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a b s t r a c t 

As introduced by [1], the privileged information is a complementary datum related to a training example 

that is unavailable for the test examples. In this paper, we consider the problem of recognizing low- 

resolution images (targeted task), while leveraging their high-resolution version as privileged informa- 

tion. In this context, we propose a novel framework for integrating privileged information in the learning 

phase of a deep neural network. We present a natural multi-class formulation of the addressed prob- 

lem, while providing an end-to-end training framework of the internal deep representations. Based on 

a detailed analysis of the state-of-the-art approaches, we propose a novel loss function, combining two 

different ways of computing indicators of an example’s difficulty, based on its privileged information. We 

experimentally validate our approach in various contexts, proving the interest of our model for different 

tasks such as fine-grained image classification or image recognition from a dataset containing annotation 

noise. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

During the last decades, image classification has occupied a

rominent place in the work of the Computer Vision and Machine

earning communities. In this paper, we tackle the problem of im-

ge classification using privileged information. In a military con-

ext, visual sensors may be embedded in airborne systems in or-

er to recognize vehicles at a long range. In this context, dur-

ng the acquisition of training examples, the images may be ac-

uired at different ranges depending on the situation of the air-

orne system. However, during the test phase, only images aquired

t a long range ( i.e. low resolution images) are available. Learn-

ng Using Privileged Information (LUPI) is a particularly appropri-

te framework for integrating complementary data. For instance,

2] explore an image classification problem where the training im-

ges are associated to a textual description. In our context, we fo-

us on classifying low-resolution images while having access to

he high-resolution versions of the training images. In a Machine

earning context, [1] define the privileged information (PI) as a

upplementary datum related to an example, that is not necessar-

ly of the same nature, and is unavailable for test examples. This
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omplementary element brings additional information to enhance

he learning of the desired decision function. To tackle this issue,

everal methods have already been proposed in various contexts.

I has been integrated in various classification approaches, such as

etric learning [3] , ranking approaches [2] , SVM classifiers [1,4–

] , or structural SVM for object localization [7] . These methods are

owever largely based on shallow SVM methods, and do not pro-

ide a framework for learning a deep model using this comple-

entary information. 

During the past few years, deep convolutional neural networks

CNNs) have successfully tackled a vast majority of computer vi-

ion tasks, such as object detection [8,9] , action recognition [10] , or

emantic segmentation [11] . In particular, since the breakthrough

f the AlexNet of [12] , numerous innovations have been proposed

o successfully improve the image classification performances [13–

6] . Furthermore, these architectures have successfully been used

n a transfer fashion in various contexts [13,17,18] , which enables

sing deep pre-trained CNNs on medium-scale datasets. CNNs have

lso proven to be good candidates for low-resolution image classi-

cation [19] . 

In this paper, we propose DeepLUPI, a novel end-to-end training

odel for integrating PI into a deep CNN. Our DeepLUPI structures

he addressed problem of having several image resolutions during

he training phase in a framework for learning a deep CNN using

rivileged information. Our model combines two major LUPI ap-

roaches, using the PI both as an absolute and a relative difficulty

https://doi.org/10.1016/j.patrec.2018.09.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2018.09.007&domain=pdf
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indicator between the targeted and privileged spaces. Besides, our

model directly tackles the multi-class formulation of the classifica-

tion tasks. We experimentally validate our approaches on various

contexts, including a protocol similar to that of [1] , as well as on

a large web-crawled dataset and in fine-grained contexts, hence

proving the efficiency and scalability of our deep multi-class ap-

proach. We additionally provide a thorough study of different as-

pects of our model. 

2. Previous work 

2.1. Learning Using Privileged Information (LUPI) 

As introduced by [1] , the privileged information, a complemen-

tary training datum, may be of various types, like attributes [2,20] ,

textual description [1,21] , depth information [22] . 

In [6] , the authors propose Margin Transfer (MT), an algorithm

that first optimizes a classifier in the privileged space, then uses

the classification score as an indicator of the difficulty for each ex-

ample. This coefficient is then introduced in the optimization cri-

terion of a binary SVM learned in the targeted space, enforcing a

large classification margin for the easiest examples and reducing

the enforced margin for the most difficult ones. Their approach re-

lies on the hypothesis that an example which is difficult to recog-

nize in the privileged space is all the more difficult to classify in

the targeted space, and may even be an outlier. This method uses

an absolute difficulty level, only determined by the PI, and trans-

fered unchanged to the targeted space. However, this formulation

is based on the SVM approach, and is not adapted to other classi-

fication methods such as deep neural networks. Besides, their for-

mulation is based on a binary SVM approach, which is a strong

limitation when dealing with a large number of labels. 

Based on a complementary approach, [1] - which first intro-

duced a framework for integrating PI during a system’s training

phase - use the PI as a relative difficulty indicator, comparing

scores in both spaces. In their model, the PI is used as a proxy

to the slack variables in the targeted space, and no classification

constraint is enforced in the privileged space: when training the

SVM classifier in the targeted space, the slack variables ξ i are re-

placed by the score 〈 w 

∗, x ∗
i 
〉 + b ∗, with ( w 

∗, b ∗) resp. the weight

vector and bias term in the privileged space. The weight vectors

in both the privileged and the targeted spaces are learned in a

joint manner, contrarily to Margin Transfer, which requires sequen-

tially learning two SVM classifiers. Moreover, while Margin Trans-

fer [6] enforces that the examples are correctly classified in the

privileged space, SVM + [1] does not formulate any constraint on

the classification of the PI. Accordingly, while MT relies on an ab-

solute difficulty definition, SVM + relies on a comparison between

the scores in both spaces, resulting in a relative difficulty level. It

is worth noticing that, like for Margin Transfer, the SVM + formu-

lation is an enhancement of the binary SVM model. As for MT, the

learned model is shallow, and the multi-class recognition tasks are

not to be directly addressed by this model. 

Complementary approaches have been proposed, enforcing a

form of resemblance constraint between the privileged and tar-

geted spaces. For instance, the Loss Inequality Regularization

model (LIR) of [20] relies on the intuition that the privileged score

represents the maximal reachable score for the targeted classifier:

if the targeted score ever gets better than the privileged score for

a given example, then this indicates that the targeted space over-

fits over that example. The system is then penalized whenever the

targeted loss is lower than the privileged loss. This approach has

however only been tested on shallow SVM models. Moreover, it

only considers the PI as a regularization element, which may be

a somehow limited usage of these complementary data. Comple-
entary works have also focused on more theoretical properties

f LUPI formulations [23,24] . 

In this paper, we propose DeepLUPI for integrating the PI in

eep neural networks, naturally resulting in a multi-class formu-

ation, and enabling learning all the internal deep representations

n an end-to-end training fashion. 

.2. Convolutional neural networks 

Convolutional Neural Networks (CNN) have been a leading

ethod on a large majority of image recognition tasks, such as im-

ge classification [12,15,16,25] , action recognition [10] , object local-

zation [8,9,26,27] . 

To process small- or medium-scale datasets, pre-trained CNNs

an be used in a transfer fashion [13,17,18] . The weights are pre-

rained on a large external dataset ( e.g. ImageNet [28] ), then the

rst layers of the CNN are considered as a feature extractor on the

arget dataset, and a classifier is learned using these deep features.

In this paper, we tackle the problem of low-resolution im-

ge classification with access to the high-resolution version of the

raining images. In this context, we propose DeepLUPI, an end-to-

nd method for classifying low-resolution images by integrating PI

n a deep CNN. Our model combines both MT absolute approach of

he difficulty level of each example, and the relative difficulty def-

nition of SVM + comparing the scores in both spaces. Moreover,

hrough our model, we provide a deep multi-class approach, par-

icularly adapted to fine-grained classification. 

. DeepLUPI model 

Our model consists in a two-fold loss formulation. The first

art of our loss, mainly based on the same approach as [6] , com-

utes an weighting coefficient based exclusively on the classifica-

ion scores in the privileged space, giving an important weight to

he examples that are the most correctly recognized in the privi-

eged space. On the other hand, the second part of our loss func-

ion adds a criterion that controls the difference between the clas-

ification scores in the privileged and the targeted spaces, thus in-

reasing the influence of the examples that are not enough well

lassified yet in the targeted space. Our model relies on the dif-

culty transfer from the privileged space to the targeted space

 containing the low-resolution images. This transfer seems rele-

ant in our context, since the privileged information is the high-

esolution version of each training image, while the targeted in-

ormation is the low-resolution image. As stated in [19] , the res-

lution loss occludes the discriminant details, whereas the high-

esolution images still contain substantially more relevant infor-

ation. In this context, the hypothesis that the difficulty level of

n example can be directly transfered from the privileged space

o the targeted space is particularly well verified. Moreover, given

he nature of the PI, the outliers should be extremely difficult to

ecognize in the privileged space, whereas the easiest examples

hould be the most representative of their class. Thus, an exam-

le is said to be easy if it is well classified with a sufficiently high

core in the privileged space, while the most difficult examples are

he ones with a too low score or even not recognized by the clas-

ifier learned in the privileged space. 

.1. DeepLUPI architecture 

We present on Fig. 1 the global framework of our DeepLUPI

lgorithm. Our approach contains two phases: first, a multi-class

ecognition model is learnt in the privileged space (green part in

he figure). This system enables computing the privileged score for

ach example i for their ground-truth class c : ˜ z ∗c (x ∗
i 
) . For each ex-

mple, we also compute a ρ coefficient interpreted as the diffi-
i 
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Fig. 1. Architecture of our DeepLUPI model. For each example, the CNN learned on 

the privileged data (green) enables computing a ρ i coefficient, characterizing the 

difficulty of the example, as well as its ground-truth privileged score ˜ z c (x ∗
i 
) . Both 

these quantities are integrated in the loss function loss DeepLUPI of a CNN learned on 

the targeted data (grey). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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ulty of recognizing this example. More precisely, ρ i is high for an

asy example, and low for a difficult one. This coefficient may be

ualified as an absolute vision of the difficulty level, for it only de-

ends on the privileged space. 

A second multi-class recognition system is then learned in

he targeted space (grey part). This system benefits from the PI

hrough a new loss function loss DeepLUPI that integrates both these

uantities in the targeted CNN learning. More specifically, the er-

or for each example is weighted by the ρ i coefficient. The easi-

st (resp. most difficult) examples have thus a higher (resp. lower)

nfluence on the targeted model learning. A second term adds to

his approach, measuring the proximity between the ground-truth

cores in both spaces. The aim of this relative term is to penalize

he examples whose targeted score is too low with respect to their

rivileged score. The intuition behind this complementary penal-

zation is that the PI is richer than the targeted information, which

eans it should enable learning a more efficient model. Encour-

ging the targeted model to copy the privileged model’s answers

an thus be beneficial. More specifically, we penalize the examples

hose targeted ground-truth score ˜ z c (x i ) is too low compared to

heir privileged ground-truth score ˜ z ∗c (x ∗
i 
) . 

In the following, we present the different steps of our DeepLUPI

odel, detailing the loss function loss DeepLUPI , which integrates the

bsolute and relative difficulty levels of each example in the learn-

ng phase of the targeted CNN. The optimization process is summa-

ized in Algorithm 1 . We also specify the ρ i computation, express-

ng the absolute difficulty level of each example. We also discuss

he relation of our model with other state-of-the-art LUPI methods

n Section 3.3 . 

.2. DeepLUPI computational blocks 

.2.1. Loss function 

Our DeepLUPI model uses the PI to compute two difficulty

erms taking part in the targeted CNN optimization criterion. The

i coefficient measures an absolute difficulty level given by the

rivileged space. This coefficient enables differentiating the exam-

le difficulties according to their associated privileged representa-

ion. The intuition of our model is to assign an important weight

o the examples that are the most representative of their class -

.e. the easiest according to their privileged representation -, and

ecrease the impact of the examples with the most uncommon

eatures - i.e. the most difficult ones according to the privileged

odel -, which are hence the most likely to be outliers. 

A second term measuring the relative difficulty between both

paces further penalizes an example as long as it is too badly
lassified. This complementary penalization must however vanish

henever the example gets well enough classified, i.e. when its

argeted ground-truth score is high enough. More specifically, for

ach example, we want to bring closer the targeted score from the

rivileged score. This new term can then be considered as a rela-

ive difficulty term between both spaces. As such, the loss function

rites as follows: 

oss DeepLUPI = 

N ∑ 

i =1 

−
(
ρi + γ [ ̃ z ∗c (x ∗i ) − ˜ z c (x i )] + 

)
ln ( ̃ z c (x i ) ) (1)

here ˜ z ∗c (x ∗
i 
) (resp. ˜ z c (x i ) ) is the privileged (resp. targeted) softmax

utput for the ground-truth class c , and [ . ] + denotes the function

ax (., 0). γ is a trade-off hyper-parameter between both terms. A

igh value of γ gives a high importance to the relative cost term. 

The term [ ̃ z ∗c (x ∗
i 
) − ˜ z c (x i )] + contributes in the loss function only

f ˜ z c (x i ) ≤ ˜ z ∗c (x ∗
i 
) , i.e. when example i is worse recognized in the

argeted space than in the privileged space. This term is propor-

ional to the difference between both scores. For a given example

 , the lower the targeted score with respect to the privileged space,

he more influence this example has on the learning of the net-

ork. We thus meet the intuition of SVM + , which strongly penal-

zes the examples not recognized with a sufficient margin, given

y the PI. 

.2.2. Deep multi-class ρ i coefficients 

As illustrated in Fig. 1 , our model relies on multi-class ρ i coeffi-

ients computed in the privileged space. These coefficients are then

ntegrated into the loss function of the CNN learned in the targeted

pace, weighting the individual error of each example. These coef-

cients measure the difficulty level of each example: a low value

f ρ i is associated to a difficult example, while the highest ρ i val-

es are associated to the examples that are best recognized in the

rivileged space. In this paper, we propose to learn a CNN in the

rivileged space, then to compute the coefficients as follows: 

i = 

˜ z c (x ∗i ) − max 
k � = c 

˜ z k (x ∗i ) (2) 

here ˜ z k (x ∗
i 
) is the softmax output for class k for image x ∗

i 
of

round-truth class c in the privileged space. The scores ˜ z k (x ∗
i 
) are

omputed after a softmax, which means they necessarily lie be-

ween 0 and 1, hence the quantity �i lies between −1 and 1.

he easiest examples thus have an associated �i � 1, and the most

ifficult ones may have a �i < 0. In order to ensure that all the

eigths are in [ τmin , τmax ] with τmin > 0 , we remap the �i through

 function h : 

i = h (�i ) . (3) 

.3. Discussion 

Several LUPI approaches are based on this intuition of simili-

ude between both spaces. 

Our DeepLUPI model can be seen as an extension of both SVM +
1] and Margin Transfer [6] models, by jointly incorporating an ab-

olute difficulty constraint and a relative difficulty constraint dur-

ng training. 

Our model also echoes the intuition of the LIR model of [20] , in

he sense that we constrain targeted scores and privileged scores

o be related. Our intuition is however in contradiction with that

f LIR, which uses the privileged space as an indicator of overfit-

ing. This approach considers that if the targeted model recognizes

ome of the examples too well , then this model might be overfit-

ing on these examples. To prevent this situation, the classification

cores in the targeted space are forced to remain inferior to the

rivileged scores. On the contrary, in our deepLUPI model, the sec-

nd term of the loss function is meant to use the privileged space

o force the examples to have a sufficiently good classification score
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Table 1 

Comparison of our DeepLUPI method with state-of-the-art LUPI methods. On 

both fine-grained datasets we report the multi-class accuracy, while on MNIST 

we report the number of mistakes. ∗: results obtained with the online code pro- 

vided by the authors. 

Method MNIST UPMC-Food-101 FGVC-Aircraft 

(# err) (acc) (acc) 

Target feature w/o PI 130 28.9% 32.7% 

SVM + [1] ∗ 122 - 31.2% 

MT [6] ∗ 119 30.6% 33.5% 

LIR [20] 120 - - 

Generalized Distillation [23] 110 - - 

DeepLUPI (ours) 95 31.9% 39.8% 
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in the targeted space. In other words, this term forces the targeted

model to take into account the examples that are not well enough

classified yet. 

4. Experimental evaluation 

We focus on image classification tasks. To show the interest of

our modeling, we compare our model with several state-of-the-art

LUPI methods on various image classification tasks. 

Datasets. To evaluate our model, we consider two fine-grained ori-

ented datasets: FGVC-Aircraft [29] and UPMC-Food-101 [30] . FGVC-

ircraft is composed of 10,0 0 0 images equally distributed both be-

tween 100 aircraft variants, and train, validation and test sets. For

all our experiments we report the results of the methods learned

on the train and validation sets, and tested on the test set. UPMC-

Food-101 is a large dataset containing about 10 0,0 0 0 images of 101

different dishes. As in [30] , we randomly choose 600 images per

class for training, and the remaining for test. This dataset has the

particularity of containing annotation noise for it is a web-crawled

image dataset. This enables us to measure our model’s robustness

to this phenomenon. On both fine-grained oriented bases, we aim

at recognizing low resolution 32 × 32 images - which are the tar-

geted data. During the training phase, we also have the high reso-

lution 224 × 224 versions of these images. 

In order to further validate our model, we also explore the im-

age recognition framework on MNIST [31] proposed by [1] and ex-

plored in several other works [21,23,32] . This framework aims at

recognizing the 10 × 10 reduced MNIST images, while having the

28 × 28 images as the privileged information. On this dataset, we

use a standard LeNet, which is why the 10 × 10 images are further

magnified to 28 × 28 to match the input size of the network. In

their experiments, the authors tackle the binary problem of dis-

criminating the two classes of digits “5” and “8”. However, our

approach naturally calls to treating the complete 10-class MNIST

problem. We use the train / test repartition proposed by [31] . 

Experimental protocol. We compare three types of approaches: the

targeted features classified by a linear multi-class SVM - i.e. with-

out PI -, the state of the art LUPI methods, and our DeepLUPI

model. 

In this paper, we compare our model with the major state

of the art LUPI methods, both based on SVM classifiers: SVM +
[1] (using online code in [5] 1 ), and Margin Transfer [6] (using Li-

bLinear [33] to implement both SVMs). In order to provide re-

sults on very recent state-of-the-art methods, we have also im-

plemented and tested both LIR [20] and Generalized Distillation

[23] methods, yet since the performances of these models were

not satisfying, we only report their performances on MNIST. 

For the shallow methods (targeted features, SVM + [1] and MT

[6] ), we use features extracted from a LeNet learned from scratch

on the targeted images on MNIST, and features extracted from the

first fully-connected layer of a VGG-M pre-trained on ImageNet for

FGVC-Aircraft and UPMC-Food-101. As privileged representations,

we use the features extracted from a LeNet learned from scratch on

the privileged images on MNIST, and we fine-tune a VGG-M pre-

trained on ImageNet for the 224 × 224 images of both fine-grained

datasets. 

For our DeepLUPI model, on each dataset, we use LeNet for

MNIST, and the LR-CNN of [19] on both fine-grained oriented

datasets. As privileged features, we use a LeNet learned on the

privileged images from MNIST. On UPMC-Food-101, we reinitialize

the weights of the last fully-connected layer of a VGG-M in order
1 http://www.cs.technion.ac.il/ ∼pechyony/ 
o get the correct number of outputs - i.e. the number of classes -

hen we fine-tune the weights of all the layers. We use a similar

rotocol on FGVC-Aircraft. However, since this dataset only con-

ains a restricted number of training images, the gradient of the

rror is only backpropagated through the last fc layer, to prevent

verfitting. 

lgorithm 1 DeepLUPI learning. 

equire: (x ∗
i 
, x i , y i ) i =1 .N 

1: Learn a CNN on the privileged data (x ∗
i 
, y i ) i =1 .N 

2: Compute the ρi (2,3) 

3: Initialize the targeted weights w 

4: for epoch = 1 . epoch max do 

5: On targeted data (x i , y i ) i =1 .N , compute loss DeepLUPI (1) 

6: Update weights w by backpropagating the gradient of

loss DeepLUPI 

7: end for 

.1. Comparison with state-of-the-art methods 

We report in Table 1 the results for all the above described

ethods. On MNIST, our DeepLUPI model makes 24 fewer mistakes

han MT, and 27 fewer than SVM + . We show that our approach for

aking into account the example difficulty is particularly more effi-

ient than the tested state-of-the-art LUPI methods in this context.

oreover, on this dataset, the LIR method of [20] makes 120 errors,

.e. 25 more than our model. This method relies on a similar for-

ulation to our DeepLUPI model for it compares the costs in both

paces, yet it is based on the opposite intuition to our model: the

xample must be better recognized in the privileged space than

n the targeted space. The more recent Generalized Distillation ap-

roach of [23] leads to 110 mistakes in this context, which means

5 more mistakes than our model. Their method enforces a mimic

onstraint between the outputs from the targeted and the privi-

eged models. This experiment shows that our approach is more

dapted to the problem in this context. 

On UPMC-Food-101, our method improves of 1.3% the perfor-

ances of Margin Transfer 2 One should notice that UPMC-Food-

01 is a fine-grained oriented multi-class dataset, thus contain-

ng a large number of classes to discriminate. The state-of-the-art

inary LUPI methods Margin Transfer and SVM + are not partic-

larly adapted to this kind of task, whereas our method enables

irectly treating the multi-class problems. Moreover, this dataset

ontains a lot of training images, which is easily dealt with by our

ethod, whereas the state-of-the-art methods such as SVM + are

ot adapted at all to this kind of situation. Finally, this dataset
2 We do not report any result for SVM + , since the online available code uses an 

optimization in the dual space, which is not suited to the important number of 

training images on UPMC-Food-101. 

http://www.cs.technion.ac.il/~pechyony/


M. Chevalier et al. / Pattern Recognition Letters 116 (2018) 29–35 33 

Fig. 2. Improvement of our DeepLUPI model w.r.t. the proportion of the training set 

on MNIST. 

c  

v

 

s  

o  

f  

g  

S  

m

 

L  

e  

f  

n  

M  

c  

m  

f

4

 

f  

a  

i  

e  

p  

i  

B  

r  

(  

r  

p  

f  

w  

o

 

p  

p  

t  

t  

d

 

D  

d  

2  

t  

Fig. 3. Relevance of the ρ i values computed on UPMC-Food-101 images. 

Fig. 4. �i distribution on UPMC-Food-101 (blue) and MNIST (orange). Note: for 

more readability, the distributions are presented on a logarithmic scale. (For inter- 

pretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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ontains a certain level of annotation noise, which our model ob-

iously achieves better dealing with than Margin Transfer. 

Finally, on FGVC-Aircraft, our method also outperforms both

hallow concurrent models, improving by 6.3% the performances

f Margin Transfer and by 8.6% that of SVM + . A part of this per-

ormance gain is due to the use of a deep model in the tar-

eted space, while the concurrent methods are based on a shallow

VM classifier. The possibility of using a deep network enables our

odel to improve these models’ performances. 

Our DeepLUPI model outperforms all the tested state-of-the-art

UPI methods on the three datasets. We prove that our end-to-

nd learning method actually takes advantage of the privileged in-

ormation to improve the internal representations in the targeted

etwork, contrarily to shallow SVM-based LUPI methods such as

argin Transfer or SVM + . Our model also directly takes into ac-

ount the multi-class aspect of the addressed problems, while the

ajor state-of-the-art LUPI methods require an ad hoc binary re-

ormulation. 

.2. Impact of the size of the training set 

We also show the interest of our model in the case where a

ew training examples are available. To this end, we compare deep

nd DeepLUPI performances when reducing the number of training

mages. More specifically, we run eight independent experiments,

ach of them using a similar protocol to that of [1] : for each ex-

eriment, p percent of the training images are randomly chosen

n each class, then both CNNs are learned on this training subset.

oth networks are based on the same structure and learning pa-

ameters as previously. They are then tested on the whole test set

10,0 0 0 images). For each of the eight experiments, this process is

epeated on 12 randomly chosen training subsets. On Fig. 2 , we re-

ort for each proportion p the mean and standard deviation values

or nb _ er ror s _ deep − nb _ er ror s _ DeepLUP I. This value is then high

hen LeNet makes much more mistakes than our model, i.e. when

ur DeepLUPI model performs better than the LeNet without PI. 

On this figure, we show that our DeepLUPI model enables im-

roving the performances of the CNN without PI whatever the pro-

ortion of the training images used. For instance, with 20% of the

raining set, our DeepLUPI makes in average 39.4 fewer mistakes

han a LeNet. Moreover, the standard deviation values reported in-

icate that these results are significant. 

This figure also shows that the performance gap between

eepLUPI and LeNet grows when the number of training images

ecreases. Indeed, with 50% of the images, DeepLUPI improves by

1.3 mistakes the performances of the LeNet; with only 7% of the

raining images, DeepLUPI improves by 69.6 mistakes the perfor-
ances of LeNet. This observation meets the intuitions and con-

lusions of [1] stating that the privileged information proves even

ore informative when the training set is small. These results,

howing that our method largely improves the performances of the

tandard CNN without privileged information, offer an interesting

erspective in the current context of deep CNN learning requiring

 lot of training data. 

. DeepLUPI further analysis 

.1. ρ i analysis 

We focus here on the relevance of the ρ i coefficients. This study

ims at highlighting the capacity of our model to discriminate the

xamples most representative of their class from the most difficult

nes, possibly outliers, that a human eye would struggle to rec-

gnize properly. For four random classes of UPMC-Food-101, we

eport on Fig. 3 the examples associated with the lowest (resp.

ighest) �i value on the bottom (resp. top) line. We show that the

mages associated to the highest ρ i values are quite easily recog-

izable, whatever the class. On the contrary, the images associated

ith the lowest ρ i values are more difficult to categorize, since

hey may be unusual forms of the dish ( e.g. the greek salad resem-

les a bruschetta dish), or even difficult outliers ( e.g. a pizza image

ategorized as nachos). 

We are now interested in showing the capacity of our model to

eveal the difficulty level of a given dataset, by studying the dis-

ribution of the �i on different datasets. We present on Fig. 4 the

epartition of the �i values on UPMC-Food-101 (blue) and MNIST

orange). On this figure, we show that on a quite easy dataset

uch as MNIST, all the �i have a high value, i.e. all the images are

dentified as easily recognized. Indeed, on this dataset, all the �i 

re superior to 0.85. On UPMC-Food-101 however, we show that

he � are much more distributed. This dataset is constituted of
i 
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Fig. 5. Influence of the different remapping types on the ρ i distribution on UPMC- 

Food-101. Note: for more readability, the distributions are presented on a logarith- 

mic scale. 

Table 2 

Analysis of the improvement brought by our DeepLUPI 

model. 

Method MNIST UPMC-Food-101 

Deep 130 errors 30.7% 

DeepLUPI, γ = 0 107 errors 31.6% 

DeepLUPI, ρi = 0 135 errors 31.1% 

DeepLUPI 95 errors 31.9% 
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web-crawled images, which is the reason why it contains a certain

amount of annotation noise, i.e. not easily recognized images and

outliers. Here, the �i are quite spread between both bounds; more

than 20 0 0 images have a negative �i value. 

We present on Fig. 5 the ρ i distribution after the different

remapping functions h lin (orange), h exp (red) and h exp 2 (blue). h lin 
denotes a linear remapping, h exp denotes an exponential remap-

ping, and h exp 2 stands for a remapping where two exponential

functions are successively applied to the data. For each remapping,

the final ρ i are in [0.1; 1]. On this figure, we show that the non lin-

ear remapping functions enable better distributing the ρ i between

both bounds. 

5.2. DeepLUPI ablations 

In order to highlight the improvement of each part of our

DeepLUPI model, we focus on the improvement brought by only

one of both difficulty terms. On this purpose, we consider our

DeepLUPI model with all the ρ i values at 0 - only the relative cost

is taken into account -, then with γ = 0 - only the absolute cost is

taken into account. The baseline consists in a standard CNN learnt

on the low resolution images without PI. 

All the results are reported in Table 2 . On MNIST, when only

taking into account the ρ i term ( i.e. when γ = 0 ), our DeepLUPI

model makes 13 fewer errors than the CNN without PI. Adding

the relative cost ( i.e. with our complete DeepLUPI model) further

improves by 12 errors this result. On UPMC-Food-101, the abso-

lute difficulty alone ( γ = 0 ) also improves de performances w.r.t.

a standard CNN, by 0.9%. Adding the relative cost further improves

this result by 0.3%. This lesser gap may be explained by the consis-

tence of the ρ i absolute difficulty coefficients, which already bring

a more significant improvement. 

When taking ρi = 0 , this approach enables improving the per-

formances w.r.t. a standard CNN on UPMC-Food-101. Since this

dataset contains an annotation noise, mislabeled examples may

disturb the learned targeted CNN without PI. This protocol thus

enables relaxing the constraint on the outliers, and thus could ex-

plain the performance gain on a noisy dataset such as UPMC-Food-
01. On MNIST, the standard CNN achieves somewhat better per-

ormances than the relative cost alone. This result tends to prove

hat this relative cost alone does not improve the performances on

 dataset without outlier. However, the results of our DeepLUPI

odel show that the information carried by this relative cost is

omplementary to that of the absolute difficulty term, since the

ombination of both improve the performances on all the datasets.

Finally, when using the complete DeepLUPI formulation, the

erformances are improved on both MNIST and UPMC-Food-101

atasets compared with a standard deep CNN approach. Indeed,

eepLUPI misclassifies 35 fewer images than a standard deep

NN (without privileged information) on MNIST, and improves by

.2% the classification performances on UPMC-Food-101. This result

ends to show that the introduction of a deep structure in the LUPI

ramework instead of shallow models is not the only element con-

ributing to the improvement achieved by our DeepLUPI model. 

To conclude, we show that our DeepLUPI model enables im-

roving the performances over the standard CNN in most cases.

oreover, the absolute cost - incarnated by the ρ i term - always

chieves improving the performances in all cases. The relative cost

lone of our DeepLUPI leads to performances consistent with the

ature of the different datasets. 

. Conclusion 

In this paper, we present DeepLUPI, a novel framework for in-

egrating privileged information for training a deep neural net-

ork, providing a natural end-to-end training framework of the

nternal representations as well as a multi-class formulation for

he addressed problem. Our model leverages a novel loss formu-

ation, optimizing a combination of both absolute and relative ap-

roaches of the difficulty level of each example. We experimen-

ally validate our approach on several datasets, proving its interest

n various challenging contexts such as fine-grained oriented im-

ge classification or image recognition from a dataset containing

oisy labels. Furthermore, we propose an extensive experimental

nalysis of the different aspects of our model, showing the consis-

ency of our approach as well as its robustness to various context

hanges, especially when the number of training images decreases.

hese results may be particularly interesting in a deep learning

ontext, where most methods require a large amount of training

ata. Further works include developing a joint optimization pro-

ess between both spaces. 
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