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As introduced by [1], the privileged information is a complementary datum related to a training example
that is unavailable for the test examples. In this paper, we consider the problem of recognizing low-
resolution images (targeted task), while leveraging their high-resolution version as privileged informa-
tion. In this context, we propose a novel framework for integrating privileged information in the learning
phase of a deep neural network. We present a natural multi-class formulation of the addressed prob-
lem, while providing an end-to-end training framework of the internal deep representations. Based on
a detailed analysis of the state-of-the-art approaches, we propose a novel loss function, combining two
different ways of computing indicators of an example’s difficulty, based on its privileged information. We
experimentally validate our approach in various contexts, proving the interest of our model for different
tasks such as fine-grained image classification or image recognition from a dataset containing annotation

Keywords:

Image classification

Deep convolutional neural networks
Learning using privileged information.

noise.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

During the last decades, image classification has occupied a
prominent place in the work of the Computer Vision and Machine
Learning communities. In this paper, we tackle the problem of im-
age classification using privileged information. In a military con-
text, visual sensors may be embedded in airborne systems in or-
der to recognize vehicles at a long range. In this context, dur-
ing the acquisition of training examples, the images may be ac-
quired at different ranges depending on the situation of the air-
borne system. However, during the test phase, only images aquired
at a long range (i.e. low resolution images) are available. Learn-
ing Using Privileged Information (LUPI) is a particularly appropri-
ate framework for integrating complementary data. For instance,
[2] explore an image classification problem where the training im-
ages are associated to a textual description. In our context, we fo-
cus on classifying low-resolution images while having access to
the high-resolution versions of the training images. In a Machine
Learning context, [1] define the privileged information (PI) as a
supplementary datum related to an example, that is not necessar-
ily of the same nature, and is unavailable for test examples. This
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complementary element brings additional information to enhance
the learning of the desired decision function. To tackle this issue,
several methods have already been proposed in various contexts.
PI has been integrated in various classification approaches, such as
metric learning [3], ranking approaches [2], SVM classifiers [1,4-
6], or structural SVM for object localization [7]. These methods are
however largely based on shallow SVM methods, and do not pro-
vide a framework for learning a deep model using this comple-
mentary information.

During the past few years, deep convolutional neural networks
(CNNs) have successfully tackled a vast majority of computer vi-
sion tasks, such as object detection [8,9], action recognition [10], or
semantic segmentation [11]. In particular, since the breakthrough
of the AlexNet of [12], numerous innovations have been proposed
to successfully improve the image classification performances [13-
16]. Furthermore, these architectures have successfully been used
in a transfer fashion in various contexts [13,17,18], which enables
using deep pre-trained CNNs on medium-scale datasets. CNNs have
also proven to be good candidates for low-resolution image classi-
fication [19].

In this paper, we propose DeepLUPI, a novel end-to-end training
model for integrating PI into a deep CNN. Our DeepLUPI structures
the addressed problem of having several image resolutions during
the training phase in a framework for learning a deep CNN using
privileged information. Our model combines two major LUPI ap-
proaches, using the PI both as an absolute and a relative difficulty
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indicator between the targeted and privileged spaces. Besides, our
model directly tackles the multi-class formulation of the classifica-
tion tasks. We experimentally validate our approaches on various
contexts, including a protocol similar to that of [1], as well as on
a large web-crawled dataset and in fine-grained contexts, hence
proving the efficiency and scalability of our deep multi-class ap-
proach. We additionally provide a thorough study of different as-
pects of our model.

2. Previous work
2.1. Learning Using Privileged Information (LUPI)

As introduced by [1], the privileged information, a complemen-
tary training datum, may be of various types, like attributes [2,20],
textual description [1,21], depth information [22].

In [6], the authors propose Margin Transfer (MT), an algorithm
that first optimizes a classifier in the privileged space, then uses
the classification score as an indicator of the difficulty for each ex-
ample. This coefficient is then introduced in the optimization cri-
terion of a binary SVM learned in the targeted space, enforcing a
large classification margin for the easiest examples and reducing
the enforced margin for the most difficult ones. Their approach re-
lies on the hypothesis that an example which is difficult to recog-
nize in the privileged space is all the more difficult to classify in
the targeted space, and may even be an outlier. This method uses
an absolute difficulty level, only determined by the PI, and trans-
fered unchanged to the targeted space. However, this formulation
is based on the SVM approach, and is not adapted to other classi-
fication methods such as deep neural networks. Besides, their for-
mulation is based on a binary SVM approach, which is a strong
limitation when dealing with a large number of labels.

Based on a complementary approach, [1] - which first intro-
duced a framework for integrating PI during a system’s training
phase - use the PI as a relative difficulty indicator, comparing
scores in both spaces. In their model, the PI is used as a proxy
to the slack variables in the targeted space, and no classification
constraint is enforced in the privileged space: when training the
SVM classifier in the targeted space, the slack variables &; are re-
placed by the score (w*, x¥) +b*, with (w*, b*) resp. the weight
vector and bias term in the privileged space. The weight vectors
in both the privileged and the targeted spaces are learned in a
joint manner, contrarily to Margin Transfer, which requires sequen-
tially learning two SVM classifiers. Moreover, while Margin Trans-
fer [6] enforces that the examples are correctly classified in the
privileged space, SVM+ [1] does not formulate any constraint on
the classification of the PI. Accordingly, while MT relies on an ab-
solute difficulty definition, SVM+ relies on a comparison between
the scores in both spaces, resulting in a relative difficulty level. It
is worth noticing that, like for Margin Transfer, the SVM+ formu-
lation is an enhancement of the binary SVM model. As for MT, the
learned model is shallow, and the multi-class recognition tasks are
not to be directly addressed by this model.

Complementary approaches have been proposed, enforcing a
form of resemblance constraint between the privileged and tar-
geted spaces. For instance, the Loss Inequality Regularization
model (LIR) of [20] relies on the intuition that the privileged score
represents the maximal reachable score for the targeted classifier:
if the targeted score ever gets better than the privileged score for
a given example, then this indicates that the targeted space over-
fits over that example. The system is then penalized whenever the
targeted loss is lower than the privileged loss. This approach has
however only been tested on shallow SVM models. Moreover, it
only considers the PI as a regularization element, which may be
a somehow limited usage of these complementary data. Comple-

mentary works have also focused on more theoretical properties
of LUPI formulations [23,24].

In this paper, we propose DeepLUPI for integrating the PI in
deep neural networks, naturally resulting in a multi-class formu-
lation, and enabling learning all the internal deep representations
in an end-to-end training fashion.

2.2. Convolutional neural networks

Convolutional Neural Networks (CNN) have been a leading
method on a large majority of image recognition tasks, such as im-
age classification [12,15,16,25], action recognition [10], object local-
ization [8,9,26,27].

To process small- or medium-scale datasets, pre-trained CNNs
can be used in a transfer fashion [13,17,18]. The weights are pre-
trained on a large external dataset (e.g. ImageNet [28]), then the
first layers of the CNN are considered as a feature extractor on the
target dataset, and a classifier is learned using these deep features.

In this paper, we tackle the problem of low-resolution im-
age classification with access to the high-resolution version of the
training images. In this context, we propose DeepLUPI, an end-to-
end method for classifying low-resolution images by integrating PI
in a deep CNN. Our model combines both MT absolute approach of
the difficulty level of each example, and the relative difficulty def-
inition of SVM+ comparing the scores in both spaces. Moreover,
through our model, we provide a deep multi-class approach, par-
ticularly adapted to fine-grained classification.

3. DeepLUPI model

Our model consists in a two-fold loss formulation. The first
part of our loss, mainly based on the same approach as [6], com-
putes an weighting coefficient based exclusively on the classifica-
tion scores in the privileged space, giving an important weight to
the examples that are the most correctly recognized in the privi-
leged space. On the other hand, the second part of our loss func-
tion adds a criterion that controls the difference between the clas-
sification scores in the privileged and the targeted spaces, thus in-
creasing the influence of the examples that are not enough well
classified yet in the targeted space. Our model relies on the dif-
ficulty transfer from the privileged space to the targeted space
- containing the low-resolution images. This transfer seems rele-
vant in our context, since the privileged information is the high-
resolution version of each training image, while the targeted in-
formation is the low-resolution image. As stated in [19], the res-
olution loss occludes the discriminant details, whereas the high-
resolution images still contain substantially more relevant infor-
mation. In this context, the hypothesis that the difficulty level of
an example can be directly transfered from the privileged space
to the targeted space is particularly well verified. Moreover, given
the nature of the PI, the outliers should be extremely difficult to
recognize in the privileged space, whereas the easiest examples
should be the most representative of their class. Thus, an exam-
ple is said to be easy if it is well classified with a sufficiently high
score in the privileged space, while the most difficult examples are
the ones with a too low score or even not recognized by the clas-
sifier learned in the privileged space.

3.1. DeepLUPI architecture

We present on Fig. 1 the global framework of our DeepLUPI
algorithm. Our approach contains two phases: first, a multi-class
recognition model is learnt in the privileged space (green part in
the figure). This system enables computing the privileged score for
each example i for their ground-truth class c: Z{(x}). For each ex-
ample, we also compute a p; coefficient interpreted as the diffi-
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Fig. 1. Architecture of our DeepLUPI model. For each example, the CNN learned on
the privileged data (green) enables computing a p; coefficient, characterizing the
difficulty of the example, as well as its ground-truth privileged score Z.(x}). Both
these quantities are integrated in the loss function losspeeprupr Of @ CNN learned on
the targeted data (grey). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

culty of recognizing this example. More precisely, p; is high for an
easy example, and low for a difficult one. This coefficient may be
qualified as an absolute vision of the difficulty level, for it only de-
pends on the privileged space.

A second multi-class recognition system is then learned in
the targeted space (grey part). This system benefits from the PI
through a new loss function losspeepryp; that integrates both these
quantities in the targeted CNN learning. More specifically, the er-
ror for each example is weighted by the p; coefficient. The easi-
est (resp. most difficult) examples have thus a higher (resp. lower)
influence on the targeted model learning. A second term adds to
this approach, measuring the proximity between the ground-truth
scores in both spaces. The aim of this relative term is to penalize
the examples whose targeted score is too low with respect to their
privileged score. The intuition behind this complementary penal-
ization is that the PI is richer than the targeted information, which
means it should enable learning a more efficient model. Encour-
aging the targeted model to copy the privileged model’s answers
can thus be beneficial. More specifically, we penalize the examples
whose targeted ground-truth score Z.(x;) is too low compared to
their privileged ground-truth score Zg (x}).

In the following, we present the different steps of our DeepLUPI
model, detailing the loss function l0sSpeepypr, Which integrates the
absolute and relative difficulty levels of each example in the learn-
ing phase of the targeted CNN. The optimization process is summa-
rized in Algorithm 1. We also specify the p; computation, express-
ing the absolute difficulty level of each example. We also discuss
the relation of our model with other state-of-the-art LUPI methods
in Section 3.3.

3.2. DeepLUPI computational blocks

3.2.1. Loss function

Our DeepLUPI model uses the PI to compute two difficulty
terms taking part in the targeted CNN optimization criterion. The
p; coefficient measures an absolute difficulty level given by the
privileged space. This coefficient enables differentiating the exam-
ple difficulties according to their associated privileged representa-
tion. The intuition of our model is to assign an important weight
to the examples that are the most representative of their class -
i.e. the easiest according to their privileged representation -, and
decrease the impact of the examples with the most uncommon
features - ie. the most difficult ones according to the privileged
model -, which are hence the most likely to be outliers.

A second term measuring the relative difficulty between both
spaces further penalizes an example as long as it is too badly

classified. This complementary penalization must however vanish
whenever the example gets well enough classified, i.e. when its
targeted ground-truth score is high enough. More specifically, for
each example, we want to bring closer the targeted score from the
privileged score. This new term can then be considered as a rela-
tive difficulty term between both spaces. As such, the loss function
writes as follows:
N
losspeepur = 3 (o1 + VIEGE) ~ 2oL ) In@ex) (D)
i=1

where Z¢(x}) (resp. Zc(x;)) is the privileged (resp. targeted) softmax
output for the ground-truth class ¢, and [.], denotes the function
max (., 0). y is a trade-off hyper-parameter between both terms. A
high value of y gives a high importance to the relative cost term.

The term [Z(xf) — Zc(x;)]+ contributes in the loss function only
if Zc(x;) < ZE(xf), ie. when example i is worse recognized in the
targeted space than in the privileged space. This term is propor-
tional to the difference between both scores. For a given example
i, the lower the targeted score with respect to the privileged space,
the more influence this example has on the learning of the net-
work. We thus meet the intuition of SVM+, which strongly penal-
izes the examples not recognized with a sufficient margin, given
by the PI.

3.2.2. Deep multi-class p; coefficients

As illustrated in Fig. 1, our model relies on multi-class p; coeffi-
cients computed in the privileged space. These coefficients are then
integrated into the loss function of the CNN learned in the targeted
space, weighting the individual error of each example. These coef-
ficients measure the difficulty level of each example: a low value
of p; is associated to a difficult example, while the highest p; val-
ues are associated to the examples that are best recognized in the
privileged space. In this paper, we propose to learn a CNN in the
privileged space, then to compute the coefficients as follows:

A =Z:(x{) — maxZ;(xy) (2)
k#c

where Z(x}) is the softmax output for class k for image x! of
ground-truth class ¢ in the privileged space. The scores Z,(x{) are
computed after a softmax, which means they necessarily lie be-
tween 0 and 1, hence the quantity A; lies between —1 and 1.
The easiest examples thus have an associated A; ~ 1, and the most
difficult ones may have a A; <0. In order to ensure that all the
weigths are in [Ty, Tmax] With T, > 0, we remap the A; through
a function h:

pi =h(A). 3)

3.3. Discussion

Several LUPI approaches are based on this intuition of simili-
tude between both spaces.

Our DeepLUPI model can be seen as an extension of both SVM+
[1] and Margin Transfer [6] models, by jointly incorporating an ab-
solute difficulty constraint and a relative difficulty constraint dur-
ing training.

Our model also echoes the intuition of the LIR model of [20], in
the sense that we constrain targeted scores and privileged scores
to be related. Our intuition is however in contradiction with that
of LIR, which uses the privileged space as an indicator of overfit-
ting. This approach considers that if the targeted model recognizes
some of the examples too well, then this model might be overfit-
ting on these examples. To prevent this situation, the classification
scores in the targeted space are forced to remain inferior to the
privileged scores. On the contrary, in our deepLUPI model, the sec-
ond term of the loss function is meant to use the privileged space
to force the examples to have a sufficiently good classification score
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in the targeted space. In other words, this term forces the targeted
model to take into account the examples that are not well enough
classified yet.

4. Experimental evaluation

We focus on image classification tasks. To show the interest of
our modeling, we compare our model with several state-of-the-art
LUPI methods on various image classification tasks.

Datasets. To evaluate our model, we consider two fine-grained ori-
ented datasets: FGVC-Aircraft [29] and UPMC-Food-101 [30]. FGVC-
Aircraft is composed of 10,000 images equally distributed both be-
tween 100 aircraft variants, and train, validation and test sets. For
all our experiments we report the results of the methods learned
on the train and validation sets, and tested on the test set. UPMC-
Food-101 is a large dataset containing about 100,000 images of 101
different dishes. As in [30], we randomly choose 600 images per
class for training, and the remaining for test. This dataset has the
particularity of containing annotation noise for it is a web-crawled
image dataset. This enables us to measure our model’s robustness
to this phenomenon. On both fine-grained oriented bases, we aim
at recognizing low resolution 32 x 32 images - which are the tar-
geted data. During the training phase, we also have the high reso-
lution 224 x 224 versions of these images.

In order to further validate our model, we also explore the im-
age recognition framework on MNIST [31] proposed by [1] and ex-
plored in several other works [21,23,32]. This framework aims at
recognizing the 10 x 10 reduced MNIST images, while having the
28 x 28 images as the privileged information. On this dataset, we
use a standard LeNet, which is why the 10 x 10 images are further
magnified to 28 x 28 to match the input size of the network. In
their experiments, the authors tackle the binary problem of dis-
criminating the two classes of digits “5” and “8”. However, our
approach naturally calls to treating the complete 10-class MNIST
problem. We use the train | test repartition proposed by [31].

Experimental protocol. We compare three types of approaches: the
targeted features classified by a linear multi-class SVM - i.e. with-
out PI -, the state of the art LUPI methods, and our DeepLUPI
model.

In this paper, we compare our model with the major state
of the art LUPI methods, both based on SVM classifiers: SVM+
[1] (using online code in [5]'), and Margin Transfer [6] (using Li-
bLinear [33] to implement both SVMs). In order to provide re-
sults on very recent state-of-the-art methods, we have also im-
plemented and tested both LIR [20] and Generalized Distillation
[23] methods, yet since the performances of these models were
not satisfying, we only report their performances on MNIST.

For the shallow methods (targeted features, SVM+ [1] and MT
[6]), we use features extracted from a LeNet learned from scratch
on the targeted images on MNIST, and features extracted from the
first fully-connected layer of a VGG-M pre-trained on ImageNet for
FGVC-Aircraft and UPMC-Food-101. As privileged representations,
we use the features extracted from a LeNet learned from scratch on
the privileged images on MNIST, and we fine-tune a VGG-M pre-
trained on ImageNet for the 224 x 224 images of both fine-grained
datasets.

For our DeepLUPI model, on each dataset, we use LeNet for
MNIST, and the LR-CNN of [19] on both fine-grained oriented
datasets. As privileged features, we use a LeNet learned on the
privileged images from MNIST. On UPMC-Food-101, we reinitialize
the weights of the last fully-connected layer of a VGG-M in order

1 http://www.cs.technion.ac.il/~pechyony/

Table 1

Comparison of our DeepLUPI method with state-of-the-art LUPI methods. On
both fine-grained datasets we report the multi-class accuracy, while on MNIST
we report the number of mistakes. *: results obtained with the online code pro-
vided by the authors.

Method MNIST UPMC-Food-101 FGVC-Aircraft
(# err)  (acc) (acc)

Target feature w/o PI 130 28.9% 32.7%

SVM+ [1]* 122 - 31.2%

MT [6]* 119 30.6% 33.5%

LIR [20] 120 - -

Generalized Distillation [23] 110 - -

DeepLUPI (ours) 95 31.9% 39.8%

to get the correct number of outputs - i.e. the number of classes -
then we fine-tune the weights of all the layers. We use a similar
protocol on FGVC-Aircraft. However, since this dataset only con-
tains a restricted number of training images, the gradient of the
error is only backpropagated through the last fc layer, to prevent
overfitting.

Algorithm 1 DeepLUPI learning.
Require: (x},X;,yi)iz1n
1: Learn a CNN on the privileged data (X, y;)i—1n

2: Compute the p; (2,3)

3: Initialize the targeted weights w

4: for epoch = 1.epoch,,,x do

5:  On targeted data (x;,¥;)i—1.n, compute [0sSpeepiypr (1)

6: Update weights w by backpropagating the gradient of
losspeeprupi

7. end for

4.1. Comparison with state-of-the-art methods

We report in Table 1 the results for all the above described
methods. On MNIST, our DeepLUPI model makes 24 fewer mistakes
than MT, and 27 fewer than SVM+. We show that our approach for
taking into account the example difficulty is particularly more effi-
cient than the tested state-of-the-art LUPI methods in this context.
Moreover, on this dataset, the LIR method of [20] makes 120 errors,
i.e. 25 more than our model. This method relies on a similar for-
mulation to our DeepLUPI model for it compares the costs in both
spaces, yet it is based on the opposite intuition to our model: the
example must be better recognized in the privileged space than
in the targeted space. The more recent Generalized Distillation ap-
proach of [23] leads to 110 mistakes in this context, which means
15 more mistakes than our model. Their method enforces a mimic
constraint between the outputs from the targeted and the privi-
leged models. This experiment shows that our approach is more
adapted to the problem in this context.

On UPMC-Food-101, our method improves of 1.3% the perfor-
mances of Margin Transfer? One should notice that UPMC-Food-
101 is a fine-grained oriented multi-class dataset, thus contain-
ing a large number of classes to discriminate. The state-of-the-art
binary LUPI methods Margin Transfer and SVM+ are not partic-
ularly adapted to this kind of task, whereas our method enables
directly treating the multi-class problems. Moreover, this dataset
contains a lot of training images, which is easily dealt with by our
method, whereas the state-of-the-art methods such as SVM+ are
not adapted at all to this kind of situation. Finally, this dataset

2 We do not report any result for SYM+, since the online available code uses an
optimization in the dual space, which is not suited to the important number of
training images on UPMC-Food-101.
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Fig. 2. Improvement of our DeepLUPI model w.r.t. the proportion of the training set
on MNIST.

contains a certain level of annotation noise, which our model ob-
viously achieves better dealing with than Margin Transfer.

Finally, on FGVC-Aircraft, our method also outperforms both
shallow concurrent models, improving by 6.3% the performances
of Margin Transfer and by 8.6% that of SVM+. A part of this per-
formance gain is due to the use of a deep model in the tar-
geted space, while the concurrent methods are based on a shallow
SVM classifier. The possibility of using a deep network enables our
model to improve these models’ performances.

Our DeepLUPI model outperforms all the tested state-of-the-art
LUPI methods on the three datasets. We prove that our end-to-
end learning method actually takes advantage of the privileged in-
formation to improve the internal representations in the targeted
network, contrarily to shallow SVM-based LUPI methods such as
Margin Transfer or SVM+. Our model also directly takes into ac-
count the multi-class aspect of the addressed problems, while the
major state-of-the-art LUPI methods require an ad hoc binary re-
formulation.

4.2. Impact of the size of the training set

We also show the interest of our model in the case where a
few training examples are available. To this end, we compare deep
and DeepLUPI performances when reducing the number of training
images. More specifically, we run eight independent experiments,
each of them using a similar protocol to that of [1]: for each ex-
periment, p percent of the training images are randomly chosen
in each class, then both CNNs are learned on this training subset.
Both networks are based on the same structure and learning pa-
rameters as previously. They are then tested on the whole test set
(10,000 images). For each of the eight experiments, this process is
repeated on 12 randomly chosen training subsets. On Fig. 2, we re-
port for each proportion p the mean and standard deviation values
for nb_errors_deep — nb_errors_DeepLUPI. This value is then high
when LeNet makes much more mistakes than our model, i.e. when
our DeepLUPI model performs better than the LeNet without PL

On this figure, we show that our DeepLUPI model enables im-
proving the performances of the CNN without PI whatever the pro-
portion of the training images used. For instance, with 20% of the
training set, our DeepLUPI makes in average 39.4 fewer mistakes
than a LeNet. Moreover, the standard deviation values reported in-
dicate that these results are significant.

This figure also shows that the performance gap between
DeepLUPI and LeNet grows when the number of training images
decreases. Indeed, with 50% of the images, DeepLUPI improves by
21.3 mistakes the performances of the LeNet; with only 7% of the
training images, DeepLUPI improves by 69.6 mistakes the perfor-

beef tartare greek salad  choc. mousse nachos

Fig. 3. Relevance of the p; values computed on UPMC-Food-101 images.
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Fig. 4. A; distribution on UPMC-Food-101 (blue) and MNIST (orange). Note: for
more readability, the distributions are presented on a logarithmic scale. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

mances of LeNet. This observation meets the intuitions and con-
clusions of [1] stating that the privileged information proves even
more informative when the training set is small. These results,
showing that our method largely improves the performances of the
standard CNN without privileged information, offer an interesting
perspective in the current context of deep CNN learning requiring
a lot of training data.

5. DeepLUPI further analysis
5.1. p; analysis

We focus here on the relevance of the p; coefficients. This study
aims at highlighting the capacity of our model to discriminate the
examples most representative of their class from the most difficult
ones, possibly outliers, that a human eye would struggle to rec-
ognize properly. For four random classes of UPMC-Food-101, we
report on Fig. 3 the examples associated with the lowest (resp.
highest) A; value on the bottom (resp. top) line. We show that the
images associated to the highest p; values are quite easily recog-
nizable, whatever the class. On the contrary, the images associated
with the lowest p; values are more difficult to categorize, since
they may be unusual forms of the dish (e.g. the greek salad resem-
bles a bruschetta dish), or even difficult outliers (e.g. a pizza image
categorized as nachos).

We are now interested in showing the capacity of our model to
reveal the difficulty level of a given dataset, by studying the dis-
tribution of the A; on different datasets. We present on Fig. 4 the
repartition of the A; values on UPMC-Food-101 (blue) and MNIST
(orange). On this figure, we show that on a quite easy dataset
such as MNIST, all the A; have a high value, i.e. all the images are
identified as easily recognized. Indeed, on this dataset, all the A;
are superior to 0.85. On UPMC-Food-101 however, we show that
the A; are much more distributed. This dataset is constituted of
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Fig. 5. Influence of the different remapping types on the p; distribution on UPMC-
Food-101. Note: for more readability, the distributions are presented on a logarith-
mic scale.

Table 2
Analysis of the improvement brought by our DeepLUPI
model.
Method MNIST UPMC-Food-101
Deep 130 errors  30.7%

DeepLUPI, y =0
DeepLUP], p; =0
DeepLUPI

107 errors 31.6%
135 errors  31.1%
95 errors 31.9%

web-crawled images, which is the reason why it contains a certain
amount of annotation noise, i.e. not easily recognized images and
outliers. Here, the A; are quite spread between both bounds; more
than 2000 images have a negative A; value.

We present on Fig. 5 the p; distribution after the different
remapping functions hj, (orange), hexp (red) and heyp, (blue). hyp,
denotes a linear remapping, hexp denotes an exponential remap-
ping, and h,y,, stands for a remapping where two exponential
functions are successively applied to the data. For each remapping,
the final p; are in [0.1; 1]. On this figure, we show that the non lin-
ear remapping functions enable better distributing the p; between
both bounds.

5.2. DeepLUPI ablations

In order to highlight the improvement of each part of our
DeepLUPI model, we focus on the improvement brought by only
one of both difficulty terms. On this purpose, we consider our
DeepLUPI model with all the p; values at O - only the relative cost
is taken into account -, then with y = 0 - only the absolute cost is
taken into account. The baseline consists in a standard CNN learnt
on the low resolution images without PI.

All the results are reported in Table 2. On MNIST, when only
taking into account the p; term (ie. when y = 0), our DeepLUPI
model makes 13 fewer errors than the CNN without Pl. Adding
the relative cost (i.e. with our complete DeepLUPI model) further
improves by 12 errors this result. On UPMC-Food-101, the abso-
lute difficulty alone (y = 0) also improves de performances w.r.t.
a standard CNN, by 0.9%. Adding the relative cost further improves
this result by 0.3%. This lesser gap may be explained by the consis-
tence of the p; absolute difficulty coefficients, which already bring
a more significant improvement.

When taking p; = 0, this approach enables improving the per-
formances w.r.t. a standard CNN on UPMC-Food-101. Since this
dataset contains an annotation noise, mislabeled examples may
disturb the learned targeted CNN without PI. This protocol thus
enables relaxing the constraint on the outliers, and thus could ex-
plain the performance gain on a noisy dataset such as UPMC-Food-

101. On MNIST, the standard CNN achieves somewhat better per-
formances than the relative cost alone. This result tends to prove
that this relative cost alone does not improve the performances on
a dataset without outlier. However, the results of our DeepLUPI
model show that the information carried by this relative cost is
complementary to that of the absolute difficulty term, since the
combination of both improve the performances on all the datasets.

Finally, when using the complete DeepLUPI formulation, the
performances are improved on both MNIST and UPMC-Food-101
datasets compared with a standard deep CNN approach. Indeed,
DeepLUPI misclassifies 35 fewer images than a standard deep
CNN (without privileged information) on MNIST, and improves by
1.2% the classification performances on UPMC-Food-101. This result
tends to show that the introduction of a deep structure in the LUPI
framework instead of shallow models is not the only element con-
tributing to the improvement achieved by our DeepLUPI model.

To conclude, we show that our DeepLUPI model enables im-
proving the performances over the standard CNN in most cases.
Moreover, the absolute cost - incarnated by the p; term - always
achieves improving the performances in all cases. The relative cost
alone of our DeepLUPI leads to performances consistent with the
nature of the different datasets.

6. Conclusion

In this paper, we present DeepLUPI, a novel framework for in-
tegrating privileged information for training a deep neural net-
work, providing a natural end-to-end training framework of the
internal representations as well as a multi-class formulation for
the addressed problem. Our model leverages a novel loss formu-
lation, optimizing a combination of both absolute and relative ap-
proaches of the difficulty level of each example. We experimen-
tally validate our approach on several datasets, proving its interest
in various challenging contexts such as fine-grained oriented im-
age classification or image recognition from a dataset containing
noisy labels. Furthermore, we propose an extensive experimental
analysis of the different aspects of our model, showing the consis-
tency of our approach as well as its robustness to various context
changes, especially when the number of training images decreases.
These results may be particularly interesting in a deep learning
context, where most methods require a large amount of training
data. Further works include developing a joint optimization pro-
cess between both spaces.

Declarations of interest: none.
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