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Abstract. In this paper, we introduce a new model for leveraging unla-
beled data to improve generalization performances of image classifiers:
a two-branch encoder-decoder architecture called HybridNet. The first
branch receives supervision signal and is dedicated to the extraction
of invariant class-related representations. The second branch is fully
unsupervised and dedicated to model information discarded by the first
branch to reconstruct input data. To further support the expected behav-
ior of our model, we propose an original training objective. It favors
stability in the discriminative branch and complementarity between the
learned representations in the two branches. HybridNet is able to outper-
form state-of-the-art results on CIFAR-10, SVHN and STL-10 in various
semi-supervised settings. In addition, visualizations and ablation stud-
ies validate our contributions and the behavior of the model on both
CIFAR-10 and STL-10 datasets.
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1 Introduction

Deep learning and Convolutional Neural Networks (ConvNets) have shown
impressive state-of-the-art results in the last years on various visual recognition
tasks, e.g. image classification [1–3], object localization [4–6], image segmen-
tation [7] and even multimodal embedding [8–10]. Some key elements are the
use of very deep models with a huge number of parameters and the availability
of large-scale datasets such as ImageNet. When dealing with smaller datasets,
however, the need for proper regularization methods becomes more crucial to
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control overfitting [11–14]. An appealing direction to tackle this issue is to take
advantage of the huge number of unlabeled data by developing semi-supervised
learning techniques.

Many approaches attempt at designing semi-supervised techniques where the
unsupervised cost produces encoders that have high data-likelihood or small
reconstruction error [15]. This strategy has been followed by historical deep
learning approaches [16], but also in some promising recent results with mod-
ern ConvNets [17,18]. However, the unsupervised term in reconstruction-based
approaches arguably conflicts with the supervised loss, which requires intra-class
invariant representations. This is the motivation for designing auto-encoders that
are able to discard information, such as the Ladder Networks [19].

Another interesting regularization criterion relies on stability. Prediction
functions which are stable under small input variations are likely to generalize
well, especially when training with small amounts of data. Theoretical works have
shown the stability properties of some deep models, e.g. by using harmonic anal-
ysis for scattering transforms [20,21] or for Convolution Kernel Machines [22]. In
addition, recent semi-supervised models incorporate a stability-based regularizer
on the prediction [23–25].

In this paper, we propose a new approach for regularizing ConvNets using
unlabeled data. The behavior of our model, called HybridNet, is illustrated in
Fig. 1. It consists in a “hybrid” auto-encoder with the feature extraction path
decomposed into two branches.

The top branch encoder, of parameters Wc, is connected to a classification
layer that produces class predictions while the decoder from this branch is used
to partly reconstruct the input image from the discriminative features, leading to
x̂c. Since those features are expected to extract invariant class-specific patterns,
information is lost and exact reconstruction is not possible. To complement it, a

Fig. 1. Illustration of HybridNet behavior: the input image is processed by two network
paths of weights Wc and Wu; each path produces a partial reconstruction, and both are
summed to produce the final reconstruction, while only one path is used to produce a
classification prediction. Thanks to a joint training of both tasks, the weights Wc and
Wu influence each other to cooperate
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second encoder-decoder branch of parameters Wu is added to produce a comple-
mentary reconstruction x̂u such that the sum x̂ = x̂c + x̂u is the final complete
reconstruction.

During training, the supervised classification cost impact Wc while an unsu-
pervised reconstruction cost is applied to both Wc and Wu to properly recon-
struct the input image. The main assumption behind HybridNet is that the
two-path architecture helps in making classification and reconstruction cooper-
ate. To encourage this, we use additional costs and training techniques, namely
a stability regularization in the discriminative branch and a branch complemen-
tarity training method.

2 Related Work

Training deep models with relatively small annotated datasets is a crucial issue
nowadays. To this end, the design of proper regularization techniques plays a
central role. In this paper, we address the problem of taking advantage of unla-
beled data for improving generalization performances of deep ConvNets with
semi-supervised learning [26].

One standard goal followed when training deep models with unlabeled data
consists in designing models which fit input data well. Reconstruction error is
the standard criterion used in (possibly denoising) Auto-Encoders [15,27–29],
while maximum likelihood is used with generative models, e.g. Restricted Boltz-
mann Machines, Deep Belief Networks or Deep Generative Models [16,30–32].
This unsupervised training framework was generally used as a pre-training before
supervised learning with back-propagation [33], potentially with an intermediate
step [34]. The currently very popular Generative Adversarial Networks [35] also
falls into this category. With modern ConvNets, regularization with unlabeled
data is generally formulated as a multi-task learning problem, where reconstruc-
tion and classification objectives are combined during training [17,18,36]. In
these architectures, the encoder used for classification is regularized by a decoder
dedicated to reconstruction.

This strategy of classification and reconstruction with an Auto-Encoder is
however questionable, since classification and reconstruction may play contradic-
tory roles in terms of feature extraction. Classification arguably aims at extract-
ing invariant class-specific features, improving sample complexity of the learned
model [37], therefore inducing an information loss which prevents exact recon-
struction. Ladder Networks [19] have historically been designed to overcome
the previously mentioned conflict between reconstruction and classification, by
designing Auto-Encoders capable of discarding information. Reconstruction is
produced using higher-layer representation and a noisy version of the recon-
struction target. However, it is not obvious that providing a noisy version of the
target and training the network to remove the noise allows the encoder to lose
some information since it must be able to correct low-level errors that require
details.
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Another interesting regularization criterion relies on stability or smoothness
of the prediction function, which is at the basis of interesting unsupervised train-
ing methods, e.g. Slow Feature Analysis [38]. Adding stability to the prediction
function was studied in Adversarial Training [39] for supervised learning and fur-
ther extended to semi-supervised learning in the Virtual Adversarial Training
method [40]. Other recent semi-supervised models incorporate a stability-based
regularizer on the prediction. The idea was first introduced by [23] and proposes
to make the prediction vector stable toward data augmentation (translation,
rotation, shearing, noise, etc.) and model stochasticity (dropout) for a given
input. Following work [24,25] slightly improves upon it by proposing variants
on the way to compute stability targets to increase their consistency and better
adapt to the model’s evolution over training.

When using large modern ConvNets, the problem of designing decoders able
to invert the encoding still is an open question [41]. The usual solution is to
mirror the architecture of the encoder by using transposed convolutions [42]. This
problem is exacerbated with irreversible pooling operations such as max-pooling
that must be reversed by an upsampling operation. In [17,18], they use unpooling
operations to bring back spatial information from the encoder to the decoder,
reusing pooling switches locations for upsampling. Another interesting option
is to explicitly create models which are reversible by design. This is the option
followed by recent works such as RevNet [43] and i-RevNet [44], being inspired
by second generation of bi-orthogonal multi-resolution analysis and wavelets [45]
from the signal processing literature.

To sum up, using reconstruction as a regularization cost added to classifica-
tion is an appealing idea but the best way to efficiently use it as a regularizer
is still an open question. As we have seen, when applied to an auto-encoding
architecture [17,18], reconstruction and classification would compete. To over-
come the aforementioned issues, we propose HybridNet, a new framework for
semi-supervised learning. Presented on Fig. 2, this framework can be seen as an
extension of the popular auto-encoding architecture. In HybridNet, the usual
auto-encoder that does both classification and reconstruction is assisted by an
additional auto-encoder so that the first one is allowed to discard information in
order to produce intra-class invariant features while the second one retains the
lost information. The combination of both branches then produces the recon-
struction. This way, our architecture prevents the conflict between classification
and reconstruction and allows the two branches to cooperate and accomplish
both classification and reconstruction tasks.

Compared to Ladder Networks [19], our two-branch approach without direct
skip connection allows for a finer and learned information separation and is thus
expected to have a more favorable impact in terms of discriminative encoder reg-
ularization. Our HybridNet model also has conceptual connections with wavelet
decomposition [46]: the first branch can be seen as extracting discriminative low-
pass features from input images, and the second branch acting as a high-pass
filter to restore the lost information. HybridNet also differs from reversible mod-
els [43,44] by the explicit decomposition between supervised and unsupervised

matthieu.cord@lip6.fr



162 T. Robert et al.

Fig. 2. General description of the HybridNet framework. Ec and C correspond to a
classifier, Ec and Dc form an autoencoder that we call discriminative path, and Eu

and Du form a second autoencoder called unsupervised path. The various loss functions
used to train HybridNet are also represented in yellow (Color figure online)

signals, enabling the discriminative encoder to have fewer parameters and better
sample complexity.

In this paper, our contributions with the HybridNet framework are twofold:
first, in Sect. 3.1, we propose an architecture designed to efficiently allow both
reconstruction and classification losses to cooperate; second, in Sect. 3.2, we
design a training loss adapted to it that includes reconstruction, stability in
the discriminative branch and a branch complementarity technique. In Sect. 4,
we perform experiments to show that HybridNet is able to outperform state-
of-the-art results in various semi-supervised settings on CIFAR-10, SVHN and
STL-10. We also provide ablation studies validating the favorable impact of our
contributions. Finally, we show several visualizations on CIFAR-10 and STL-
10 datasets analogous to Fig. 1 to validate the behavior of both branches, with
a discriminative branch that loses information that is restored by the second
branch.

3 HybridNet: A Semi-supervised Learning Framework

In this section, we detail the proposed HybridNet model: the chosen architec-
ture to mix supervised and unsupervised information efficiently in Sect. 3.1, and
the semi-supervised training method adapted to this particular architecture in
Sect. 3.2.

3.1 Designing the HybridNet Architecture

General Architecture. As we have seen, classification requires intra-class
invariant features while reconstruction needs to retain all the information. To
circumvent this issue, HybridNet is composed of two auto-encoding paths, the
discriminative path (Ec and Dc) and the unsupervised path (Eu and Du).
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Both encoders Ec and Eu take an input image x and produce representations
hc and hu, while decoders Dc and Du take respectively hc and hu as input to
produce two partial reconstructions x̂c and x̂u. Finally, a classifier C produces
a class prediction using discriminative features only: ŷ = C(hc). Even if the
two paths can have similar architectures, they should play different and comple-
mentary roles. The discriminative path must extract discriminative features hc

that should eventually be well crafted to perform a classification task effectively,
and produce a purposely partial reconstruction x̂c that should not be perfect
since preserving all the information is not a behavior we want to encourage.
Consequently, the role of the unsupervised path is to be complementary to the
discriminative branch by retaining in hu the information lost in hc. This way, it
can produce a complementary reconstruction x̂u so that, when merging x̂u and
x̂c, the final reconstruction x̂ is close to x. The HybridNet architecture, visible
on Fig. 2, can be described by the following equations:

hc = Ec(x) x̂c = Dc(hc) ŷ = C(hc)
hu = Eu(x) x̂u = Du(hu) x̂ = x̂c + x̂u

(1)

Note that the end-role of reconstruction is just to act as a regularizer for
the discriminative encoder. The main challenge and contribution of this paper
is to find a way to ensure that the two paths will in fact behave in this desired
way. The two main issues that we tackle are the fact that we want the dis-
criminative branch to focus on discriminative features, and that we want both
branches to cooperate and contribute to the reconstruction. Indeed, with such an
architecture, we could end up with two paths that work independently: a classi-
fication path ŷ = C(Ec(x)) and a reconstruction path x̂ = x̂u = Du(Eu(x)) and
x̂c = 0. We address both those issues through the design of the architecture of
the encoders and decoders as well as an appropriate loss and training procedure.

Branches Design. To design the HybridNet architecture, we start with a con-
volutional architecture adapted to the targeted dataset, for example a state-
of-the-art ResNet architecture for CIFAR-10. This architecture is split into two
modules: the discriminative encoder Ec and the classifier C. On top of this model,
we add the discriminative decoder Dc. The location of the splitting point in the
original network is free, but C will not be directly affected by the reconstruction
loss. In our experiments, we choose hc (Ec’s output) to be the last intermediate
representation before the final pooling that aggregates all the spatial information,
leaving in C a global average pooling followed by one or more fully-connected
layers. The decoder Dc is designed to be a “mirror” of the encoder’s architecture,
as commonly done in the literature, e.g. [17,19,47].

After constructing the discriminative branch, we add an unsupervised com-
plementary branch. To ensure that both branches are “balanced” and behave in
a similar way, the internal architecture of Eu and Du is mostly the same as for
Ec and Dc. The only difference remains in the mirroring of pooling layers, that
can be reversed either by upsampling or unpooling. An upsampling will increase
the spatial size of a feature map without any additional information while an
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unpooling, used in [17,18], will use spatial information (pooling switches) from
the corresponding max-pooling layer to do the upsampling. In our architecture,
we propose to use upsampling in the discriminative branch because we want
to encourage spatial invariance, and use unpooling in the unsupervised branch
to compensate this information loss and favor the learning of spatial-dependent
low-level information. An example of HybridNet architecture is presented in
Fig. 3.

As mentioned previously, one key problem to tackle is to ensure that this
model will behave as expected, i.e. by learning discriminative features in the
discriminative encoder and non-discriminative features in the unsupervised one.
This is encouraged in different ways by the design of the architecture. First,
the fact that only hc is used for classification means that Ec will be pushed by
the classification loss to produce discriminative features. Thus, the unsupervised
branch will naturally focus on information lost by Ec. Using upsampling in Dc

and unpooling in Du also encourages the unsupervised branch to focus on low-
level information. In addition to this, the design of an adapted loss and training
protocol is a major contribution to the efficient training of HybridNet.

3.2 Training HybridNet

The HybridNet architecture has two information paths with only one producing
a class prediction and both producing partial reconstructions that should be
combined. In this section, we will address the question of training this architec-
ture efficiently. The complete loss is composed of various terms as illustrated on
Fig. 2. It comprises terms for classification with Lcls; final reconstruction with
Lrec; intermediate reconstructions with Lrec-interb,l (for layer l and branch b);
and stability with Ωstability. It is also accompanied by a branch complementarity
training method. Each term is weighted by a corresponding parameter λ:

L = λcLcls + λrLrec +
∑

b∈{c,u},l λrb,lLrec-interb,l + λsΩstability . (2)

HybridNet can be trained on a partially labeled dataset, i.e. that is composed
of labeled pairs Dsup = {(x(k), y(k))}k=1..Ns and unlabeled images Dunsup =
{x(k)}k=1..Nu . Each batch is composed of n samples, divided into ns image-label
pairs from Dsup and nu unlabeled images from Dunsup.

Classification. The classification term is a regular cross-entropy term, that is
applied only on the ns labeled samples of the batch and averaged over them:

ℓcls = ℓCE(ŷ,y) = −
∑

i

yi log ŷi, Lcls =
1
ns

∑

k

ℓcls(ŷ(k),y(k)). (3)

Reconstruction Losses. In HybridNet, we chose to keep discriminative and
unsupervised paths separate so that they produce two complementary recon-
structions (x̂u, x̂c) that we combine with an addition into x̂ = x̂u + x̂c. Keeping
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the two paths independent until the reconstruction in pixel space, as well as the
merge-by-addition strategy allows us to apply different treatments to them and
influence their behavior efficiently. The merge by addition in pixel space is also
analogous to wavelet decomposition where the signal is decomposed into low-
and high-pass branches that are then decoded and summed in pixel space. The
reconstruction loss that we use is a simple mean-squared error between the input
and the sum of the partial reconstructions:

ℓrec = ||x̂ − x||22 = ||x̂u + x̂c − x||22, Lrec =
1
n

∑

k

ℓrec(x̂(k),x(k)). (4)

In addition to the final reconstruction loss, we also add reconstruction costs
between intermediate representations in the encoders and the decoders which is
possible since encoders and decoders have mirrored structure. We apply these
costs to the representations hb,l (for branch b and layer l) produced just after
pooling layers in the encoders and reconstructions ĥb,l produced just before the
corresponding upsampling or unpooling layers in the decoders. This is common
in the literature [17–19] but is particularly important in our case: in addition to
guiding the model to produce the right final reconstruction, it pushes the dis-
criminative branch to produce a reconstruction and avoid the undesired situation
where only the unsupervised branch would contribute to the final reconstruction.
This is applied in both branches (b ∈ {c, u}):

Lrec-interb,l =
1
n

∑

k

||ĥ(k)
b,l − h(k)

b,l ||
2
2. (5)

Branch Cooperation. As described previously, we want to ensure that both
branches contribute to the final reconstruction, otherwise this would mean that
the reconstruction is not helping to regularize Ec, which is our end-goal. Having
both branches produce a partial reconstruction and using intermediate recon-
structions already help with this goal. In addition, to balance their training even
more, we propose a training technique such that the reconstruction loss is only
backpropagated to the branch that contributes less to the final reconstruction
of each sample. This is done by comparing ||x̂c − x||22 and ||x̂u − x||22 and only
applying the final reconstruction loss to the branch with the higher error.

This can be implemented either in the gradient descent or simply by pre-
venting gradient propagation in one branch or the other using features like
tf.stop gradient in Tensorflow or .detach() in PyTorch:

ℓrec-balanced =

{
||x̂u + stopgrad(x̂c) − x||22 if ||x̂u − x||22 ≥ ||x̂c − x||22
||stopgrad(x̂u) + x̂c − x||22 otherwise

. (6)

Encouraging Invariance in the Discriminative Branch. We have seen
that an important issue that needs to be addressed when training this model
is to ensure that the discriminative branch will filter out information and learn
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Fig. 3. Example of HybridNet architecture where an original classifier (ConvLarge)
constitutes Ec and has been mirrored to create Dc and duplicated for Eu and Du, with
the addition of unpooling in the discriminative branch

invariant features. For now, the only signal that pushes the model to do so is
the classification loss. However, in a semi-supervised context, when only a small
portion of our dataset is labeled, this signal can be fairly weak and might not
be sufficient to make the discriminative encoder focus on invariant features.

In order to further encourage this behavior, we propose to use a stability regu-
larizer. Such a regularizer is currently at the core of the models that give state-of-
the-art results in semi-supervised setting on the most common datasets [23–25].
The principle is to encourage the classifier’s output prediction ŷ(k) for sample k
to be invariant to different sources of randomness applied on the input (transla-
tion, horizontal flip, random noise, etc.) and in the network (e.g. dropout). This
is done by minimizing the squared euclidean distance between the output ŷ(k)

and a “stability” target z(k). Multiple methods have been proposed to compute
such a target [23–25], for example by using a second pass of the sample in the
network with a different draw of random factors that will therefore produce a
different output. We have:

Ωstability =
1
n

∑

k

||ŷ(k) − z(k)||22 . (7)

By applying this loss on ŷ, we encourage Ec to find invariant patterns in
the data, patterns that have more chances of being discriminative and useful for
classification. Furthermore, this loss has the advantage of being applicable to
both labeled and unlabeled images.

In the experiments, we tried both Temporal Ensembling [24] and Mean
Teacher [25] methods and did not see a major difference. In Temporal Ensem-
bling, the target z(k) is a moving average of the ŷ(k) over the previous pass of
x(k) in the network during training; while in Mean Teacher, z(k) is the output
of a secondary model where weights are a moving average of the weights of the
model being trained.
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4 Experiments

In this section, we will study and validate the behavior of our novel framework.
We first perform ablation studies to validate the architecture and loss terms of
the model. We also propose visualizations of the behavior of the model in various
configurations, before demonstrating the capability of HybridNet to obtain state-
of-the-art results.

In these experiments, we use three image datasets: SVHN [48], CIFAR-10 [49]
and STL-10 [50]. Both SVHN and CIFAR-10 are 10-classes datasets of 32 ×
32 pixels images. SVHN has 73,257 images for training, 26,032 for testing and
531,131 extra images used only as unlabeled data. CIFAR-10 has 50,000 training
images and 10,000 testing images. For our semi-supervised experiments, we only
keep N labeled training samples (with N/10 samples per class) while the rest
of the data is kept unlabeled, as is commonly done. STL-10 have the same
10 classes as CIFAR-10 with 96 × 96 pixels images. It is designed for semi-
supervised learning since it contains 10 folds of 1,000 labeled training images,
100,000 unlabeled training images and 8,000 test images with labels.

4.1 HybridNet Framework Validation

First, we propose a thorough analysis of the behavior of our model at two dif-
ferent levels: first by comparing it to baselines that we obtain when disabling
parts of the architecture, and second by analyzing the contribution of the dif-
ferent terms of the training loss of HybridNet both quantitatively and through
visualizations.

This study was mainly performed using the ConvLarge architecture [19] on
CIFAR-10 since it’s a very common setup used in recent semi-supervised exper-
iments [23–25]. The design of the HybridNet version of this architecture follows
Sect. 3 (illustrated in Fig. 3) and uses Temporal Ensembling to produce stability
targets z. Additional results are provided using an adapted version of ConvLarge
for STL-10 with added blocks of convolutions and pooling.

Models are trained with Adam with a learning rate of 0.003 for 600 epochs
with batches of 20 labeled images and 80 unlabeled ones. The various loss-
weighting terms λ of the general loss (Eq. (2)) could have been optimized on a
validation set but for these experiments they were simply set so that the different
loss terms have values of the same order of magnitude. Thus, all λ were set to
either 0 or 1 if activated or not, except λs set to 0 or 100. All the details of
the experiments – exact architecture, hyperparameters, optimization, etc. – are
provided in the supplementary material.

Ablation Study of the Architecture. We start this analysis by validating
our architecture with an ablation study on CIFAR-10 with various number of
labeled samples. By disabling parts of the model and training terms, we compare
HybridNet to different baselines and validate the importance of combining both
contributions of the paper: the architecture and the training method.
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Results are presented in Table 1. The classification and auto-encoder results
are obtained with the same code and hyperparameters by simply disabling dif-
ferent losses and parts of the model: the classifier only use Ec and C; and the
auto-encoder (similar to [17]) only Ec, Dc and C. For both, we can add the
stability loss. The HybridNet architecture only uses the classification and recon-
structions loss terms while the second result uses the full training loss.

Table 1. Ablation study performed on CIFAR-10 with ConvLarge architecture

Model Labeled samples

1000 2000 4000

Classification 63.4 71.5 79.0

Classification and stability 65.6 74.6 81.3

Auto-encoder 65.0 73.6 79.8

Auto-encoder and stability 71.8 80.4 84.9

HybridNet architecture 63.2 74.0 80.3

HybridNet architecture and full training loss 74.1 81.6 86.6

First, we can see that the HybridNet architecture alone already yields an
improvement over the baseline and the auto-encoder, except at 1000 labels. This
could be explained by the fact that with very few labels, the model fails to
correctly separate the information between the two branches because of the
faint classification signal, and the additional loss terms that control the training
of HybridNet are even more necessary. Overall, the architecture alone does not
provide an important gain since it is not guided to efficiently take advantage of
the two branches, indeed, we see that the addition of the complete HybridNet
loss allows the model to provide much stronger results, with an improvement
of 6–7 pts over the architecture alone, around 5–6 pts better than the stability
or auto-encoding baseline, and 7–10 pts more than the supervised baseline. The
most challenging baseline is the stabilized auto-encoder that manages to take
advantage of the stability loss but from which we still improve by 1.2–2.8 pts.

This ablation study demonstrates the capability of the HybridNet frame-
work to surpass the different architectural baselines, and shows the importance
of the complementarity between the two-branch architecture and the complete
training loss.

Importance of the Various Loss Terms. We now propose a more fine-grain
study to look at the importance of each loss term of the HybridNet training
described in Sect. 3.2, both through classification results and visualizations.

First, in Table 2a we show classification accuracy on CIFAR-10 with 2000
labels and STL-10 with 1000 labels for numerous combinations of loss terms.
These results demonstrates that each loss term has it’s importance and that all

matthieu.cord@lip6.fr



HybridNet: Classification and Reconstruction Cooperation for SSL 169

Table 2. Detailed ablation studies when activating different terms and techniques of
the HybridNet learning. These results are obtained with ConvLarge on CIFAR-10 with
2000 labeled samples and ConvLarge-like on STL-10 with 1000 labeled samples

of them cooperate in order to reach the final best result of the full HybridNet
model. In particular the stability loss is an important element of the training
but is not sufficient as shown by lines b and f-h, while the other terms bring an
equivalent gain as shown by lines c-e. Both those ∼5 pts gains can be combined
to work in concert and reach the final score line i of a ∼10 pts gain.

Second, to interpret how the branches behave we propose to visualizing the
different reconstructions x̂c, x̂u and x̂ for different combinations of loss terms
in Table 2b. With only the final reconstruction term (lines c), the discriminative
branch does not contribute to the reconstruction and is thus barely regularized
by the reconstruction loss, showing little gain over the classification baseline.
The addition of the intermediate reconstruction terms helps the discriminative
branch to produce a weak reconstruction (lines d) and is complemented by the
branch balancing technique (lines e) to produce balanced reconstructions in both
branch. The stability loss (lines i) adds little visual impact on x̂c, it has probably
more impact on the quality of the latent representation hc and seems to help
in making the discriminative features and classifier more robust with a large
improvement of the accuracy.

Visualization of Information Separation on CIFAR-10 and STL-10.
Overall, we can see in Table 2b lines i that thanks to the full HybridNet train-
ing loss, the information is correctly separated between x̂c and x̂u than both
contribute somewhat equally while specializing on different type of informa-
tion. For example, for the blue car, x̂c produces a blurry car with approximate
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Fig. 4. Visualizations of input, partial and final reconstructions of STL-10 images using
a HybridNet model derived from a ConvLarge-like architecture

colors, while x̂u provides both shape details and exact color information. For
nicer visualizations, we also show reconstructions of the full HybridNet model
trained on STL-10 which has larger images in Fig. 4. These confirm the obser-
vations on CIFAR-10 with a very good final reconstruction composed of a
rough reconstruction that lacks texture and color details from the discriminative
branch, completed by low-level details of shape, texture, writings, color correc-
tion and background information from the unsupervised branch.

4.2 State-of-the-Art Comparison

After studying the behavior of this novel architecture, we propose to demon-
strate its effectiveness and capability to produce state-of-the-art results for semi-
supervised learning on three datasets: SVHN, CIFAR-10 and STL-10.

We use ResNet architectures to constitute the supervised encoder Ec and
classifier C; and augment them with a mirror decoder Dc and an unsupervised
second branch containing an encoder Eu and a decoder Du using the same
architecture. For SVHN and CIFAR-10, we use the small ResNet from [51], which
is used in Mean Teacher [25] and currently achieves state-of-the-art results on
CIFAR-10. For STL-10, we upscale the images to 224× 224 px and use a regular
ResNet-50 pretrained on the Places dataset.

We trained HybridNet with the training method described in Sect. 3.2, includ-
ing Mean Teacher to produce stability targets z(k). The training protocol follow
exactly the protocol of Mean Teacher [25] for CIFAR-10 and a similar one for
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Table 3. Results on CIFAR-10, STL-10 and SVHN using a ResNet-based HybridNet.
“Mean Teacher ResNet” is our classification & stability baseline; results marked with
∗ are not reported in the original paper and were obtained ourselves

Dataset CIFAR-10 SVHN STL-10

Nb. labeled images 1000 2000 4000 500 1000 1000

SWWAE [17] 23.56 25.67

Ladder Network [19] 20.40

Improved GAN [53] 21.83 19.61 18.63 18.44 8.11

CatGAN [52] 19.58

Stability regularization [23] 11.29 6.03

Temporal Ensembling [24] 12.16 5.12 4.42

Mean Teacher ConvLarge [25] 21.55 15.73 12.31 4.18 3.95

Mean Teacher ResNet [25] 10.10 6.28 ∗2.33 ∗2.05 ∗16.8

ResNet baseline [51] 45.2 24.3 15.45 12.27 9.56 18.0

HybridNet [ours] 8.81 7.87 6.09 1.85 1.80 15.9

SVHN and STL-10 for which [25] does not report results with ResNet. The hyper-
parameters added in HybridNet, i.e. the weights of the reconstruction terms
(final and intermediate), were coarsely adjusted on a validation set (we tried
values 0.25, 0.5 and 1.0 for both of them). Details are in the supplementary.

The results of these experiments are presented in Table 3. We can see the huge
performance boost obtained by HybridNet compared to the ResNet baselines, in
particular with CIFAR-10 with 1000 labels where the error rate goes from 45.2%
to 8.81%, which demonstrates the large benefit of our regularizer. HybridNet also
improves over the strong Mean Teacher baseline [25], with an improvement of
1.29 pt with 1000 labeled samples on CIFAR-10, and 0.9 pt on STL-10. We also
significantly improve over other stability-based approaches [23,24], and over the
Ladder Networks [19] and GAN-based techniques [52,53].

These results demonstrate the capability of HybridNet to apply to large
residual architecture – that are very common nowadays – and to improve over
baselines that already provided very good performance.

5 Conclusion

In this paper, we described a novel semi-supervised framework called Hybrid-
Net that proposes an auto-encoder-based architecture with two distinct paths
that separate the discriminative information useful for classification from the
remaining information that is only useful for reconstruction. This architecture
is accompanied by a loss and training technique that allows the architecture to
behave in the desired way. In the experiments, we validate the significant perfor-
mance boost brought by HybridNet in comparison with several other common
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architectures that use reconstruction losses and stability. We also show that
HybridNet is able to produce state-of-the-art results on multiple datasets.

With two latent representations that explicitly encode classification informa-
tion on one side and the remaining information on the other side, our model
may be seen as a competitor to the fully reversible RevNets models recently
proposed, that implicitly encode both types of information. We plan to further
explore the relationships between these approaches.
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46. Mallat, S.G., Peyré, G.: A Wavelet Tour Of Signal Processing: The Sparse Way.
Academic Press (2009)

47. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS,
vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10590-1 53

48. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning. In: NIPS Workshop on Deep
Learning and Unsupervised Feature Learning (2011)

49. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Technical report (2009)

50. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised
feature learning. In: International Conference on Artificial Intelligence and Statis-
tics (AISTATS) (2011)

51. Gastaldi, X.: Shake-shake regularization of 3-branch residual networks. In: Inter-
national Conference on Learning Representations Workshop (ICLR-W) (2017)

matthieu.cord@lip6.fr



HybridNet: Classification and Reconstruction Cooperation for SSL 175

52. Springenberg, J.T.: Unsupervised and semi-supervised learning with categorical
generative adversarial networks. In: International Conference on Learning Repre-
sentations (ICLR) (2016)

53. Salimans, T., et al.: Improved techniques for training GANs. In Lee, D.D.,
Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural
Information Processing Systems (NIPS). Curran Associates, Inc. (2016)

matthieu.cord@lip6.fr


