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Abstract Object detection methods usually represent ob-
jects through rectangular bounding boxes from which they
extract features, regardless of their actual shapes. In this
paper, we apply deformations to regions in order to learn
representations better fitted to objects. We introduce DP-
FCN, a deep model implementing this idea by learning to
align parts to discriminative elements of objects in a latent
way, i.e. without part annotation. This approach has two
main assets: it builds invariance to local transformations,
thus improving recognition, and brings geometric informa-
tion to describe objects more finely, leading to a more ac-
curate localization. We further develop both features in a
new model named DP-FCN2.0 by explicitly learning inter-
actions between parts. Alignment is done with an in-network
joint optimization of all parts based on a CRF with cus-
tom potentials, and deformations are influencing localiza-
tion through a bilinear product. We validate our models on
PASCAL VOC and MS COCO datasets and show significant
gains. DP-FCN2.0 achieves state-of-the-art results of 83.3%
and 81.2% on VOC 2007 and 2012 with VOC data only.
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(a) Original region (b) Deformed region

Fig. 1: Illustration of deformations. Regions are divided
into regular grids (a) and all cells are moved from their ini-
tial positions to adapt to the shape of the object and better
describe it (b), improving both recognition and localization.

1 Introduction

Recent years have witnessed a great success of Deep Learn-
ing with deep Convolutional Networks (ConvNets) (LeCun
et al, 1989; Krizhevsky et al, 2012) in several visual tasks.
Originally mainly used for image classification (Krizhevsky
et al, 2012; Simonyan and Zisserman, 2015; He et al, 2016),
they are now widely used for others tasks such as object
detection (Girshick et al, 2014; Girshick, 2015; Dai et al,
2016b; Zagoruyko et al, 2016; Lin et al, 2017a) or seman-
tic segmentation (Long et al, 2015; Chen et al, 2015; Li
et al, 2017). In particular for detection, region-based deep
ConvNets (Girshick et al, 2014; Girshick, 2015; Dai et al,
2016b) are currently the leading methods. They exploit re-
gion proposals (Ren et al, 2015; Pinheiro et al, 2016; Gidaris
and Komodakis, 2016a) as a first step to focus on interesting
areas within images, and then classify and finely relocalize
these regions at the same time.

Although they yield excellent results, region-based deep
ConvNets still present a few issues that need to be solved.
Networks are usually initialized with models pre-trained on
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Fig. 2: Architecture of DP-FCN. It is composed of a FCN to extract dense feature maps with high spatial resolution
(Section 3.1), a deformable part-based RoI pooling layer to compute a representation aligning parts (Section 3.2) and two
sibling classification and localization prediction branches (Section 3.3). Initial rectangular region is deformed to focus on
discriminative elements of object. Alignment of parts brings invariance for classification and geometric information refining
localization via a deformation-aware localization module.

ImageNet dataset (Russakovsky et al, 2015) and are there-
fore prone to suffer from mismatches between classification
and detection tasks. As an example, pooling layers bring in-
variance to local transformations and help learning more ro-
bust features for classification, but they also reduce the spa-
tial resolution of feature maps and make the network less
sensitive to the positions of objects within regions (Dai et al,
2016b), both of which are bad for accurate localization. Fur-
thermore, the use of rectangular bounding boxes limits the
representation of objects, in the way that boxes may con-
tain a significant fraction of background, especially for non-
rectangular objects.

Before the introduction of Deep Learning into object
detection by Girshick et al (2014), the state of the art was
led by approaches exploiting Deformable Part-based Mod-
els (DPMs) (Felzenszwalb et al, 2010). These methods are
in contrast with region-based deep ConvNets: while the lat-
ter relies on strong features learned directly from pixels and
exploit region proposals to focus on interesting areas of im-
ages, DPM explicitly takes into account geometry of ob-
jects by optimizing a graph-based representation and is usu-
ally applied in a sliding window fashion over images. Both
approaches exploit different hypotheses and seem therefore
complementary.

In this paper, we propose Deformable Part-based Fully
Convolutional Network (DP-FCN) and its improved succes-
sor DP-FCN2.0, two end-to-end models integrating ideas
from DPM into region-based deep ConvNets for object de-
tection, as an answer to the aforementioned issues. They
learn part-based representations of objects and align these
parts to enhance both classification and localization (see Fig-

ure 1). Training is done with box-level supervision only, i.e.
without part annotations. They improve upon existing object
detectors with two key contributions.

The first one is the introduction of a new deformable
part-based RoI pooling layer, which explicitly selects dis-
criminative elements of objects around region proposals by
simultaneously optimizing latent displacements of all parts
(middle of Figure 2). Indeed, using a fixed box geometry
must be sub-optimal, especially when objects are not rigid
and parts can move relative to each other. Through align-
ment of parts, deformable part-based RoI pooling increases
the limited invariance to local transformations brought by
pooling, which is beneficial for classification.

In addition, aligning parts gives access to their config-
urations (i.e. their positions relative to each other), which
brings important geometric information about objects, e.g.
their shapes, poses or points of view. The second improve-
ment is the design of a deformation-aware localization mod-
ule (right of Figure 2), a specific module exploiting configu-
ration information to refine localization. It improves bound-
ing boxes regression by explicitly modeling displacements
of parts in the localization branch, in order to tightly fit
boxes around objects.

We integrate the previous ideas into Fully Convolutional
Networks (FCNs) (He et al, 2016; Dai et al, 2016b) (left
of Figure 2) and show that those architectures are amenable
to an efficient computation of parts and their deformations.
They also offer natural solutions to keep spatial resolution,
which is beneficial since the application of deformable part-
based approaches is severely dependent on the availability of
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rather fine feature maps (Savalle et al, 2014; Girshick et al,
2015; Wan et al, 2015).

This paper is a two-fold extension of our previous work
(Mordan et al, 2017) already introducing DP-FCN. We first
improve it here with DP-FCN2.0, which has better designs
for both key modules of the model: a better part alignment
in the deformable part-based RoI pooling layer (detailed in
Section 3.2.2) and a more accurate description of shapes in
the deformation-aware localization refinement module (de-
tailed in Section 3.3.2). With these improvements, the net-
work is now able to express more relations between all parts
by explicitly taking their relative interactions into account,
and so shapes of objects are described more finely. Our sec-
ond main contribution is experimental. We present a more
detailed ablation study, with additional visualizations of the
models and their outputs. DP-FCN2.0 also obtains state-of-
the-art results on standard PASCAL VOC 2007 and 2012
datasets (Everingham et al, 2015) with VOC data only, and
especially show better results than Mordan et al (2017) in
all common object detection metrics, i.e. both in recogni-
tion and localization. We finally experimentally validate the
effectiveness of deformations on the more challenging and
larger-scale MS COCO dataset (Lin et al, 2014).

2 Related work

Region-based object detectors. The leading approaches in
object detection are currently region-based deep ConvNets.
Since the seminal works of R-CNN (Girshick et al, 2014)
and Fast R-CNN (Girshick, 2015), most object detectors ex-
ploit existing region proposals or directly learn to generate
them (Ren et al, 2015; Gidaris and Komodakis, 2016a; Pin-
heiro et al, 2016), and then use RoI pooling layers to locally
pool features within those regions. Compared to sliding win-
dow approach, the use of region proposals allows the model
to focus the computation on interesting areas of images and
to balance positive and negative examples to ease learning.
Other improvements are now commonly used, e.g. using in-
termediate high-resolution layers to refine coarse deep fea-
ture maps (Bell et al, 2016; Kong et al, 2016; Zagoruyko
et al, 2016; Lin et al, 2017a) in order to have a finer ac-
curacy in locating objects, or selecting interesting regions
for building mini-batches (Shrivastava et al, 2016; Dai et al,
2016b).

We note that there is a second kind of object detectors,
not based on region proposals, e.g. YOLO (Redmon et al,
2016; Redmon and Farhadi, 2017), SSD (Liu et al, 2016).
While their performances have long trailed behind those of
region-based detectors, RetinaNet (Lin et al, 2017b) has now
closed the gap between the two kinds of approaches.

Deformable Part-based Models. The core idea behind DPM
(Felzenszwalb et al, 2010) is to represent each class by a

root filter describing whole appearances of objects and a
set of part filters to finely model local parts. Each part fil-
ter is assigned to an anchor point, defined relative from the
root, and move around during detection to model deforma-
tions of objects and best fit them. A regularization is fur-
ther introduced in the form of a deformation cost penalizing
large displacements. Each part is then optimizing a trade-off
between maximizing detection score and minimizing defor-
mation cost. Final detection output combines scores from
root and all parts. Accurate localization is done with a post-
processing step.

Several extensions have been proposed to DPM, e.g. us-
ing a second hierarchical level of parts to finely describe ob-
jects (Zhu et al, 2010), sharing part models between classes
(Ott and Everingham, 2011), learning from strongly super-
vised annotations (i.e. at the part level) to get a better model
(Azizpour and Laptev, 2012), exploiting segmentation clues
to improve detection (Fidler et al, 2013).

CRF optimization. Joint optimization of multiple variables
is often performed to bring spatial coherence in tasks with
structured predictions, such as semantic segmentation, e.g.
Krähenbühl and Koltun (2011); Chen et al (2015); Zheng
et al (2015). For this application, this yields improved re-
sults compared to independently classifying each pixel, by
filtering out spatially isolated labels or taking more context
into account. The optimization problem often being chal-
lenging, it is in most cases cast as an inference over a Con-
ditional Random Field (CRF) tailored to the problem, for
which there exist several algorithms. Krähenbühl and Koltun
(2011) propose an efficient inference algorithm for fully con-
nected CRFs relying on Mean Field approximation, and ap-
ply it to semantic segmentation task. They show improve-
ments with joint optimization of all pixels with respect to
independent prediction at each location, while keeping com-
putational requirements low. The same algorithm has then
been used in a number of following works in semantic seg-
mentation, including Chen et al (2015); Zheng et al (2015).
In particular, Zheng et al (2015) integrate it as layers within
networks so that models are learned in an end-to-end way
with CRFs. Those can then influence training, as they are not
relegated to post-processing anymore. Chandra et al (2017)
generalize this approach by learning deep embeddings, al-
lowing exact inference over fully connected CRFs, and by
applying it to other tasks than semantic segmentation, such
as saliency estimation and human part segmentation. In this
paper, we propose to cast the computation of deformations
of regions as a CRF optimization, so that all parts are op-
timized jointly and their interactions are expressed in the
model.

Part-based deep ConvNets. The first attempts trying to use
deformable parts with deep ConvNets simply exploited deep
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features learned by an AlexNet (Krizhevsky et al, 2012) to
use them with DPMs (Savalle et al, 2014; Girshick et al,
2015; Wan et al, 2015), but without region proposals. How-
ever, tasks implying spatial predictions (e.g. detection, seg-
mentation) require fine feature maps in order to have accu-
rate localization (Lin et al, 2017a). The fully connected lay-
ers were therefore discarded to keep enough spatial resolu-
tion, lowering results. We solve this issue by using a FCN,
well suited for these kinds of applications as it naturally
keeps spatial resolution. Thanks to several tricks easily in-
tegrable into FCNs (e.g. dilated convolutions (Chen et al,
2015; Long et al, 2015; Yu and Koltun, 2016) or skip pool-
ing (Bell et al, 2016; Kong et al, 2016; Zagoruyko et al,
2016)), FCNs have recently been successful in various tasks,
e.g. image classification (He et al, 2016; Zagoruyko and Ko-
modakis, 2016; Xie et al, 2017), object detection (Dai et al,
2016b), semantic segmentation (Li et al, 2017), weakly su-
pervised learning (Durand et al, 2017).

Zhang et al (2014) introduce parts for detection by learn-
ing part models and combining them with geometric con-
straints for scoring. It is learned in a strongly supervised
way, i.e. with part annotations. Although manually defining
parts can be more interpretable, it is likely sub-optimal for
detection as they might not correspond to most discrimina-
tive elements.

Parts are often used for fine-grained recognition. Lin et al
(2015) propose a module for localizing and aligning parts
with respect to templates before classifying them, Simon
and Rodner (2015) find part proposals from activation maps
and learn a graphical model to recognize objects, Zhang et al
(2016) use two sub-networks for detection and classification
of parts, Sicre et al (2017) consider parts as a vocabulary of
latent discriminative features decoupled from the task and
learn them in an unsupervised way. Usage of parts is also
common in semantic segmentation, e.g. Wang et al (2015);
Dai et al (2016a); Li et al (2017).

The work closest to ours is Deformable ConvNet (Dai
et al, 2017), a concurrent model which also exploits defor-
mations to adapt to shapes of objects. While the ideas be-
hind it are similar to ours, deformations are computed in a
different way. Dai et al (2017) obtain deformations by using
convolutional layers to estimate them, whereas we cast it as
an optimization problem and solve it. While their approach
is more general, in that it can be applied to convolutional
layers in addition to RoI pooling layers, the solutions we
propose in this paper are more controllable and can be tuned
to specific purposes.

Our work is based on R-FCN (Dai et al, 2016b), which
also uses a FCN to achieve a great efficiency. Compared to
previous Fast R-CNN model (Girshick, 2015), the subnet-
works after RoI pooling are here reduced at minimum to
have very light per-region computation. Classification and
localization for each region is then achieved by encoding in-

formation into several feature maps, processed by a position-
sensitive RoI pooling layer, rather than in the following cor-
responding subnetworks. We improve upon it by learning
more flexible representations than with fixed box geometry.
It allows our model to align parts of objects to bring invari-
ance into classification and to exploit geometric information
from positions of parts to refine localization.

A previous version of this work was presented by Mor-
dan et al (2017), which we extend here with new contribu-
tions. Our new model, named DP-FCN2.0, improves upon
the first version by explicitly modeling interactions between
parts, in both the part alignment and localization refinement
stages. It is then able to learn more accurate representations
of objects. Inspired by DPM (Felzenszwalb et al, 2010), de-
formable part-based RoI pooling from DP-FCN (Mordan
et al, 2017) uses a star graphical model to move parts: dis-
placements of parts only depend on the global region pro-
posals, i.e. they are conditionally independent from each
other given the positions of the region proposals. In contrast,
DP-FCN2.0 uses a fully connected graph, i.e. where all parts
relate to each other. By relaxing the conditional indepen-
dence assumption, deformations for all parts are optimized
jointly, and the model can exploit correlations between dis-
placements to improve part alignment and recognition. The
joint optimization is performed with a CRF integrated within
the network, and its inference is carried out at each for-
ward pass, allowing end-to-end learning similarly to what
is done by Zheng et al (2015). The other major contribution
deals with refining localization predictions with computed
deformations. Again, DP-FCN2.0 outperforms its predeces-
sor by encoding richer information. While DP-FCN only re-
fines global predictions with features computed from defor-
mations, DP-FCN2.0 lets predictions and displacements of
all parts interact with each other through bilinear products
to yield final predictions. By learning interactions between
parts, the localization is much more effective in leveraging
deformations of regions to identify shapes of objects.

3 Deformable Part-based Fully Convolutional Networks

In this section, we present our model Deformable Part-based
Fully Convolutional Network (DP-FCN), a deep network for
object detection. It represents regions with several parts it
aligns by explicitly optimizing their positions. This align-
ment improves both classification and localization: the part-
based representations are more invariant to local transfor-
mations and the configurations of parts give important in-
formation about the geometry of objects. This idea can be
inserted into most of state-of-the-art network architectures.
The model is end-to-end trainable without part annotation
and adds a small computational overhead only.

The complete architecture is depicted in Figure 2 and is
composed of three main modules: (i) a Fully Convolutional
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Network (FCN) applied on whole images, (ii) a deformable
part-based RoI pooling layer, and (iii) two sibling prediction
layers for classification and localization. We now describe
all three parts of our model in more details.

3.1 Fully convolutional feature extractor

Our model relies on a FCN (e.g. He et al, 2016; Zagoruyko
and Komodakis, 2016; Xie et al, 2017) as backbone archi-
tecture, as this kind of network enjoys several practical ad-
vantages, leading to several successful models, e.g. Dai et al
(2016b); Li et al (2017); Durand et al (2017). First, it allows
to share most computation on whole images and to reduce
per-RoI layers, as noted in R-FCN (Dai et al, 2016b). Sec-
ond and most important to our work, it directly provides fea-
ture maps linked to the task at hand (e.g. detection heatmaps,
as illustrated in the middle of Figure 2 and on the left of
Figure 3) from which final predictions are simply pooled,
as done by Dai et al (2016b); Durand et al (2017). Within
DP-FCN, inferring the positions of parts for a region is done
with a particular kind of RoI pooling that we describe in
Section 3.2.

The fully convolutional structure is therefore suitable for
computing responses of all parts for all classes as a single
map for each of them. A corresponding structure is used for
localization. The complete representation for a whole image
(classification and localization maps for each part of each
class) is obtained with a single forward pass and is shared
between all regions of the same image, which is very effi-
cient.

Since relocalization of parts is done within feature maps,
the resolution of these maps is of practical importance. FCNs
contain only spatial layers and are therefore well suited for
preserving spatial resolution, as opposed to networks ending
with fully connected layers, e.g. Krizhevsky et al (2012); Si-
monyan and Zisserman (2015). Specifically, if the stride is
too large, deformations of parts might be too coarse to de-
scribe objects correctly. We reduce it by using dilated convo-
lutions (Chen et al, 2015; Long et al, 2015; Yu and Koltun,
2016) on the last convolution block and skip pooling (Bell
et al, 2016; Kong et al, 2016; Zagoruyko et al, 2016) to com-
bine the last three.

3.2 Deformable part-based RoI pooling

The aim of this layer is to divide region proposals into sev-
eral parts and to locally relocalize these to best match shapes
of objects (as illustrated in Figure 1). Each part then mod-
els a discriminative local element and is to be aligned at the
corresponding location within the image. This deformable
part-based representation is more invariant to transforma-
tions of objects because the parts are positioned accordingly

and their local appearances are stable (Felzenszwalb et al,
2010). This is especially useful for non-rigid objects, where
a box-based representation must be sub-optimal.

The separation of a region R into parts is done with a
regular grid of fixed size I× J fitted to it (Girshick, 2015;
Dai et al, 2016b). Each cell (i, j) is then interpreted as a dis-
tinct part Ri, j. This strategy is simple yet effective (Zhu et al,
2010; Wan et al, 2015). Since the number of parts (i.e. IJ)
is fixed as a hyper-parameter, it is easy to have a complete
detection heatmap zi, j,c already computed for each part (i, j)
of each class c (left of Figure 3). Part locations then only
need to be optimized within corresponding maps.

The deformation of parts allows them to slightly move
around their reference positions (partitions of the initial re-
gions), selects the optimal latent displacements, and pools
values from selected locations. During training, deforma-
tions are optimized without part-level annotations, i.e. only
box-level annotations are needed, just as in the traditional
object detection task. Displacements computed during the
forward pass are stored and used to backpropagate gradients
at the same locations. We further note that the deformations
are computed for all parts and classes independently. How-
ever, no deformation is computed for the background class:
they would not bring any relevant information as there is no
discriminative elements for this class. The same displace-
ments of parts are used to pool values from the localization
maps.

We present two different strategies for computing defor-
mations in the next sections. The first one, already intro-
duced in (Mordan et al, 2017), considers each part indepen-
dently from others. While this is highly efficient, it might
miss complex relations between parts. In contrast, the sec-
ond method performs a joint optimization on all parts simul-
taneously and takes interactions between parts into account
by leveraging a CRF formulation. It is then able to model
object geometries more finely.

3.2.1 Independent deformations of parts

This first approach (Mordan et al, 2017) draws ideas from
the original DPM (Felzenszwalb et al, 2010) and is applied
separately to all parts. For a part (i, j) of a region R and a
class c, the set ∆ R

i, j of possible displacements δ = (δx,δy)
is such that the part Ri, j still stays within the feature map
z after moving by δ . We then define the score SR

i, j,c(δ ) of
these part and class for a displacement δ ∈ ∆ R

i, j as the value
pooled at the new location (Ri, j offset by δ ) and penalized
by the magnitude of the displacement:

SR
i, j,c(δ ) = Pool

(x,y)∈Ri, j
zi, j,c(x+δx,y+δy)−λ de f ‖δ‖2

2 (1)

where λ de f represents the strength of the regularization (bias
toward small deformations), and Pool is an average pool-
ing as in (Dai et al, 2016b), but any pooling function could
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Fig. 3: Deformable part-based RoI pooling with independent deformations. Each input feature map corresponds to a
part of a class (or background). Positions of parts are optimized separately within detection maps with deformation costs
as regularization, and values are pooled within parts at the new locations. Output includes a map for each class and the
computed displacements of parts, to be used for localization.

be used instead. Here, the deformation cost is the squared
distance of the displacement on the feature map, but other
functions could be used equally. The deformable part-based
RoI layer consists in maximizing this quantity with respect
to the displacement, and therefore optimizes a trade-off be-
tween maximizing the score on the corresponding feature
map and minimizing the displacement from the reference
position (see Figure 3). Its output pR

c (i, j) then writes:

pR
c (i, j) = max

δ∈∆ R
i, j

[
SR

i, j,c(δ )
]

(2)

= max
δ∈∆ R

i, j

[
Pool

(x,y)∈Ri, j
zi, j,c(x+δx,y+δy)

−λ de f ‖δ‖2
2

]
. (3)

While Equation (3) is used to compute the output of the
layer for part (i, j) of region R and class c, it also gives the
displacement dR

c (i, j) =
(
dxR

c (i, j),dyR
c (i, j)

)
for that part: it

is the argmax of Equation (3), i.e. the δ = (δx,δy) maxi-
mizing it. Those displacements are extracted from the layer
to be used for localization thereafter (see Section 3.3). We
emphasize that this formulation does not require any anno-
tations about positions of parts, and can therefore be used in
the standard object detection setup (i.e. with bounding boxes
only).

λ de f is directly linked to the magnitudes of the displace-
ments of parts, and therefore to the deformations of RoIs too,
by controlling the squared distance regularization (i.e. pref-
erence for small deformations). Increasing it puts a higher
weight on regularization and effectively reduces displace-
ments of parts, but setting it too high prevents parts from
moving and removes the benefits of our approach. It is no-
ticeable this deformable part-based RoI pooling is a gen-
eralization of the position-sensitive RoI pooling from Dai
et al (2016b). Setting λ de f = +∞ clamps all displacements
dR

c (i, j) to (0,0), leading to the formulation of position-sen-
sitive RoI pooling:

pR
c (i, j) = Pool

(x,y)∈Ri, j
zi, j,c(x,y). (4)

On the other hand, setting λ de f = 0 removes regularization
and parts are then free to move. With λ de f too low, the re-
sults decrease, indicating that regularization is practically
important. However, the results appeared to be stable within
a large range of values of λ de f . Additionally, optimization of
δ is performed by brute force in a limited range and not the
whole image, i.e. the sets ∆ R

i, j are restricted to their intersec-
tions with a centered ball of small radius. With λ de f not too
small, the regularization effectively restricts displacements
to lower values, leaving the results of pooling unchanged. In
all experiments, we use λ de f = 0.3.
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Fig. 4: Visualization of pairwise potentials of CRF be-
tween parts for a region of a class c. Interactions between
all IJ parts are taken into account through pairwise poten-
tials φp. These are composed of two main terms: a kernel k
controlling the strength of the interactions according to the
distances between parts, and a compatibility function µ en-
couraging similarity of displacements.

We further normalize the displacements dxR
c and dyR

c by
the heights and widths of parts respectively to make the layer
invariant to the scales of the images and regions. Indeed, the
parts should move to the same positions relative to the ob-
jects, regardless of the scales at which they appear in the
images and irrespective of any scaling factor applied to the
images. We also normalize the classification feature maps
before forwarding them to deformable part-based RoI pool-
ing layer to ensure classification and regularization terms are
comparable. We do this by L2-normalizing at each spatial lo-
cation the block of C+ 1 maps for each part separately, i.e.
replacing z from Equation (3) with

z̄i, j,c(x,y) =
zi, j,c(x,y)√

∑c′ zi, j,c′(x,y)2
. (5)

3.2.2 CRF-based joint deformations of parts

The second strategy to compute deformations jointly consid-
ers all parts in a single optimization problem. All displace-
ments are inferred simultaneously, so that it is possible to
model dependencies between them and enforce consistency.
We then have a fully connected graphical model, i.e. dis-
placement of a given part is influenced by those of all other
parts. This is in contrast with the independent deformations
from Section 3.2.1 which uses a star model, i.e. parts are
conditionally independent from each other given the whole
region, like the original DPM (Felzenszwalb et al, 2010).

We do this by casting the optimization problem into a
Conditional Random Field (CRF) inference over displace-
ments of parts within regions. We define original unary and
pairwise potentials by hand so that the CRFs act as a reg-
ularization and lead to a more robust part alignment stage.
By integrating the CRF inference algorithm within the de-
formable part-based RoI pooling layer, i.e. the inference is
carried out for all regions at each forward pass, we are still
able to perform end-to-end training on GPU with a moderate
overhead.

A different CRF is instantiated for each region R and
class c (but for the background class as no deformations are
computed), and they are all optimized in parallel during for-
ward passes. There are I× J variables DR

c (i, j) considered
here, each associated with a given part (i, j) and indicating
its displacement dR

c (i, j). The Gibbs probability distribution
of the CRF conditioned on an image I is then

P
(
DR

c = dR
c |I
)
=

1
ZR

c (I)
exp
(
−ER

c (d
R
c |I)

)
(6)

with ZR
c the partition function and ER

c the corresponding
Gibbs energy (Lafferty et al, 2001). From now on, we drop
the R and c notations as well as the conditioning on image I
for convenience.

We use the fully connected CRF formulation of Krähen-
bühl and Koltun (2011) to model dependencies between all
pairs of parts. The Gibbs energy E for displacements d then
takes the form

E(d) = ∑
i, j

φu (d(i, j))+ ∑
(i, j)<(i′, j′)

φp
(
d(i, j),d(i′, j′)

)
(7)

where φu and φp are the unary and pairwise potentials.
The unary potential φu is computed independently for

each part, and is based on the visual features (i.e. the fea-
ture maps z) only. It does not consider any relations between
parts nor produce consistency between their displacements.
For each part (i, j), it gives a negative log-probability distri-
bution over possible displacements for that part. We use the
score function Si, j from the independent deformation model
(defined in Equation (1) from Section 3.2.1) as unnormal-
ized probability distribution and apply a So f tMax function
to it to obtain a valid distribution, yielding

φu (d(i, j)) =−LogSo f tMax [Si, j] (d(i, j)) . (8)

The main purpose of using a CRF is to use a pairwise po-
tential φp to relate pairs of displacements in order to enforce
consistency between them (see Figure 4). We use it here to
smooth the deformation field over the region by introducing
the constraint that nearby parts should have similar displace-
ments, through the design of a specific form for the potential
φp. Doing so, it increases the robustness of the part align-
ment stage. Following Krähenbühl and Koltun (2011), we
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use a potential of the form

φp
(
d(i, j),d(i′, j′)

)
= w0 k

(
(i, j),(i′, j′)

)
×µ

(
d(i, j),d(i′, j′)

)
(9)

where w0 is the weight of the pairwise component, k is a
gaussian kernel and µ is a compatibility function between
displacements.

We define dedicated functions k and µ suited to our par-
ticular problem of computing deformations of a region. The
kernel k controls the weights of the pairwise links according
to how far apart the parts are, and has the following expres-
sion:

k
(
(i, j),(i′, j′)

)
= exp

(
−|i− i′|2 + | j− j′|2

2σ2

)
(10)

with σ giving the width of the kernel. The compatibility
function µ gives the penalty assigned to a pair of displace-
ments, and we choose it so that the deformation field over
the region tends to be smoother, then acting as a regulariza-
tion:

µ
(
d(i, j),d(i′, j′)

)
=
|dx(i, j)−dx(i′, j′)|2

σd

+
|dy(i, j)−dy(i′, j′)|2

σd
(11)

with σd controlling the strength of the penalty according to
how similar the displacements are. Other norms can also be
used in µ (i.e. changing the exponent of the power), but they
experimentally do not yield any improvement. In summary,
the pairwise potential φp takes the form

φp
(
d(i, j),d(i′, j′)

)
= wp exp

(
−|i− i′|2 + | j− j′|2

2σ2

)
×
(
|dx(i, j)−dx(i′, j′)|2 + |dy(i, j)−dy(i′, j′)|2

)
(12)

where wp =
w0
σd

.
We run T iterations of a Mean Field algorithm to per-

form approximate inference on the CRF, and use an efficient
gaussian filtering in order to speed it up (Krähenbühl and
Koltun, 2011). This is done simultaneously for all classes
c and all regions R at each forward pass, i.e. all the CRFs
are optimized in parallel, in order to obtain all the deforma-
tions dR

c . These are then used to backpropagate gradients at
selected locations, as done with independent deformations.
While there are multiple CRFs to optimize at the same time,
they are all rather small since the number of variables (i.e.
the number of parts IJ) is limited. Therefore, this only adds
a moderate overhead compared to having independent de-
formations. In all experiments, we use wp = 0.3, σ = 1.3
and we perform a single Mean Field iteration (i.e. T = 1), as
doing more iterations does not lead to significant improve-
ment.

We note that this CRF-based formulation of deformable
part-based RoI pooling is a generalization of the indepen-
dent deformation formulation of Mordan et al (2017) (Sec-
tion 3.2.1). Indeed, setting the pairwise weight wp = 0 or
doing no iteration of Mean Field inference (i.e. T = 0) re-
sults in maximizing Si, j, which is exactly Equation (2).

3.3 Classification and localization predictions with
deformable parts

Predictions are performed with two sibling branches, for
classification and relocalization of region proposals, as is
common practice (Girshick, 2015). The classification branch
is simply composed of an average pooling followed by a
SoftMax layer. This is the strategy employed in R-FCN (Dai
et al, 2016b), but the deformations introduced before (with
deformable part-based RoI pooling) bring more invariance
to transformations of objects and boost classification.

Regarding localization, the same approach is used by
R-FCN, i.e. a simple average of pooled localization values.
However, this is not adapted to DP-FCN as it is for classi-
fication, due to the presence of deformations. Indeed, while
the positions and dimensions of input bounding boxes are
implied by the pooling regions (i.e. parts) in R-FCN, it is
no longer the case when those are moved by a deformable
part-based RoI pooling layer. With the same strategy as R-
FCN, the network would not keep track of the displacements
of parts (which are never made explicit in this architecture)
and would therefore be unaware of the exact input bounding
box to be relocalized, leading to approximate localization.

To solve that issue, we introduce a deformation-aware
localization module, explicitly taking deformations of parts
into account. Since we want bounding boxes to tightly en-
close objects, localization should not be invariant to local
transformations but adapt accordingly. The configuration of
parts (i.e. their positions relative to each other) is obtained
as a by-product of the alignment of parts performed before,
and can then be exploited to refine naive localization predic-
tions obtained from pooling at deformed locations, so that
exact geometries of bounding boxes are recovered. It also
gives rich geometric information about the appearances of
objects, e.g. their shapes or poses, that can be used to further
enhance localization accuracy.

In the following sections, we introduce two versions of
localization refinement module. The first approach computes
naive, deformation-unaware predictions, then uses displace-
ments of parts to improve them; it is already presented in
(Mordan et al, 2017). Rather than considering global pre-
dictions only, the second method exploits partial predictions
made by all parts individually, and directly combines them
with displacements of parts to yield final predictions. That
way, interactions between both positions and outputs of all
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Fig. 5: Deformation-aware global localization refinement. Relocalizations of bounding boxes obtained by averaging
pooled values from localization maps (upper path) do not benefit from deformable parts. To do so, displacements of parts
are forwarded through two fully connected layers (lower path) and are element-wise multiplied with the previous output to
refine it, separately for each class. Localization is done with 4 values per class, following Girshick et al (2014); Girshick
(2015).

parts can be expressed, resulting in a more accurate local-
ization.

For both modules, the refinement is mainly geometric
rather than semantic, i.e. it depends only on the displace-
ments of parts and not on the classes of objects. Therefore,
the same configuration of parts should give the same refine-
ment. For this reason, the localization is applied for each
class separately and parameters are shared between classes.
Additionally, sharing parameters can act as a regularization
for classes with fewer examples.

3.3.1 Global localization refinement

This localization module (Mordan et al, 2017) separately
processes outputs and displacements of parts, for a class c
and a region R, before merging them with a simple opera-
tion (see Figure 5). It exploits the strategy of R-FCN, i.e.
an average pooling of partial predictions from parts, to com-
pute a first deformation-unaware prediction (upper path in
Figure 5). This output is based on visual features only, with-
out considering deformations, as noted before.

For that reason, we extract the feature vector dR
c of nor-

malized displacements (dxR
c ,dyR

c ) of all parts, computed by
the deformable part-based RoI pooling layer (as shown in
the bottom right corner of Figure 3), and use it to refine
previous naive prediction. dR

c , of size 2IJ (i.e. a 2D dis-
placement for each part), is forwarded through a simple sub-
network (lower path in Figure 5) to yield a feature vector of
size 4 (the same as the prediction, following Girshick et al

(2014); Girshick (2015)) encoding the positions of parts.
The sub-network is composed of two fully connected lay-
ers with a ReLU between them. The size of the first layer is
set to 256 in all our experiments. The result is then element-
wise multiplied with the first prediction to adjust it accord-
ingly to the exact locations where it was computed, yielding
the final localization output.

3.3.2 Bilinear localization refinement

While the previous method computes a prediction and only
globally refines it with deformations, this second approach
to localization refinement jointly considers all partial predic-
tions and displacements of parts in a single operation. That
way, it expresses interactions between parts more effectively
and at a finer level.

To do this we use a bilinear product between predictions
and displacements, that directly outputs the final localization
(see Figure 6), which is of size 4 as before. With that opera-
tion, all pairs of prediction and displacement, even from dif-
ferent parts, contribute to the output. It can therefore model
richer and more complex shapes than the global relocaliza-
tion, and the final detections are more accurate.

To reduce computation here, we use a Tucker decompo-
sition (Tucker, 1966): we compute two feature vectors uR

c
and vR

c of lower size s for both partial predictions and dis-
placements, with a simple fully connected layer applied to
each input, and only feed these two vectors into the bilinear
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Fig. 6: Deformation-aware bilinear localization refinement. For each region and class, both predictions and displacements
from all parts are separately embedded into lower dimensional features before feeding a bilinear product layer (i.e. a Tucker
decomposition) to yield final localization prediction of size 4, following Girshick et al (2014); Girshick (2015). This kind of
refinement naturally learns relations between pairs of parts, and so describes shapes of objects more finely.

layer. Each of the four localization output values yR
c is then

obtained with

yR
c (l) =

s

∑
m=1

s

∑
n=1

uR
c (m)T(m,n, l)vR

c (n)+b(l) (13)

where T is a tensor of size s× s× 4 and b is a bias of size
4, both learned within the layer and shared between classes.
In all experiments, we use a reduced size of s = 32, which
keeps memory and computation requirements low. While
having bigger features yields slightly better results, we think
this is a good trade-off between performance and computa-
tion. More complex combination operations could be used
instead of the Tucker decomposition to further improve per-
formance, e.g. MUTAN (Ben-Younes et al, 2017).

4 Experiments

4.1 Main results

Experimental setup. We perform this analysis with the fully
convolutional backbone architecture ResNet-50 (He et al,
2016) whose model, pre-trained on ImageNet (Russakovsky
et al, 2015), is freely available. The network is trained with
SGD for 60,000 iterations with a learning rate of 5 ·10−4 and
for 20,000 further iterations with 5 · 10−5. The momentum
parameter is set to 0.9 and the weight decay to 10−4. Each
mini-batch is composed of 64 regions from a single image at
the scale of 600px, selected according to Fast R-CNN (Gir-
shick, 2015). Horizontal flipping of images with probability

0.5 is used as data augmentation. We exploit the region pro-
posals computed by AttractioNet (Gidaris and Komodakis,
2016b,a) released by the authors. The top 2,000 regions are
used for learning and the top 300 are evaluated during in-
ference. We use I× J = 7× 7 parts, as advised by the au-
thors of R-FCN (Dai et al, 2016b). As is common practice,
detections are post-processed with NMS with the standard
threshold of 0.3.

All experiments in this section are conducted on PAS-
CAL VOC 07+12 dataset (Everingham et al, 2015): train-
ing is done on the union of the 2007 and 2012 trainval sets
and testing on the 2007 test set. In addition to the standard
mAP@0.5 (i.e. PASCAL VOC style) metric, results are also
reported with the mAP@0.75 and mAP@[0.5:0.95] (i.e. MS
COCO style) metrics to thoroughly evaluate the effects of
proposed improvements.

Performances of models. Performance of our implementa-
tion of R-FCN (Dai et al, 2016b) with the given setup is
shown in the first row of Table 1. Using independent defor-
mations and global localization refinement, DP-FCN (sec-
ond row of Table 1) outperforms R-FCN in all three met-
rics with large margins. In particular, it gains 2.0 points in
mAP@0.5 over R-FCN. Then, with the improved joint de-
formations and bilinear localization refinement, DP-FCN2.0
(last row of Table 1) has better results, with an significant
improvement of 4.4 points in mAP@0.75 with respect to
DP-FCN. These results validate the effectiveness of defor-
mations within networks to enhance detection, and also that
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Model
Independent
deformations

Joint
deformations

Global
localization
refinement

Bilinear
localization
refinement

mAP@
0.5

mAP@
0.75

mAP@
[0.5:0.95]

R-FCN (Dai et al, 2016b) 74.1 39.4 40.0
DP-FCN (Mordan et al, 2017) X X 76.1 40.9 41.3
DP-FCN2.0 (ours) X X 76.5 45.3 43.2

Table 1: Main results of DP-FCN2.0 on PASCAL VOC 2007 test in average precision (%). Without deformable part-
based RoI pooling nor localization refinement module, it is equivalent to R-FCN (the reported results are those of our
implementation with the given setup).

(
mAP@

0.5

) No
localization
refinement

Global
localization
refinement

Bilinear
localization
refinement

No
deformation

R-FCN
74.1 – –

Independent
deformations 75.8 (+1.7)

DP-FCN
76.1 (+2.0) 76.4 (+2.3)

Joint
deformations – 76.4 (+2.3)

DP-FCN2.0
76.5 (+2.4)

Table 2: Ablation study of DP-FCN2.0 in mAP@0.5 on
PASCAL VOC 2007 test in average precision (%). Results
are given with absolute performances, with improvements
with respect to R-FCN between parenthesis.

(
mAP@

0.75

) No
localization
refinement

Global
localization
refinement

Bilinear
localization
refinement

No
deformation

R-FCN
39.4 – –

Independent
deformations 38.8 (-0.6)

DP-FCN
40.9 (+1.5) 45.0 (+5.6)

Joint
deformations – 40.5 (+1.1)

DP-FCN2.0
45.3 (+5.9)

Table 3: Ablation study of DP-FCN2.0 in mAP@0.75 on
PASCAL VOC 2007 test in average precision (%). Results
are given with absolute performances, with improvements
with respect to R-FCN between parenthesis.

richer models of deformations (i.e. with interactions between
parts) lead to better performance.

4.2 Ablation study

Experimental setup. For this ablation study, we use the same
experimental setup as before (Section 4.1) so that results are
directly comparable.

(
mAP@

[0.5:0.95]

) No
localization
refinement

Global
localization
refinement

Bilinear
localization
refinement

No
deformation

R-FCN
40.0 – –

Independent
deformations 40.4 (+0.4)

DP-FCN
41.3 (+1.3) 42.9 (+2.9)

Joint
deformations – 41.6 (+1.6)

DP-FCN2.0
43.2 (+3.2)

Table 4: Ablation study of DP-FCN2.0 in
mAP@[0.5:0.95] on PASCAL VOC 2007 test in av-
erage precision (%). Results are given with absolute
performances, with improvements with respect to R-FCN
between parenthesis.

Analysis of models. We present a detailed analysis of results
for each new module in Table 2, Table 3 and Table 4 for the
three metrics mAP@0.5, mAP@0.75 and mAP@[0.5:0.95]
respectively. In each table, R-FCN is shown in the top left
corner as the baseline. Adding the deformable part-based
RoI pooling with independent deformations to R-FCN (sec-
ond rows of tables) improves mAP@0.5 by 1.7 points. In-
deed, this metric is rather permissive so the localization does
not need to be very accurate. On the other hand, we see a
negative effect on mAP@0.75. That is due to the uncertainty
in the positions of parts, leading to an imprecise localization
as already noted in Section 3.3. Overall, this is still benefi-
cial, with a gain of 0.4 points in mAP@[0.5:0.95]. The im-
provements are therefore mainly due to a better recognition,
thus validating the role of deformable parts. With the global
localization refinement module (second columns of tables),
the mAP@0.5 has only a small improvement, because lo-
calization accuracy is not a issue. However, it further im-
proves mAP@0.75 by 2.1 points (i.e. 1.5 points with respect
to R-FCN) and mAP@[0.5:0.95] by 0.9 points, validating
the need for such a module. This confirms that it solves the
previous issue of approximate localization and that aligning
parts brings geometric information useful for localization.
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Fig. 7: Comparison of detections from R-FCN (red) and DP-FCN (blue). DP-FCN tightly fits objects (first two rows) and
separates close instances (last two rows) better than R-FCN.

We then change the independent deformations to use the
joint CRF-based ones (last rows of tables), which brings an
additional improvement of 0.3 points for both mAP@0.5
and mAP[0.5:0.95] metrics with respect to Mordan et al
(2017). This therefore confirms that deformations play an
important role in recognition, as already noted. When using

the bilinear localization refinement (last columns of tables)
in place of the global one, it yields great improvements of
4.1 and 1.6 points in mAP@0.75 and mAP@[0.5:0.95] re-
spectively, while it is smaller in mAP@0.5. This again con-
firms that this module is mainly dealing with the accuracy
of the localization, but not with the recognition of the object



End-to-End Learning of Latent Deformable Part-based Representations for Object Detection 13

Fig. 8: Comparison of detections from DP-FCN (blue) and DP-FCN2.0 (green). Predictions of DP-FCN2.0 are better
localized in general.

Model Number of parameters Number of FLOPs Forward time (s)

R-FCN (Dai et al, 2016b) 32.26 M 133.6 G 0.167
DP-FCN (Mordan et al, 2017) 32.28 M 134.3 G 0.299
DP-FCN2.0 (ours) 32.27 M 152.5 G 0.492

Table 5: Runtime analysis of DP-FCN2.0. Values reported are computed with ResNet-50 on images at scale of 600px, and
averaged over PASCAL VOC 2007 test.

categories. By combining both improved modules (bottom
right corners of tables), DP-FCN2.0 has additional gains
in all three metrics, showing that the two contributions are
complementary, and validates the importance of taking in-
teractions of parts into account for accurate predictions.

4.3 Further analysis

Comparison with R-FCN. Some examples of detection out-
puts are illustrated in Figure 7 to visually compare R-FCN
and DP-FCN, and evaluate proposed improvements. It ap-
pears that R-FCN can more easily miss extremal parts of
objects (see first two rows, e.g. the woman’s left arm or the
ears of the horse), and that DP-FCN is better at separating
close instances (see last two rows, e.g. people or boats next
to each other), thanks to deformable parts. While detections
from DP-FCN and DP-FCN2.0 are often rather similar, the
latter generally fits objects more tightly. We show some ex-
amples of that in Figure 8.

Runtime analysis. We present some statistics about R-FCN,
DP-FCN and DP-FCN2.0 in Table 5. The first column shows
that all models have roughly the same number of parameters,
i.e. our approaches do not bring many additional parameters
and so should not need significantly more examples to be
learned. The average number of FLOPs (multiply-adds) and
times of network forward passes are displayed in the follow-
ing two columns. It is noticeable that DP-FCN yields a mod-
erate overhead compared to R-FCN, while the more compu-
tational intensive inference carried out by DP-FCN2.0, be-
cause of the CRFs introduced, leads to a heavier model.

Interpretation of parts. As in the original DPM (Felzen-
szwalb et al, 2010), the semantics of parts is not explicit in
our model. Part positions are instead automatically learned
to optimize detection performance, in a weakly supervised
manner. Therefore the interpretation in terms of semantic
parts is not systematic, especially because our division of
regions into parts is finer than in DPM, leading to smaller
part areas. Some deformed parts are displayed on Figure 9
for DP-FCN and Figure 10 for DP-FCN2.0, with a 3× 3
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Fig. 9: Examples of deformations of parts from DP-FCN. Initial region proposals are shown in yellow and deformed parts
in red. Only 3×3 parts are displayed for clarity.

Fig. 10: Examples of deformations of parts from DP-FCN2.0. Initial region proposals are shown in yellow and deformed
parts in red. Only 3×3 parts are displayed for clarity.

part division for easier visualization. It is noticeable that the
models are able to better fit to objects with deformable parts
than with simple bounding boxes.

Network architecture. We compare DP-FCN with several
FCN backbone architectures in Table 6, in particular the 50-
and 101-layer versions of ResNet (He et al, 2016), Wide
ResNet (Zagoruyko and Komodakis, 2016) and ResNeXt
(Xie et al, 2017). We see that the detection mAP of DP-
FCN can be significantly increased by using better networks.
ResNeXt-101 (64x4d) gives the best results among the tested
ones, with large improvements in all metrics, despite not us-
ing dilated convolutions. We expect DP-FCN2.0 to behave

similarly, in particular to give the best results with ResNeXt-
101 (64x4d) too.

4.4 Comparison with state of the art

Experimental setup. In order to achieve the best results pos-
sible, we bring the following improvements to the setup of
Section 4.2: we first replace ResNet-50 by ResNeXt-101
(64x4d) (Xie et al, 2017) and increase the number of iter-
ations to 120,000 and 40,000 on PASCAL VOC datasets,
and to 480,000 and 160,000 on MS COCO dataset, with
the same learning rates, using 2 images per mini-batch with
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FCN architecture for DP-FCN (Mordan et al, 2017) mAP@0.5 mAP@0.75 mAP@[0.5:0.95]

ResNet-50 (He et al, 2016) 76.1 40.9 41.3
ResNeXt-50 (32x4d) (Xie et al, 2017)? 76.3 40.8 41.4
Wide ResNet-50-2 (Zagoruyko and Komodakis, 2016) 77.9 43.3 42.9
ResNet-101 (He et al, 2016) 78.1 44.2 43.6
ResNeXt-101 (32x4d) (Xie et al, 2017)? 78.6 45.2 44.4
ResNeXt-101 (64x4d) (Xie et al, 2017)? 79.5 47.8 45.7

Table 6: Comparison of different FCN architectures used with DP-FCN (Mordan et al, 2017) on PASCAL VOC 2007
test in average precision (%). Entries marked with ? do not use dilated convolutions.

Method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

FRCN (Girshick, 2015) 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4
HyperNet (Kong et al, 2016) 76.3 77.4 83.3 75.0 69.1 62.4 83.1 87.4 87.4 57.1 79.8 71.4 85.1 85.1 80.0 79.1 51.2 79.1 75.7 80.9 76.5
Faster R-CNN (Ren et al, 2015) 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0
SSD (Liu et al, 2016) 76.8 82.4 84.7 78.4 73.8 53.2 86.2 87.5 86.0 57.8 83.1 70.2 84.9 85.2 83.9 79.7 50.3 77.9 73.9 82.5 75.3
MR-CNN (Gidaris and Komodakis, 2015) 78.2 80.3 84.1 78.5 70.8 68.5 88.0 85.9 87.8 60.3 85.2 73.7 87.2 86.5 85.0 76.4 48.5 76.3 75.5 85.0 81.0
LocNet (Gidaris and Komodakis, 2016b) 78.4 80.4 85.5 77.6 72.9 62.2 86.8 87.5 88.6 61.3 86.0 73.9 86.1 87.0 82.6 79.1 51.7 79.4 75.2 86.6 77.7
FRCN OHEM (Shrivastava et al, 2016) 78.9 80.6 85.7 79.8 69.9 60.8 88.3 87.9 89.6 59.7 85.1 76.5 87.1 87.3 82.4 78.8 53.7 80.5 78.7 84.5 80.7
ION (Bell et al, 2016) 79.4 82.5 86.2 79.9 71.3 67.2 88.6 87.5 88.7 60.8 84.7 72.3 87.6 87.7 83.6 82.1 53.8 81.9 74.9 85.8 81.2
R-FCN (Dai et al, 2016b) 80.5 79.9 87.2 81.5 72.0 69.8 86.8 88.5 89.8 67.0 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9
Deformable ConvNet (Dai et al, 2017) 82.6
DP-FCN (Mordan et al, 2017) 83.1 89.8 88.6 85.2 73.9 74.7 92.1 90.4 94.4 58.3 84.9 75.2 93.4 93.1 87.4 85.9 53.9 85.3 80.0 90.4 85.9
DP-FCN2.0 (ours) 83.3 92.0 88.6 83.9 75.9 72.8 89.9 91.5 93.1 57.4 85.5 75.4 94.1 92.7 87.0 85.0 55.6 85.6 80.6 92.7 86.2

Table 7: Detailed detection results on PASCAL VOC 2007 test in average precision (%). For fair comparisons, the table
only includes methods trained on PASCAL VOC 07+12.

Method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

FRCN (Girshick, 2015) 68.4 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2
HyperNet (Kong et al, 2016) 71.4 84.2 78.5 73.6 55.6 53.7 78.7 79.8 87.7 49.6 74.9 52.1 86.0 81.7 83.3 81.8 48.6 73.5 59.4 79.9 65.7
Faster R-CNN (Ren et al, 2015) 73.8 86.5 81.6 77.2 58.0 51.0 78.6 76.6 93.2 48.6 80.4 59.0 92.1 85.3 84.8 80.7 48.1 77.3 66.5 84.7 65.6
SSD (Liu et al, 2016) 74.9 87.4 82.3 75.8 59.0 52.6 81.7 81.5 90.0 55.4 79.0 59.8 88.4 84.3 84.7 83.3 50.2 78.0 66.3 86.3 72.0
FRCN OHEM (Shrivastava et al, 2016) 76.3 86.3 85.0 77.0 60.9 59.3 81.9 81.1 91.9 55.8 80.6 63.0 90.8 85.1 85.3 80.7 54.9 78.3 70.8 82.8 74.9
ION (Bell et al, 2016) 76.4 88.0 84.6 77.7 63.7 63.6 80.8 80.8 90.9 55.5 81.9 60.9 89.1 84.9 84.2 83.9 53.2 79.8 67.4 84.4 72.9
R-FCN (Dai et al, 2016b) 77.6 86.9 83.4 81.5 63.8 62.4 81.6 81.1 93.1 58.0 83.8 60.8 92.7 86.0 84.6 84.4 59.0 80.8 68.6 86.1 72.9
DP-FCN (Mordan et al, 2017)1 80.9 89.3 84.2 85.4 74.4 70.0 84.0 86.2 93.9 62.9 85.1 62.7 92.7 87.4 86.0 86.8 61.3 85.1 74.8 88.2 78.5
DP-FCN2.0 (ours)2 81.2 89.8 85.6 84.7 74.3 70.8 85.1 85.4 94.3 62.6 86.5 62.0 92.8 88.4 88.0 87.4 61.0 85.4 73.7 88.0 78.3

Table 8: Detailed detection results on PASCAL VOC 2012 test in average precision (%). For fair comparisons, the table
only includes methods trained on PASCAL VOC 07++12.

the same number of regions per image. We include common
tricks: color data augmentations (Krizhevsky et al, 2012),
bounding box voting (Gidaris and Komodakis, 2015) with a
threshold of 0.5 on PASCAL VOC and 0.75 on MS COCO,
and averaging of detections between original and flipped im-
ages (Bell et al, 2016; Zagoruyko et al, 2016). We set the
relative weight of the multi-task (classification/localization)
loss (Girshick, 2015) to 7 and enlarge input boxes by a factor
1.3 to include some context.

PASCAL VOC 2007 and 2012. Results of DP-FCN and DP-
FCN2.0, along with those of recent methods, are reported in
Table 7 for VOC 2007 and in Table 8 for VOC 2012. For
fair comparisons we only report results of methods trained
on VOC 07+12 and VOC 07++12 respectively, but using ad-

1 http://host.robots.ox.ac.uk:8080/anonymous/
QNUYVS.html

2 http://host.robots.ox.ac.uk:8080/anonymous/
07DMTQ.html

ditional data, e.g. MS COCO images, usually improves re-
sults (He et al, 2016; Dai et al, 2016b). DP-FCN achieves
83.1% and 80.9% on these two datasets, yielding large gaps
with all competing methods. In particular, DP-FCN outper-
forms R-FCN (Dai et al, 2016b), the work closest to ours,
by significant margins (2.6 and 3.3 points respectively). DP-
FCN2.0 yields 83.3% and 81.2% on VOC 2007 and 2012 re-
spectively, which are small additional improvements of 0.2
and 0.3 points with respect to Mordan et al (2017). As stud-
ied in Section 4.2, the main improvement of this model lies
in the accuracy of localization, which is not reflected here
with the official PASCAL VOC metric, i.e. mAP@0.5. We
note that these results could be further improved with addi-
tional common enhancements, e.g. multi-scale training and
testing (He et al, 2015) or OHEM (Shrivastava et al, 2016).

MS COCO. In order to validate the effectiveness of defor-
mations for object detection, we present the results of DP-
FCN, DP-FCN2.0 and other concurrent methods on the chal-

http://host.robots.ox.ac.uk:8080/anonymous/QNUYVS.html
http://host.robots.ox.ac.uk:8080/anonymous/QNUYVS.html
http://host.robots.ox.ac.uk:8080/anonymous/07DMTQ.html
http://host.robots.ox.ac.uk:8080/anonymous/07DMTQ.html
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Method
mAP@

[0.5:0.95]
mAP@

0.5
mAP@

0.75
mAP@
Small

mAP@
Medium

mAP@
Large

MultiPath (Zagoruyko et al, 2016) (on val) 31.5 49.6
R-FCN (Dai et al, 2016b) 31.5 53.2 14.3 35.5 44.2
ION (Bell et al, 2016) 33.1 55.7 34.6 14.5 35.2 47.2
DP-FCN (Mordan et al, 2017) 34.0 54.7 37.2 15.9 36.4 47.5
DP-FCN2.0 (ours) 34.8 54.8 38.4 15.8 37.2 49.0
FPN (Lin et al, 2017a) 36.2 59.1 18.2 39.0 48.2
Deformable ConvNet (Dai et al, 2017) 37.5 58.0 19.4 40.1 52.5
RetinaNet (Lin et al, 2017b) 39.1 59.1 42.3 21.8 42.7 50.2

Table 9: Detection results on MS COCO test-dev in average precision (%). All methods are trained on the bounding box
detection trainval set (except MultiPath which is trained on the 115k train set) and are single model.

lenging and large-scale MS COCO dataset (Lin et al, 2014)
in Table 9. While more recent approaches, e.g. Feature Pyra-
mid Network (FPN) (Lin et al, 2017a), RetinaNet (Lin et al,
2017b), have better results, we see that DP-FCN is still com-
petitive with the state of the art, showing the generality of
our approach. It notably outperforms R-FCN again on this
dataset. Again, DP-FCN2.0 yields better results than Mor-
dan et al (2017), with improvements of 0.8 and 1.2 points
in the official and mAP@0.75 metrics, which are strict in
localization. However, training on this dataset is rather com-
putational expensive, and all the leading methods use heavy
GPU resources for that. It allows them to be parameterized
directly on MS COCO, while we do it on PASCAL VOC and
then transfer selected values, which might be suboptimal. By
training longer, tuning hyper-parameters more carefully or
by integrating our ideas into newer architectures, e.g. FPN
(Lin et al, 2017a), we expect higher results.

4.5 Examples of detections

Some example detections of the final DP-FCN model trained
on VOC 07+12 data (Section 4.4) on unseen VOC 2007
test images are shown in Figure 11 and Figure 12. We note
that DP-FCN can successfully detect objects under simple
as well as challenging conditions. The last row of Figure 12
shows some failure cases where some objects are misclas-
sified, although they are accurately localized. Example de-
tections are illustrated in the same way for DP-FCN2.0 in
Figure 13 and Figure 14.

5 Conclusion

In this paper, we propose DP-FCN2.0, an extension of our
previous work DP-FCN (Mordan et al, 2017). These two
models for object detection learn latent deformable part-
based representations thanks to two new modules: a defor-
mation part-based RoI pooling layer aligning parts with dis-
criminative elements of objects, thus increasing invariance

to local transformations, and a localization refinement mod-
ule exploiting configurations of parts to accurately identify
shapes of objects. These contributions are then naturally in-
tegrated within FCNs for high efficiency. In this extension,
we further make interactions between parts explicit, so that
they are learned by our model. This yields finer represen-
tations of objects, and both recognition and localization are
improved. This is done by casting alignment as a CRF infer-
ence with custom potentials, optimizing all parts jointly, and
by using a bilinear deformation-based refinement for local-
ization. Deformations make our models more flexible than
traditional region-based detectors, restricted to extract fea-
tures from generic bounding boxes only. Moreover, this is
done without part annotations during training and the joint
CRF-based optimization is wrapped within the deformable
part-based RoI pooling layer in order to enable end-to-end
learning, which makes deformations easy to integrate into
any region-based architecture. Finally, experimental valida-
tion shows significant gains on the standard PASCAL VOC
datasets with several common metrics, and especially with
the ones more strict on localization. Our models also achieve
state-of-the-art results with VOC data only. However, using
deformations with recent state-of-the-art network architec-
tures should boost performance even more.
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