 71.4 – � � � 

Action part [68] 71.0 – � � � � 

k -G ± LSVM (ours) 69.6 85.9 � � 

G + LSVM [21] 66.8 82.6 � � 

wSVM 59.1 79.8 � 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. mAP(%) at different scales. In our model, scale measures the size of the 

sliding window with respect to the size of the image. Our model outperforms the 

whole image for most scales using top k instances. Also, k -G ± LSVM significantly 

outperforms other G-LSVM variations at all scales. 
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In Table 1 we show the global score of different methods on

the three datasets and the annotations they use. For POET dataset,

Deep Fishing [64] and Z&F network [65] are two deep network

based methods which only use image label for training. NUS-SCM

[66] is an SVM-based method and Oquab [67] is a fine-tuned deep

network. They both use training bounding box as the additional

annotation. Our method outperforms the four methods with only

our weak supervision signals. For Action dataset, we compare with

Action part [68] and RMP [69] . The action part is a deep version of

poselets and capture parts of the human body under a distinct set

of poses, while RMP considers deformation of discriminative parts.

They both propose a model with simple annotations ( e.g. image la-

bel and training bounding box) and a model with rich annotations

( e.g. test bounding box and part annotation. Our model is better

than them if they do not use rich annotations. In Table 2 we show

the per category performance on the test set of POET. Our model

largely outperforms other methods on boat, cat and diningtable cat-

egories. 

5.4. Ablation studies 

In this section, we compare LSVM, G + LSVM, G ± LSVM and

their top k variations. We present the scale-wise classification ex-

periments in Fig. 8 . In our model, scale measures the size of the

sliding window with respect to the size of the image. In a heuristic

manner, for top k models, we set k = 2 , 4 , 6 , 8 for scale 90% − 60% ,

and k = 10 for scale 50% − 30% . For most scales, the model perfor-

mance is better than wSVM (scale = 100 in Fig. 8 ). This result proves

the effectiveness of weakly supervised learning: local information

is critical for image classification. 

We can also observe that adding gaze into the model improve

the performance for all scales. The improvement can be explained

by two reasons. One is that G + LSVM emphasizes small scales.

That is what we expect: for large scales, nearly all regions of pos-

itive images are informative, whereas at smaller scales, the model

has to focus on relevant localized features. The other is that G ±
LSVM can also emphasize large scales. Paired T-tests show that

G ± LSVM is better than LSVM with a larger significance than for

G + LSVM, especially for large scale. This phenomenon may have a

dual explanation with respect to G + LSVM: not all regions of neg-

ative images are non-informative. As a result, for large scale, the

ground truth region z i of negative example has a larger probabil-

ity to be unique. While for small scales, z i is selected randomly

among all low gaze density regions, which may lead to a less op-

timal result. When k increases, for small scale, this problem no

longer dominates the performance because the set of ground truth

regions for negative images is informative with less randomness.
e think that is the reason why we constate a substantial perfor-

ance enhancement at small scales for top G ± LSVM. 

Table 3 gives the performance at the smallest scale 30%. At scale

0%, k -G ± LSVM ( k -G + LSVM) outperform k -LSVM by a margin

f 1.8%(1.1%), 1.2%(0.5%), 2.3%(1.2%) for respectively Action, POET

nd UPMC-G20. Paired T-tests show that k -G ± LSVM ( k -G + LSVM)

s more significant than LSVM for a risk less than 0.2%(1.0%),

.0%(2.0%), 0.2%(0.5%) for respectively Action, POET, UPMC-G20.

hese statistical results show that k -G ± LSVM is better than k -

 + LSVM with significance at small scale. Top k models much out-

erform single instance models. Interestingly, as we expected, the
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Table 2 

mAP(%) per category on the test set of PASCAL VOC 2012 Object. 

POET mAP Plane Bike Boat Cat Cow Table Dog Horse Motor Sofa 

Deep Fishing [64] 79.9 95.0 76.6 82.9 88.6 65.4 69.8 86.5 82.1 85.1 57.0 

Z&F [65] 81.2 96.0 77.1 85.5 91.2 74.4 67.7 87.8 86.0 85.1 61.1 

NUS-SCM [66] 84.3 97.3 84.2 85.3 89.3 77.8 75.1 83.0 87.5 90.1 73.4 

Oquab [67] 84.5 94.6 82.9 84.1 90.7 86.8 69.0 92.1 93.4 88.6 62.3 

k -G ± LSVM (ours) 85.9 97.2 83.9 90.1 94.7 77.4 77.3 92.3 87.3 89.9 68.9 

G-LSVM [21] 82.6 96.5 80.2 87.7 92.4 71.1 74.1 89.6 84.3 87.5 62.7 

wSVM 79.8 95.4 79.6 86.7 92.2 59.6 69.9 90.0 86.7 79.3 58.4 

Fig. 9. The sensitivity of hyper-parameters γ+ and k. left : At scale 50%, the performance with respect to γ+ ( γ−) is found to reach the peak value in the interval [0.1, 0.3] 

([0.05, 0.1]). right : At scale 30%, generally, the larger k is, the better the performance is. 
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Fig. 10. Localization results achieved by running model . (a)(b): training results, (c)(d): test results. 

Table 3 

mAP(%) of scale 30% on Action, POET and UPMC-G20 

datasets. Here we set k = 10 . 

Action POET UPMC-G20 

k -G ± LSVM 66.0 ± 0.9 88.1 ± 1.2 78.3 ± 1.0 

k -G + LSVM 65.3 ± 1.0 87.4 ± 1.0 77.1 ± 1.1 

k -LSVM 64.2 ± 0.8 86.9 ± 1.1 76.0 ± 1.2 

G ± LSVM 62.4 ± 0.9 85.3 ± 1.1 73.0. ± 0.8 

G + LSVM 62.1 ± 0.8 85.2 ± 1.0 72.9 ± 0.9 

LSVM 58.2 ± 1.0 84.2 ± 1.1 71.6 ± 1.0 
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gain of k -G ± LSVM with respect to k -G + LSVM is much larger than

the gain of G ± LSVM with respect to G + LSVM. 

5.5. Study of hyper-parameters 

We investigate the impact of the three hyper-parameters in our

model: trade-off parameters γ + , γ − and k . The impact of the pa-

rameter γ+ of G + LSVM is shown in Fig. 9 for small scale 50%, with

k set to be 1. The performances in Fig. 9 are shown on average for

all categories. For all three datasets, mAP reaches the peak when

γ+ is in the interval [0.1, 0.3]. Note that when γ+ gets too high,

mAP gets even lower than not adding gaze ( Fig. 9 ). Fix γ − to be

the best value obtained by cross-validation, for γ − , the effective

value is found to be a relatively small value between [0.05, 0.1].

This result is reasonable because our objective is classification with

gaze information as auxiliary information, so the gaze loss should

tend to have a smaller weight than the classification loss. The per-

formance of k model varies in the similar trend. 

We show in Fig. 9 that our model outperforms k model sig-

nificantly for all k value at scale 30%. We set γ+ of G ± LSVM

and G + LSVM to 0.2, γ− of G ± LSVM to 0.05. From Fig. 9 , we

also find that by increasing k , gaze latent SVM always outper-

forms latent SVM. This result signifies that gaze helps better select

the regions even when the number of candidate regions largely

increases. Heuristically, for selecting k , the small scales prefer a

larger k . That’s because, for small scale, more regions are semantic

for positive images and can smooth the selection of ground-truth

regions of negative examples. 
.6. Localization results 

The relevant regions proposed by our models are interpretable.

e show in Fig. 10 the predicted regions for the model k -G ± LSVM

t scale 30%, where k = 10 . We present the first three high scored

egions for visual clarity. 

Results for training images are shown in the first row: we show

hat k -G ± LSVM selects areas with more (fewer) gaze for positive

negative) images. Results for test images are shown in the second

ow, of which gaze features are not available. k -G ± LSVM extracts

egions which are highly semantic for positive images and extract

ackground for negative images. For example, we find that running

odel has a good result on the positive image. Also for the neg-

tive image, the running model fires at the regions which have a

imilar visual semantic to the road and trees. Interestingly, these

egions often appear as the background in the running images. As

hese regions have a relatively low density of gaze, our model em-

hasizes the importance of these regions. 

. Conclusion 

In this paper, we introduce G(aze)-LSVM, a weakly supervised

earning multi-scale model using sub-region strategy incorporat-

ng human gaze for image classification. Our model exploits gaze

or guiding the selection of region which is relevant with the im-

ge semantic. Furthermore, we find that generalizing the model

o the selection of k maximum scored regions can also benefit

rom the gaze information. Our model leverage human gaze fea-

ures for training, while the test is gaze free. Experimental results

how that our model achieves competitive results with respect to

he state-of-the-arts methods on Pascal VOC Action and Object. We

lso publicly release a medium-sized food dataset with gaze anno-

ation, UPMC-G20, covering 20 categories and 20 0 0 images. 
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