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Abstract

Editing 3D models is a very challenging task, as it re-
quires complex interactions with the 3D shape to reach the
targeted design, while preserving the global consistency and
plausibility of the shape. In this work, we present an intel-
ligent and user-friendly 3D editing tool, where the edited
model is constrained to lie onto a learned manifold of re-
alistic shapes. Due to the topological variability of real
3D models, they often lie close to a disconnected manifold,
which cannot be learned with a common learning algorithm.
Therefore, our tool is based on a new deep learning model,
DiscoNet, which extends 3D surface autoencoders in two
ways. Firstly, our deep learning model uses several autoen-
coders to automatically learn each connected component of
a disconnected manifold, without any supervision. Secondly,
each autoencoder infers the output 3D surface by deforming
a pre-learned 3D template specific to each connected com-
ponent. Both advances translate into improved 3D synthesis,
thus enhancing the quality of our 3D editing tool.

1. Introduction
While 3D models become increasingly used as virtual

and augmented reality experiences expand, the creation of
3D contents still requires advanced skills in 3D modeling,
and remains cumbersome even for experts. Free-form defor-
mation algorithms comprise a natural approach to broaden
the audience of 3D design softwares. The user starts from a
mesh, selected in a 3D database to be close to his intended
design. He can then deform this mesh towards his objec-
tive using high-level 3D editing tools, such as cage-based
deformations [40], positional handles [43], or sketch-based
deformations [51]. Even though these tools simplify the 3D
modeling process, they still target an experienced user to
achieve a realistic result. Indeed, a slight mistake during the
editing can make the 3D model completely implausible, as
the user is neither guided nor constrained.

The same problematic also arises in photo retouching.
Deep learning has proven to be a powerful technique for the

Figure 1: Illustration of a disconnected manifold of 3D chairs,
where a chair is optimized on the connected component it lies on
to fit a user deformation and generate the expected realistic design.

development of user-friendly and realistic 2D editing tools
[6, 52]. These algorithms leverage real datasets to learn to
generate plausible photos, and use this knowledge to retouch
a photo in a plausible way from the user’s intention. A
manifold of real photos is learned, and the original photo
is optimized in the latent space of the manifold to meet the
user’s constraints, therefore reaching the expected design
while ensuring the global plausibility of the photo.

Although significant progress has been made in 3D shapes
learning, especially with the recent introduction of autoen-
coders dedicated to 3D [17, 46], two issues remain to devise
an efficient learning-guided 3D editing pipeline. Firstly, 3D
shapes do not generally lie on a connected manifold, even
when they belong to the same category. For example, there
is no continuous path which interpolates a desk chair with
wheels into a chair with four legs while always generating
plausible chairs along the path. The chairs manifold is actu-
ally disconnected, each connected component corresponding
to a different typology of chairs, as illustrated in Figure 1.



However, a single generator [16] or decoder [21, 26] cannot
learn a disconnected manifold without generating implau-
sible models, as proved by our Theorem 1. Secondly, to
optimize a 3D model in the latent space and infer a realistic
deformation, it is preferable to preserve the correspondences
between the vertices of the synthesized shapes.

In this work, we introduce DiscoNet, a new unsuper-
vised deep learning model which solves both previous issues.
DiscoNet takes advantage of several 3D autoencoders to
learn a disconnected manifold of 3D shapes, where each 3D
autoencoder provides a parameterization of one connected
component. Moreover, each 3D decoder acts as a residual
block [20] by deforming a pre-learned 3D template repre-
senting the mean shape of its connected component, rather
than generating the whole shape from the ground up. We
also design a specific loss scheme to competitively learn the
autoencoders and their templates. DiscoNet largely improves
the geometric accuracy and the topological consistency of
the generated models, as we demonstrate quantitatively and
qualitatively on the well-known ShapeNet dataset [10]. We
finally exploit DiscoNet to build a learning-guided 3D edit-
ing pipeline, based on a simple user interface allowing to
easily and realistically reshape a 3D mesh with 3D handles
or 2D sketches. Our editing tool leverages the learned mani-
fold to infer a realistic morphing of the original 3D model,
which fits the local modifications enforced by the user.

2. Related work
Manifold learning. Autoencoders [21] learn to represent

a dataset in a low-dimensional latent space, which is typi-
cally possible if the samples lie close to a low-dimensional
manifold, e.g. if they belong to the same category. [26, 41]
extend the autoencoder into a generative model, which al-
lows to sample the latent space such that the decoder follows
the data distribution. Another popular generative model is
the generative adversarial network (GAN) [16], which does
not require an explicit minimization of the reconstruction
error or a likelihood maximization, unlike the vanilla or
variational autoencoders. An important topic in manifold
learning is the disentangling of the latent space, which aims
at learning a latent space where each dimension represents
an independent factor of variation. Disentangling can be bol-
stered in variational autoencoders [8] as well as GAN [11].
Nevertheless, such methods are unable to factor dimensions
to represent different connected components, as the latent
space still remains continuous. Similarly to our approach,
[25] solves this issue using several distinct decoders to learn
each connected component of a disconnected manifold. They
apply a variational method to maximize the mutual infor-
mation between the output and the decoder which it came
from. On the contrary, our method is not probabilistic, and
thus allows to pre-learn a 3D template for each connected
component. Finally, [22] jointly learns several decoders by

minimizing a weighted loss of all the decoders, the weight-
ing terms being also inferred by the network to favor the best
decoder for the given input. Our method does not rely on
any weighting scheme, but uses a hard thresholding instead,
which guarantees the selection of the best autoencoder.

Shapes learning. As reviewed in [45], morphable mod-
els [2, 5, 9] are a foundational 3D shapes learning technique.
They define a low-dimensional parameterization of a base
shape, usually learned with a principal component analysis.
Nevertheless, a major drawback is the need of shapes corre-
spondences, or at a least a partial shapes matching. [15, 50]
solve this issue by embedding the shapes in a coarse 3D
occupancy voxels grid, in addition to gaining all the CNN
efficiency with an autoencoder or a GAN. [19,44] extend the
3D CNN to high resolutions using octrees. Unfortunately,
although voxels-based 3D representations remove the need
of 3D correspondences for the learning, they remain a poor
surrogate to handle 3D shapes, which are inherently surfacic
rather than volumic data. [38] circumvents the issue by learn-
ing the continuous truncated signed distance function, which
is theoretically infinitely accurate and can easily handle dif-
ferent shape topologies. Nonetheless, computing a signed
distance function requires a watertight 3D mesh, which is a
very strong prerequisite, and an onerous isosurface extrac-
tion is also needed to convert it back to a 3D model. [39]
introduces an encoder of 3D point clouds, invariant to the
ordering of the points, whereas [13] presents a point cloud
decoder, learned with a 3D distance invariant to the ordering
of the predicted point cloud. Both ideas can be jointly used to
provide a point cloud autoencoder or GAN as demonstrated
in [1]. A further step consists in learning an autoencoder
of 3D meshes, i.e. point clouds with topology, using a de-
coder which acts as a parameterization of a 2-manifold, as
shown in [17, 46]. A close idea is also exploited in [27, 31],
but they mostly focus on extending graph neural networks
([34, 35]) to take directly into account the local topology of
the mesh. Our work builds on the 3D surface autoencoder
[17, 46], which is particularly suitable in an editing system
as its output can be used straightforwardly.

Intelligent editing. A lot of works already exist to pro-
vide 3D editing algorithms which are not data-driven, but
analyze solely the geometry to edit. For example, [14] com-
putes intelligent wires that the user can edit to deform the
shape, and [18] proposes an automatic selection algorithm
that eases the subsequent editing. However, it is natural to
leverage a 3D database, if available, in order to guide the
editing process. Thus, [23] shows how to segment a 3D
dataset to recombine parts and synthesize new 3D models,
whereas [30] achieves a similar goal with a deep recursive
autoencoder which smoothly handles interpolations even be-
tween different assembly structures. The editing can also
act on the geometry itself, rather than the shape structure, as
demonstrated in [48, 49]. They exploit a labeled 3D dataset



to provide an editing tool driven by high-level semantic at-
tributes. As done in our paper, manifold learning can be used
to leverage a latent space representing a plausible manifold
of the input space. [32] uses such an approach to realistically
deform voxelized shapes, by steadily encoding and decoding
the edited model via the latent space. Of course, the final
decoding inevitably belongs to the learned manifold, which
cannot represent all realistic shapes. [6, 52] solve this issue
to retouch photos with high-level tools. Instead of giving
the optimal synthetic photo to the user, they retarget the dif-
ferences between the reconstructed original photo and the
synthesized photo to the original photo, using either optical
flow or masking techniques. Unlike [32], we also apply a re-
targeting technique in our approach to preserve the topology
and the fine details of the original 3D model. Moreover, we
work on 3D meshes instead of coarse 3D voxels grids.

3. Learning 3D shapes with DiscoNet
3.1. Preliminaries and assumptions

[17, 46] introduce the 3D autoencoder that serves as our
ground architecture. The encoder f can be based on PointNet
[39] or FoldingNet [46], to make it invariant to the ordering
of the input point cloud. The decoder g is based on AtlasNet
[17], using a sphere as the parameterization of the surface
to generate. g is a function of the latent vector given by f
concatenated with a 3D coordinate on the unit sphere, with
output in R3. It can alternatively be seen as a function which
maps a latent vector to a function from S2 to R3. The output
mesh is generated by sampling the sphere, and computing
its corresponding transformation through the decoder. The
topology of the sphere can finally be carried onto the output
point cloud. This means that all synthesized shapes will be
homeomorphic to a sphere. As we will see in subsection 4.3,
the output shape is only used as an intermediate to retarget
a realistic morphing to the original shape. To compute this
morphing, it is useful to work on a spherical topology, on
which we can always find 3D correspondences.

Let S be a sampling of the unit sphere. To learn a single
3D autoencoder, [17, 46] minimize the following Chamfer
loss, invariant to the ordering of the output point cloud:

dCH(x, g ◦ f(x)) =∑
p∈x

min
q∈g(f(x),S)

‖p− q‖22 +
∑

q∈g(f(x),S)

min
p∈x
‖p− q‖22 , (1)

where g(f(x), S) = {g(f(x), s) | s ∈ S} is the reconstruc-
tion of the input point cloud x by the autoencoder g ◦ f .

We assume that our dataset contains samples from a dis-
connected manifold of plausible shapes, which can be parti-
tioned into (at least) k separated components. Our goal is to
learn these k components by extending the 3D autoencoder
described above, since such an autoencoder cannot learn a

disconnected manifold without also generating implausible
models. Indeed, the image by a (continuous) decoder of
the latent space (which is connected) must be connected.
We could think that such an autoencoder would yet learn to
compact the inevitable implausible part of its latent space.
However, Theorem 1 proves that this is not possible, as any
interpolating path between two separated components inter-
sects in the latent space a ball of implausible models, which
cannot be reduced by changing the decoder’s weights.

Theorem 1. Let gθ be a decoder, and (M1,M2) a partition
of the subset of plausible models of the input space, such
that d(M1,M2) > 0. For any r > 0, there exists Cr >
0, such that whatever the weights θ with ‖θ‖∞ ≤ r, on
any continuous path between g−1θ (M1) and g−1θ (M2) there
exists a latent vector h, such that any model in gθ(B(h,Cr))
is implausible, i.e. gθ(B(h,Cr)) ⊂ (M1 ∪M2)

c.

Proof. See the supplementary material. �

3.2. Disconnected manifold learning

To tackle the learning of k components, the Theorem 1
encourages to introduce k 3D autoencoders that we denote
{gi ◦ fi | i ∈ J1, kK}. To jointly learn our k autoencoders,
we minimize the following loss for a given input x:

L(θ1, . . . , θk) = min
i∈J1,kK

dCH(x, gi ◦ fi(x)) , (2)

where θi denotes the weights of the i-th autoencoder.
Thus, for each input, the gradient of the loss is back-

propagated only through the autoencoder which achieves the
minimum of the Chamfer losses among all the autoencoders,
namely only the best autoencoder is optimized for each input.
If one of the autoencoders becomes slightly better than the
others for a specific component of the input manifold, i.e. a
specific kind of shapes, it achieves the lowest Chamfer loss
on these inputs. Hence, it is updated to become better, and
therefore achieves an even lower loss over the next epoch.
This mechanism engages a virtuous circle, which drives each
autoencoder to focus on a different subset of low variance.
Moreover, as only one autoencoder is updated for each input,
the more one autoencoder specializes itself on a specific
component, the more the others are hindered to learn this
component, and therefore are also forced to learn another
component of the input manifold, reinforcing even more this
virtuous circle. During the inference, we naturally choose
for each input the autoencoder achieving the lowest loss L.

To help each autoencoder to specialize, we also use a re-
assignment algorithm during the mini-batch training. Indeed,
due to the random initialization of the k autoencoders, it
could happen that at the beginning of the training all shapes
reach their lowest Chamfer loss with the same autoencoder,
impeding the other autoencoders from being optimized. In
that case, one of the autoencoders would learn the whole
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Figure 2: Illustration of the DiscoNet pipeline with k = 2 autoencoders. The input x is reconstructed through both autoencoders, the best
reconstruction being used as the output. Each decoder synthesizes the shape by warping its own pre-learned 3D template Si.

dataset, while the others would remain at their initial random
state. To preclude that effect, our reassignment algorithm
aims at dynamically changing the argmin in Equation (2),
such that each autoencoder is assigned to at least n shapes for
each mini-batch, where n is a small ratio η of the mini-batch
size. It proceeds by reassigning to each autoencoder the n
shapes whose Chamfer loss dCH is the closest to the minimal
loss L, in order to force the backpropagation for those shapes
to go through this autoencoder. Hence, each autoencoder is
guaranteed to be optimized at each mini-batch. The expected
number of shapes per component is not needed, as long as
the ratio η is chosen to be lower than the proportion of shapes
in the smallest component, since η is only a lower-bound
preventing any autoencoder from being left aside. A pseudo
code is given in the supplementary material.

Contrary to [22], our reassignment algorithm prevents the
collapse of the autoencoders without using any weighting in-
ference scheme. Moreover, we guarantee during the learning
to use the best autoencoder for each input (except for the few
reassigned inputs). The backpropagation is also faster as it
is only done through one autoencoder for each input, unlike
[22]. Finally, we do not need to learn any prior on the de-
coders. If k is lower than the “true” number of components,
each decoder will simply model the components closest to
its cluster. That is why k = 2 works well in practice.

3.3. Template-based autoencoders

The spherical parameterization of each decoder is only
used for its topology, but it does not give any hint on the
geometry to generate. Our second contribution to learn a
disconnected manifold of 3D shapes consists in replacing the
sphere in each decoder with a dedicated 3D template, closer
to the expected shape. The templates are learned before

their corresponding autoencoders, in such a way that each
template becomes representative of the mean geometry of
the component that is going to be learned by its autoencoder.

This template is used as a base shape that the decoder will
locally deform towards the expected shape. More formally,
let Si be the pre-learned template of the i-th autoencoder.
The reconstruction of x by gi ◦ fi is now given by

Si + gi(fi(x), Si) , (3)

like a ResNet [20] architecture, contrary to the AtlasNet
architecture. The decoder gi only predicts a small transfor-
mation of each vertex of the template Si. Thus, it becomes
easier to learn such a decoder, as we start from a template
which is already close to the kind of shapes that this autoen-
coder is going to learn. It also helps each decoder keep a
coherent topology, and a consistent correspondence between
the vertices of the generated shapes. Lastly, it leads to an
improved reconstruction, as each autoencoder only needs to
slightly deform its template to match an input. Of course,
once the templates are learned, it is necessary to initialize the
decoders gi so that they predict very small deformations for
any input in order to leverage their templates. If a decoder
starts with too large deformations, it distorts its template
into an implausible shape, making the template useless. The
whole DiscoNet inference pipeline is illustrated in Figure 2.
Notice that we can also pre-learn a template with a single
autoencoder, as it also improves its accuracy.

We want the templates to represent the “centroids” of
each component of the input manifold. However, they cannot
be simply learned using k-means or mean-shift algorithms
[3, 12] since the training shapes have no correspondences to
match their vertices. We could embed the training shapes
in a 3D voxels grid to compute a k-means clustering, but



the Euclidean distance is known not to be the most relevant
metric regarding voxelized 3D models as explained in [42].
To learn these k templates, we start with k discretized unit
spheres S1, . . . , Sk, and treat their vertices as optimization
variables. Similarly to subsection 3.2, we jointly learn the
templates by minimizing a 3D distance between each tem-
plate Si and its closest training shapes. We do not use the
Chamfer distance, as it is also known to lead to poor mean
shapes as illustrated in [1]. We use the Earth Mover distance
instead, which is an optimal transport distance derived from
the Wasserstein distance in the discrete setting:

dEM(x, S) = min
ϕ:S→x
ϕ bijective

∑
p∈S
‖p− ϕ(p)‖22 . (4)

Note that the Earth Mover distance requires the templates to
have the same number of points than the training shapes, but
this is a mild constraint as the training dataset is resampled
anyway as a pre-processing step. To compute this distance,
we use the relaxation algorithm described in [4]. To jointly
learn the templates, we minimize by mini-batch gradient
descent the following loss over all training shapes x:

Lt(S1, . . . , Sk) = min
i∈J1,kK

dEM(x, Si) . (5)

The loss Lt acts similarly to the loss L. Therefore, each
template is going to converge towards a specific typology
of shapes. For identical reasons as those explained in sub-
section 3.2, we also use the same reassignment algorithm
to help the templates approximate different kinds of shapes.
Once the templates are learned, they remain fixed and each
autoencoder is associated to a different template.

During the optimization of the templates, nothing pre-
vents their vertices from mixing up, breaking the initial
spherical topology as illustrated in Figure 3. To get a consis-
tent spherical topology of the pre-learned templates, we run
a Poisson surface reconstruction [24] on their point cloud,
which requires accurate oriented normals. We extract these
normals from a coarse mesh computed from the template
point cloud with the marching cubes algorithm [33].

3.4. Experiments

chairs cars planes all
AtlasNet [17] 2.31 0.91 0.94 1.78
FN/AN [46]+[17] 2.22 0.87 0.89 1.46
DiscoNet 1.87 0.84 0.81 1.25

Table 1: Mean distance error over the test set (×100), with k = 2
for chairs, cars, and planes, and k = 3 for all three datasets together.

We evaluate our model on the ShapeNetCore v2 dataset
[10], on three categories suited to 3D editing: chairs (6778
meshes), cars (3533), and planes (4045). We split each

Initial sphere 
topology transferredOptimized

template

Coarse mesh from 
marching cubes

Remeshed template with 
Poisson reconstruction

Estimated normals
from coarse mesh

Figure 3: The first row illustrates that the template optimization
breaks the initial topology. The second row shows our pipeline to
remesh the template point cloud.

dataset into a training set (80% of the models), a validation
set (10 %) and a test set (10 %). We implement two baselines:
the AtlasNet [17] baseline, consisting in a PointNet-like en-
coder, and a decoder parameterized with a sphere; and the
“FN/AN” baseline, using the same sphere-based AtlasNet
decoder, but a FoldingNet encoder [46], which takes as input
the local covariances in addition to the point cloud coordi-
nates, and also adds graph pooling layers which are local
max pooling over the neighborhood of each point. To run fair
comparisons between these two baselines and DiscoNet, we
base all models on the same deep architecture, except covari-
ances and graph pooling absent in AtlasNet. Implementation
details are given in the supplementary material.

We claimed that our learning model is able to represent
more accurately the shapes’ topology. As pointed out in [38],
AtlasNet only uses the vertices of the output surface to com-
pute its evaluation metric, and therefore does not penalize the
unrealistic triangles that cover empty spaces in the ground-
truth shape. That is why, similarly to [38], we use the mean
distance from a uniform sampling over all the reconstructed
surface y to the ground-truth mesh x to evaluate our model
against the baselines. This evaluation distance purposefully
penalizes the triangles in y that should not exist (i.e. whose
samples are far from the input x), and thus is representative
of the quality of the reconstructed shape. As shown by the
Table 1, DiscoNet greatly outperforms the state-of-the-art,
as it achieves the lowest error on all the datasets.

Qualitatively, DiscoNet also produces more accurate ge-
ometry and topology, as illustrated in Figure 4. In particular,
we observe that FN/AN (the best baseline) generates a lot
of self-intersections contrary to our model. Additional qual-
itative results are provided in the supplementary material.
Figure 10 in subsection 4.4 will also demonstrate that this
improved quality over the state-of-the-art strongly enhances
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Figure 4: Reconstruction results, with colors transferred from the
unit sphere for FN/AN and from our pre-learned templates for
DiscoNet to highlight the topology. k = 2 for DiscoNet.

the results of our 3D editing system.
Besides, we experiment the specific ability of DiscoNet to

learn a disconnected manifold. Figure 5 shows that the pre-
learned templates automatically specialize on two different
kinds of shapes, as expected. Furthermore, Figure 6 illus-
trates some reconstruction results obtained by each autoen-
coder on the chairs dataset. We see that DiscoNet naturally
clusters the dataset such that each autoencoder is dedicated
to a different cluster, one with lounge chairs and office chairs,
and one with standard chairs.

Finally, the ablation study provided in the Table 2 demon-
strates the complementarity of all our contributions. In this
table, “multiAE” is the DiscoNet model using a sphere pa-
rameterization of the decoder instead of any pre-learned
template, and “template” is the DiscoNet model with k = 1,
i.e. using a single autoencoder with a pre-learned template
instead of a sphere parameterization of the decoder. The
Table 2 shows that both learning several autoencoders (sub-
section 3.2) and pre-learning 3D templates (subsection 3.3)
are essential to the performance of DiscoNet. Notice that
the poor performance of the “template” model on the mixed
dataset of all three categories together is completely ex-
pected, as a single template cannot well represent three such
different classes, while “multiAE” performs well on this
dataset as it can naturally be clustered into three classes.

4. Learning-guided 3D editing
4.1. Editing interface

We are now able to leverage our learned manifold of 3D
shapes to create a realistic 3D editing system, summarized
in Figure 7. The user selects a 3D mesh x belonging to a
component of shapes that an autoencoder g ◦ f has learned
using DiscoNet. We propose an innovative interface to allow

(a) chairs (b) cars (c) planes

Figure 5: DiscoNet pre-learned templates with k = 2, on each of
the three datasets: chairs, cars, and planes.

Figure 6: Illustration of the clustering ability of DiscoNet to spe-
cialize on 2 different kinds of chairs using k = 2 autoencoders.

chairs cars planes all
multiAE 2.42 0.89 0.95 1.45
template 1.93 0.86 0.81 1.61
DiscoNet 1.87 0.84 0.81 1.25

Table 2: Mean distance error over the test set (×100), with k = 2
for chairs, cars, and planes, and k = 3 for all three datasets together.

the user to easily edit this shape by locally retouching the
3D mesh without any constraint. Our system continuously
updates the edited model to make it plausible, while comply-
ing with the user’s editing. Our interface offers two different
user-friendly editing tools.

The user can attach 3D control points (a1, . . . , am) to
the mesh, which act as handles to deform it. The user drags
some of these handles, for example (a1, . . . , ap), the input
mesh being locally deformed to match the new positions of
these control points. Let (a′1, . . . , a

′
m) be the control points

after the user has pulled some of them. We compute a 3D de-
formation field δ with interpolates the 3D translations a′i−ai
using RBF interpolation [7]. This deformation field applied
to the reconstructed original model defines our optimization
target z: z = g(f(x)) + δ(g(f(x)).

Inspired by [28], the user can also resketch directly over
any 2D view of the 3D model. In this case, the optimization
target is directly the pixels coordinates of the 2D sketch S.



4.2. Optimization

In order to find a plausible shape which fulfills the user’s
constraints, we define an optimization energy over the latent
vector h to match the optimization target defined previously.

With the 3D control points interface, we minimize

E1
c (h) =

1

|J |
∑
j∈J
‖g(h)j − zj‖22 , (6)

where J is the set of vertices of z close to the deformed
handles: J =

{
j | ∃i ∈ J1, pK , ‖zj − a′i‖2 ≤ ρ

}
, with ρ a

positive threshold. E1
c compels the synthesized mesh g(h)

to match the target z around the handles pulled by the user.
Indeed, we do not aim at matching the whole shape z, which
is implausible, since the user’s deformation is only local.

With the sketching interface, we minimize

E2
c (h) =

1

|S|
∑
s∈S

min
j∈V
‖P [g(h)j ]− s‖22 (7)

where P is the projection associated to the view chosen by
the user to draw his sketch S, and V is the subset of vertices
of g(f(x)) which are on the contour of P [g(f(x))]. E2

c

enforces the contour of the synthesized mesh g(h) in the
view defined by P to match the 2D sketch S.

We point out that Equations (6) and (7) defining E1
c and

E2
c implicitly assume a persistent correspondence between

the vertices of the shapes generated by the decoder g, since
the sets J and V remain fixed during the optimization.

To constrain the synthetic shape g(h) to lie close to the
original shape, we also add a similarity term which penalizes
in the latent space the distance to the original shape:

Es(h) = λs ‖h− f(x)‖22 . (8)

Finally, to reinforce the plausibility of the synthetic shape
g(h), we fit a Gaussian mixture model on the latent space,
and minimize the negative log-likelihood

Ep(h) = −λp log(p(h)) , (9)

where p(h) is the density of the Gaussian mixture.
We minimize the final energy Ec(h) + Es(h) + Ep(h)

using the BFGS method [37], starting from h = f(x).

4.3. Retargeting

The outcome ĥ of the previous optimization allows us to
synthesize a plausible mesh g(ĥ), close to the edited model.
Unfortunately, this mesh does not necessarily respect the
topology and the details of the original model x. To tackle
this issue, we retarget the deformations between g(f(x)) and
g(ĥ) to x, in order to get a realistic morphing of x, keeping
all its details, while matching the user’s editing.

�

USER EDITING

optimized 
synthetic model

original model optimized 
edited model

LATENT SPACE OPTIMIZATION

DEFORMATION RETARGETING

reconstruction

original model
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edited model edited model
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Figure 7: Illustration of our 3D editing pipeline: optimization on
the learned shapes manifold to locally fit a user edit, and retargeting
of the induced morphing onto the original model.

First we subsample g(f(x)), starting from a random ver-
tex, and iteratively adding the furthest one to the current sub-
sampled set, to get a uniform covering of keypoints C. Then,
we compute a 3D deformation field σ between g(f(x)) and
g(ĥ) using kernel regression [36] over the previously sub-
sampled set of keypoints C. The final realistic edited model
provided to the user is given by the retargeting x + σ(x).
Other approaches could also be used to compute such a mor-
phing σ, for example with non rigid registration [29, 47].
However, as DiscoNet preserves the correspondences in the
decoder’s outputs thanks to the pre-learned templates, we
can adopt the simpler kernel regression, which also smooths
the deformation field and produces better results.

In order to get an accurate retargeting, the deformation σ
should predict a realistic morphing for any point of x. This
implies that σ should be computed from a set of keypoints
that fully covers the space spanned by x, whatever its topol-
ogy. This is finally the reason why we restrain the templates
to the spherical topology in DiscoNet, in order to ensure that
the set of keypoints C does not miss any part.

4.4. Results

We now demonstrate the capabilities of our 3D editing
pipeline. To remove any bias, the experiments are made
with shapes coming from the test set. Our experiments are
based on DiscoNet using k = 2, i.e. the manifold is learned
with 2 autoencoders, each one based on its own pre-learned
3D template. The hyperparameters of the optimization and
retargeting are specified in the supplementary material.
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Figure 8: Results of handles-based editing on three examples.

Edited 
model

Optimized 
synthetic model

Optimized 
edited model

Figure 9: Results of sketch-based editing on three examples.

Figures 8 and 9 show the performance of our handles-
based and sketch-based editing tool. Both interfaces produce
realistic shapes, compliant with the user’s editing. More
editing examples can be found in the supplementary material.

Importantly, Figure 10 compares two editing results, one
using the FN/AN learning baseline, the other based on
DiscoNet. It justifies the benefit of DiscoNet over the 3D
learning state-of-the-art, since it leads to a superior edited
model, due to a better reconstruction, but also a more con-
sistent topology, needed for a meaningful optimization as
evoked in subsection 4.2.

Finally, we also compare the impact of our plausibility
and similarity terms on the optimization result. Figure 11

Edited model FN/AN DiscoNet

Figure 10: Highlighting of the benefit of DiscoNet versus the
state-of-the-art learning model for 3D editing purpose.
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Figure 11: Illustration of the relevance of the similarity (first row)
and plausibility (second row) energies for the optimization.

shows that both terms are useful to enforce a plausible shape,
close to the initial edited model.

5. Conclusion

In this paper we introduce DiscoNet, a new unsupervised
shapes learning model able to learn a disconnected manifold.
DiscoNet jointly learns several autoencoders, each one being
based on its own pre-learned 3D template. We show that
DiscoNet outperforms the state-of-the-art, as it generates
finer shapes with better topology. We finally design a novel
3D editing pipeline, which allows an inexperienced user to
easily edit a 3D shape, either by deforming 3D handles or
by drawing over the model, while preserving the realism
effortlessly. At the core of our 3D editing system, DiscoNet
is leveraged to turn an edited shape into its realistic counter-
part. We also demonstrate that DiscoNet is essential to the
performance of our 3D editing tool.
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