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Abstract

This paper deals with content-based image retrieval. When the user is looking for large categories, statistical classification techniques are

efficient as soon as the training set is large enough.

We introduce a two-step—exploration, classification—interactive strategy designed for category retrieval. The first step aims at getting a useful

initial training set for the classification step. A stochastic image selection process is used instead of the usual strategy based on a similarity score

ranking. This process is dedicated to explore the database in order to collect examples as various as possible of the searched category. The second

step aims at providing the best classification between relevant and irrelevant images. Based on SVM, the classification applies an active learning

strategy through user interaction. A quality assessment is carried out on the ANN and COREL databases in order to compare and validate our

approach.

q 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Content-Based Image Retrieval (CBIR) has attracted a lot

of research interest in recent years. This paper addresses the

problem of category search, which aims at retrieving all

images belonging to a given category from an image

database.

Traditional techniques in CBIR are limited by the semantic

gap, which separates the low-level information extracted from

images and the semantic user request [25,26]: the user is

looking for one image or an image set with semantics, for

instance a type of landscape, whereas current processing deals

with color or texture features. The problem is even more

complicated when the user is looking for a particular building,

or a person, or for an abstract concept such as unemployment.

These different levels of abstraction have been reported in [9].

Moreover, the increasing database sizes and the diversity of

search types contribute to increase the semantic gap. Various

strategies have been used to reduce the semantic gap.

Some off-line methods focus on the feature extraction or on

the similarity function definition. Thanks to psycho-visual

experiments, Mojsilovic and Rogowitz [19] propose to identify

image features and similarity functions which are directly

connected to semantic categories. Experiments have also been

carried out with user interaction to integrate a user model in a

Bayesian similarity function [8]. The aim is to define a

similarity between images as close as possible to the human

similarity interpretation. In computer vision community, some

works deal with local descriptor extraction [27,33] and are

concerned with creating indexes rotationally invariant, and

robust to object deformations.

Other strategies focus on the on-line retrieval step to reduce

the semantic gap. These approaches introduce human–

computer interaction into CBIR [36,37]. Interactive systems

ask the user to conduct search within the database. Starting

with a coarse query, the interactive process allows the user to

refine the query as much as necessary. Many kinds of

interaction between the user and the system have been

proposed [3], but most of the times, user interaction consists

of binary labels indicating whether or not the image belongs to

the desired category. The system integrates these labels

through relevance feedback. The main idea of relevance

feedback is to use information provided by the user to improve

system effectiveness.

In category search, each image has to be classified as

belonging or not to the category. Retrieval techniques are

mainly of two types: statistical and geometrical [36]. The

geometrical methods refer to search-by-similarity systems,
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based on calculation of similarity between a query1 and the

images of the database [16,24]. The objective of the statistical

methods is to update a relevance function or a binary

classification of images using the user labels. The approach

by relevance function estimation aims at associating a score to

each image of the database, expressing the relevance of the

image to the query. A Bayesian context is often used, and the

probability density function is updated considering the user

labels. The probability function may be uniformly initialized

and iteratively refined in order to emphasize relevant images

[2,8]. Recently, statistical learning approaches have been

introduced in CBIR context and have been very successful

[30]. Discrimination methods (from statistical learning) may

significantly improve the effectiveness of visual information

retrieval tasks. This approach treats the relevance feedback

problem as a supervised learning problem. A binary classifier is

learnt by using all relevant and irrelevant labeled images as

input training data [5].

In this paper, we focus on statistical learning techniques for

image category retrieval. We propose a binary classification

method, but adapted to image retrieval. Indeed, the classifi-

cation in CBIR context has some specificities: the input space

dimension is usually very high, the training set is very small in

comparison with the test set (the whole database), unlabeled

data are available, etc. To take into account these properties,

our strategy is based on Support Vector Machines (SVM)

classification and on an active learning strategy [6].

In addition, learning algorithms need enough initial training

data in order to get correct classification [30]. We introduce in

this paper a first step based on a database exploration scheme to

initialize the classification of the second step. A discrete

probability law is proposed to express the relevance of images.

A sampling is then applied to display new images to the user.

The main originality of our work can be summarized in two

points:

– Stochastic exploration strategy to get useful initial training

set.

– Active learning scheme to boost the classification step.

After an overview of the learning architecture (Section 2),

the main components of our strategy will be detailed (Sections

3–5). Experiments are provided in Section 6 to validate and

compare the strategy with up-to-date concurrent methods.

2. Retrieval system architecture

As explained in Section 1, our image retrieval strategy,

called RETIN, is organized in a two-stage sequential process:

(1) database exploration; (2) active learning classification. The

RETIN algorithm starts a category search with the exploration

strategy step before automatically switching to the classifi-

cation step. The whole scheme of our retrieval strategy is

reported in Fig. 1.

For the exploration step (detailed in Section 4), a discrete

probability law expresses the relevance of images. A stochastic

sampling of this law is applied to present new images to the

user. After user’s labeling, new relevant images are added to

the initial query and the process is iterated. The set of relevant

images accumulated during this stage is called the semantic

query ðSQÞ.

The exploration process stops when the cardinal jSQj of the

semantic query is higher than a threshold K, and the active

classification process starts. KZ20 has been used for all our

experiments to keep the same values than the ones used by

other methods with which we make comparisons.

Fig. 1. RETIN architecture.

1 Generally, one image is used as the query.

M. Cord et al. / Image and Vision Computing 25 (2007) 14–23 15
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For the active classification process (detailed in Section 5),

we use a SVM binary classifier with specific kernel function,

and a specific active learning process to sample new images to

display for labeling. After user’s labeling, the user decides

whether to stop or to continue the learning process. If it

continues, the new examples are added to the training set and

the classification process is iterated. Else, the learning process

is over, and the final top similarity ranking is presented to the

user.

An example of the RETIN interface is reported in Fig. 2.

The lower window displays the images to label during the

learning scheme. The upper one is the final window, where

images are displayed using top relevance ranking.

Both steps need a similarity function to compare images.

We introduce in Section 3 statistical tools to deal with

similarity and classification functions.

3. Statistical tools for CBIR

Similarity functions are usually employed to compare two

images. When dealing with a more complex query (for

example, a set of images), the similarity concept has to be

extended. In a previous work [10], we proposed a merging

scheme to combine two-by-two measures between the current

image and all the relevant labeled images. Another way to

estimate this similarity is to consider the problem as a

probability density function estimation problem. By this way,

it is easier to deal with multi-modal distributions.

Besides, when dealing with a query set having relevant and

irrelevant images, a decision function used for discrimination

has to be computed. Statistical learning techniques such as

nearest neighbors [15], Support Vector Machines [5,31], bayes

classifiers [36], have been used.

SVM has demonstrated capacity in pattern recognition, and

more recently in CBIR [31,38]. We have shown that the SVM

classification method is highly adapted to the image retrieval

context [13]. This classification method can deal with high

dimensionality using the kernel trick, and does not require a too

large training set. Thus, we use SVM as our default

classification method for CBIR.

In the following section, we outline the SVM algorithm,

which provides a decision function [34]. For the density

estimation, we also present an adaptation of SVM two-class

formalism to one-class formalism [28]. This one-class SVM

will be used in our exploration process.

3.1. Support vector machines

The Support Vector Machines (SVM) are a type of learning

algorithms developed in the 1990s. They are based on results of

statistical learning theory introduced by Vapnik [34]. These

learning machines use kernels, which are a central concept for

a number of learning tasks.

First, we assume that both classes are linearly separable. Let

(xi)i2{1,.,N}, xi2R
p be the feature vectors representing the

training data, and (yi)i2{1,.,N}, yi2{K1,1} be their respective

class labels. Let us define a hyperplane by !w,xOCbZ0

where w2R
p and b2R. Since the classes are linearly

separable, we can find a function f, f ðxÞZ hw; xiCb with:

yif ðxiÞZ yiðhw; xiiCbÞO0; c i2f1;.;Ng (1)

The decision function may be expressed as fdðxÞZ
signðhw; xiCbÞ with fd(xi)Zsign(yi), ci.

Fig. 2. Example of RETIN results.

M. Cord et al. / Image and Vision Computing 25 (2007) 14–2316
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Since many functions realize the correct separation between

training data, additional constraints are used. SVM classifi-

cation method aims at finding the optimal hyperplane based on

the maximization of the margin2 between the training data for

both classes.

Because the distance between point x and the hyperplane is

yf(x)/kwk, the optimization problem may be expressed as the

following minimization:

min
1

2
jjwjj2 subject to yiðhw; xiiCbÞR1; ci (2)

The support vectors are the training points for which we

have an equality in Eq. (2). All of them are equally close to the

optimal hyperplane. One can prove that they are sufficient to

compute the separating hyperplane.

This is a convex optimization problem (quadratic criterion,

linear inequality constraints). Usually, the dual formulation is

favored for its easy solving with standard techniques. With a*

the dual solution of the quadratic optimization, the hyperplane

decision function can be written as:

fdðxÞZ sign
XN
iZ1

yia
�
i hx; xiiCb

 !

The linear SVM classifier previously described finds linear

boundaries in the input feature space. To get much more

general decision surfaces, the feature space may be mapped

into a larger space before achieving linear classification.

Linear boundaries in the enlarged space are equivalent to

nonlinear boundaries in the original space. Everything about

the linear case also applies to nonlinear cases, using a suitable

kernel k instead of the Euclidean dot product. The decision

function is:

fdðxÞZ sign
XN
iZ1

yia
*
i kðx; xiÞCb

 !

To get a relevance function useful in CBIR, the distance to

the boundary is used:

f ðxÞZ
Xn
iZ1

yia
�
i kðx; xiÞCb (3)

Various kernel functions k(,) have been proposed. The

most popular ones are the Gaussian and polynomial kernels.

Because we have no prior assumption on input data

configuration, we selected a Gaussian kernel:

kðxi; xjÞZ exp K
d2ðxi; xjÞ

2s2

� �
(4)

3.2. One-class SVM

When only relevant images are considered, a classification

cannot be carried on, but a density function may be estimated.

The one-class SVM method [28] estimates the density support

of a vector set XZ ðxi; yiZ1Þi2f1;:::;Ng representing an image

class. As SVM, this leads to a quadratic optimisation problem,

and can be used with a kernel function. The same function f

(Eq. (3)) is computed in the one-class context, providing a

density function.

4. Exploration process

Statistical learning approaches perform binary classifi-

cation. They need enough training data to give acceptable

results.

In our learning scheme, we propose an exploration

process in order to get an initial training set for the

classification process. These images have to be carefully

selected because when the user is looking for large and

complex categories, relevant images are usually scattered in

the feature space. The system needs an exploration strategy

able to efficiently catch complex categories with multi-modal

distributions.

In Bayesian framework as proposed by Cox et al. [8] or

Fournier et al. [12], some kind of exploration is implicitly

performed, but the goal is not to retrieve large categories, and

exploration is not explicitly settled. We introduce in this article

a stochastic scheme to manage database exploration. A

probability function is defined to express the relevance of

each image. The tuning of the probability law is the key point

of such a strategy. It has to change from a tolerating law (large

exploration) to a selective law. The proposed scheme is

working with discrete probabilities to handle the law

parameters.

In 4.1 Section, the image sampling principle is

explained, and the parameter tuning is presented in the

following one.

4.1. Sampling process

Thanks to the relevance function f (we use the probability

density function estimated with the one-class SVM method),

all the images may be sorted. In interactive retrieval, the basic

approach selects and presents to the user the m first images

according to relevance ranking. This strategy is efficient to

refine similarity around positive examples of SQ, but there is

no consideration about the confidence that we can have on f

during the process.

The introduction of a random scheme may be useful to

explore the database and to dynamically express the confidence

that we have in the semantic query model SQ and consequently

in f (computed from SQ).

We introduce an exploration process by using each fkZf(xk)

as a weight, and find new images xi such as fi is sampled from

the multinomial law Mð Þ:

fiwMðf1;.; fnÞ

By this way, any image from the database may be selected,

even an image far from the current SQ.

2 The margin is defined as the distance from the hyperplane of the closest

points, on either side.

M. Cord et al. / Image and Vision Computing 25 (2007) 14–23 17
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Actually, the strategy for computing the weights associated

to each image may be changed in order to take into account the

confidence in SQ. It can be done using the following

probability on weights fk:

pk ZPðfkÞZ
1

ZT
exp

fk
T

� �

where ZT is the sum of the exponential values over all the

images of the database and T, the parameter which tunes the

confidence that we have in SQ.

At each iteration of the interactive search, the system

samples and displays images according to these probabilities:

Mðp1;.; pnÞ. All the images that the user labels as relevant are

added to set SQ.

Let us explain the idea of this stochastic strategy: when

parameter T is high, the influence of f is weak, and thus, all

weights pk are almost equal. The sampling is then a pure random

sampling. The confidence in f (and SQ) is very low and the

exploration is favored. When parameter T decreases, the

influence of f increases in the probability computation.

The search space cuts down around SQ, and the confidence in

SQ increases.

The crucial point is the tuning of T. In a previous work

[7], we proposed to handle the exploration by using relation

inspired by simulated annealing techniques and calculation

by approximations in the continuous domain. We propose

here a new formalism established on discrete probabilities.

Simple assumptions allow us to make the tuning fully

automatic.

4.2. Exploration tuning

First, we propose to measure the confidence c in SQ by

using the number of images in the set: jSQj. Indeed, as SQ is

composed of relevant images, the confidence c increases as the

cardinal number jSQj. When jSQj is small, the semantic query

is poor and the confidence is low. When jSQj is large, the set

contains many images and should be rich enough to stop the

exploration; the confidence in SQ is high. c may be expressed

as cZgðjSQjÞ where gð Þ is an increasing monotonous

function. We adopt the basic relation:

cZ jSQj (5)

Besides, the confidence c has to be linked to probability P.

Let us consider the mathematical expectation of the fk values,

estimated by fexpeZ
1
N

PN
kZ1 fk and fmax the greatest value of fk

on the database. Using exponential laws, it is possible to tune

the decreasing of the probability law thanks to both P(fmax) and

P(fexpe) values. Our assumption is that the ratio between these

probabilities may be linked to c. Indeed, when c is low,

P(fmax)/P(fexpe) should be low too (around 1) to explore a lot,

and when c is high, P(fmax)/P(fexpe) should be very large to

tighten up around the relevant images of SQ. The relation is

then as follows:

cZ
PðfmaxÞ

PðfexpeÞ
Z

exp fmax

T

� �
exp

fexpe
T

� � (6)

From Eqs. (5) and (6) (for jSQjO1), it follows3:

T Z
fmaxKfexpe

lnðcÞ
Z

fmaxKfexpe

lnðjSQjÞ

One step of the exploration process may be summarized as

follows:

1. User’s labeling; add relevant images to SQ.

2. Compute jSQj and fkZf(xk)cxk.

3. Compute fexpeZ
1
N

PN
kZ1

fk and fmaxZmaxk{fk}.

4. Compute TZ ðfmaxKfexpeÞ=lnðjSQjÞ.

5. Compute cxk (unlabeled) pkZ ð1=ZT Þexpðfk=TÞ.

6. Sample and display new images with Mðp1; p2;.Þ.

This approach allows us to have a straight control of the

exploration with simple and intuitive assumptions to automati-

cally tune the parameters.

5. Active classification process

The classification process is the second step of our two-step

sequential process for category retrieval (cf. Fig. 1). All the

images in SQ are used with the irrelevant labeled images4 in a

classification framework.

The CBIR context defines a very specific classification

problem. In this article, we are dealing with the following

characteristics:

1. High dimensionality. Database images are usually rep-

resented by vectors of high dimensionality.

2. Few training data. As the user cannot be asked for labeling

thousands of images, the system has to sort out a very small

percentage of labeled data.

3. Interactive learning. Usually, in classification framework

the training set is fixed. In interactive retrieval context, the

training set grows step by step. All the images labeled

during the current interaction are added to the training set

for the next classification step. In statistical learning, this

property defines the active learning framework [6].

After an introduction to active learning strategies and CBIR

learning context, we explain our classification strategy

exploiting the above mentioned specificities.

3 This condition is always true except at the beginning, where a particular

condition (cZ2) may be used.
4 All examples that the user had labeled as irrelevant during the exploration

were also stored to be exploited during this second step.

M. Cord et al. / Image and Vision Computing 25 (2007) 14–2318
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5.1. Statistical learning strategies for CBIR

Due to the first characteristic, that is to say vectors of high

dimensionality (for instance, 50 or more), artifacts appear,

known as the curse of dimensionality [15]. However, with the

theory of kernel functions, one can reduce this problem [29],

especially if kernel functions can be adapted to a specific

application. For instance, when distributions are used as feature

vectors, a gaussian kernel gives excellent results in comparison

to distance-based techniques [13]. We use this kernel

associated to SVM (see Section 3) to compare images and

compute classification.

Concerning the second characteristic, although there are few

training data, all the unlabeled images of the database are

available. Semi-supervised techniques use labeled and

unlabeled images to compute the classification function, as

for instance, the Transductive SVM method [17], the semi-

supervised Gaussian mixtures [20], and semi-supervised

Gaussian fields [39]. However, TSVM and SSGM do not

lead to significant improvements [4,14]. Furthermore, these

techniques have high computational needs in comparison to

inductive techniques. For now, semi-supervised learning

techniques do not seem to be adapted to the context we are

focusing on.

Active learning is another solution to deal with the lack of

training data. The principle is that the training data set is no

more fixed but new samples are phased in thanks to user

interaction. Active learning strategies aim at selecting samples

that, once added to the training set, will allow to optimize the

classification, as for instance by minimizing the expected error

of the learner [23].

Of course, the expected error is not accessible and

approximation schemes have been proposed [23]. The idea is

to restrict the computing of the error to the set of unlabeled data

available, and to train as many classifiers as there are unlabeled

data and labels. As the label of each candidate is unknown, Roy

and McCallum compute the expectation for each possible

label. This kind of approach is very time consuming and has

never been successfully used in CBIR.

Uncertainly based sampling is another way to perform

active learning principle. The method selects the documents for

which the classification function is the most uncertain. A first

solution consists in selecting the unlabeled documents with the

probabilities closest to 0.5 [18]. Similar strategies have also

been proposed with SVM classifier [21], with a theoretical

justification [31]. This strategy rests on a strong assumption: a

reliable estimation of the boundary between classes. In

classification framework, the training data set approximately

represents 50% of the whole data set. In CBIR, the training set

stays very small (even after interaction) in comparison to the

database size. In such a context, to get a reliable estimation of

the boundary is a major problem. In this particular context,

statistical techniques are not always the best ones, and we

propose in the next section an heuristic-based correction to the

estimation of f close to the boundary.

5.2. Active RETIN method for image set selection

Let (xi)i2{1,.,n}, xi2R
p be the feature vectors representing

images from the whole database, and x(i) the permuted vectors

after a sort according to function f (Eq. (3)). At feedback

iteration j, SVMactive proposes to label m images from rank sj to

sjCmK1:

xð1Þ;j|{z}
most relevant

; xð2Þ;j;.; xðsjÞ;j;.; xðsjCmK1Þ;j|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
images to label

;.; xðnÞ;j|{z}
less relevant

In SVMactive strategy, sj is selected so that xðsjÞ;j; :::; xðsjCmK1Þ;j

are the closest images to the SVM boundary. The closer to the

margin an image is, the less its classification is reliable.

We introduce a method based on the same principle than

SVMactive, but without using the SVM boundary to find the

value s. Indeed, we notice that, although the boundary changes

a lot during the first iterations, the ranking operation is quite

stable. Actually, we just suppose that the best s (corresponding

to the searched boundary) allows to present as many relevant

images as irrelevant ones. Thus, if and only if the set of the

selected images is well balanced (between relevant and

irrelevant images), then sj is good. We exploit this property

to adapt s during the feedback steps.

At the jth feedback step, the user gives new labels for

images xðsjÞ;j;.; xðsjCmK1Þ;j
. Let us note rrel(j) and rirr(j) the

numbers of relevant and irrelevant labels. To obtain balanced

training sets, s has to be increased if rrel(j)Orirr(j), and

decreased otherwise. We adopt the following upgrade rule for

sjC1: sjC1ZsjCkðrrelðjÞKrirrðjÞÞ. For now, we have used this

relation with kZ2 in all our experiments.

Once sjC1 is computed, the system should propose to the

user the m images from xðsjC1Þ;jC1 to xðsjC1CmK1Þ;jC1. Actually, we

also want to increase the sparseness of the training data.

Indeed, nothing prevents an image close to another (already

labeled or selected) to be selected. To overcome this problem,

we consider exactly the same strategy but working no more on

images but on clusters of images: we compute m clusters of

images from xðsjÞ;j to xðsjCMK1Þ;j
(whereMZ10!m, for instance),

using an enhanced version of LBG algorithm [22]. Next, the

system selects for labeling the most relevant image in each

cluster. Thus, images close to each other in the feature space

will not be selected together for labeling.

6. Experiments

6.1. RETIN features and parameters

RETIN is a new version of the CBIR system developed in

ETIS laboratory [11].

Color and texture information are exploited. As none of the

numerous color spaces has proved its superiority over the

others for image coding, we have chosen the HSV space. For

texture analysis, Gabor filters are used, with 12 different scales

and orientations.

Signatures are statistical distributions of colors and textures

resulting from a dynamic quantization of the feature spaces.

M. Cord et al. / Image and Vision Computing 25 (2007) 14–23 19



Aut
ho

r's
   

pe
rs

on
al

   
co

py

That means we use color and texture space clustering to

compute the image histograms. Both spaces are clustered using

an enhanced version of LBG algorithm [22]. The main problem

is to choose the number of clusters, which gives the number of

bins in the histograms.

Some theoretical rules may be used to set the number of

histogram bins. Sturges’s or Scott’s rules cited in [1] allow to

avoid over or under-quantization. In image retrieval context,

Brunelli and Mich have evaluated many feature histograms and

they concluded that low-resolution histograms (with small bin

numbers) are reliable [1]. For color histograms, Tran and Lenz

suggest to use around 30 bins [32]. In a previous paper [11], we

made a lot of comparisons using different numbers of clusters

for dynamic and static quantizations of the feature space, which

all confirm these propositions. A major advantage of the

dynamic approach is the reduction of the size of the signature

without performance degradation. For a generalist database

(around 10,000 images), a small number of classes obtained by

a dynamic clustering of the database is sufficient to build

efficient signatures. We have adopted this dynamic quantiza-

tion in the RETIN system with 25 classes (as the default value).

Image signature consists of one vector representing the

image color and texture distributions. The input size p is then

50 in our experiments.

The kernel function used in the SVM algorithm (one-class

and two-class) is a Gaussian kernel (Section 3). Moreover, the

distance in Gaussian kernel may be chosen according to feature

vector type. We use a c2 distance which is well suited for

vectors representing distributions, and in that case, sZ1

(Eq. (4)).

6.2. Evaluation and comparison protocol

6.2.1. Databases

The tests are carried out on two generalist databases: the

ANN5 image database and the COREL photo database. ANN

contains around 500 images divided into 11 categories from 25

to 50 images.

The COREL database contains more than 50,000 pictures

organized in categories. Each category has about 100 images.

To get tractable computation for the statistical evaluation, we

randomly selected 10% of the COREL categories. We obtained

about 50 categories and the corresponding database is

composed of 6000 images. We present here results for five

categories directly extracted from the initial 50 categories or

obtained by merging some of them (to get sets with different

sizes and complexities). The important point is to show results

from small and mono-modal categories to large and multi-

modal categories. They are reported in Table 1 from the

simplest one to the most complicated one.

6.2.2. Statistical performance measurements

The CBIR system performances are measured using

precision(P), recall(R) and statistics computed on P and R for

each category. Let us note A, the set of images belonging to the

category, and B the set of images returned to the user, then: PZ
jAhBj/jBj and RZjAhBj/jAj. Usually, the cardinality of B

varies from 1 to database size, providing many points (P,R).

We present P/R curves which may be displayed using

interpolation of the (P,R) points.

To carry out quantitative evaluation, we use the breakeven

point bp metric. The breakeven point is defined as the point on

a precision-recall curve that has the same value for precision

and recall. There is an obvious relation between a breakeven

point and the performance of a classification or retrieval

system: jAjZjBj. It is a very interesting measure for

comparison purposes when looking for large categories. We

also use the Mean Average Precision (MAP) which represents

the value of the P/R integral function. This metric is used in the

TREC VIDEO conference,6 and gives a global evaluation of

the system (overall the (P,R) values).

Each simulation is initialized with one image randomly

selected within the desired category. For each feedback step, m

images are automatically labeled using the ground truth. The

training stops after iZ10 iterations in these experiments. One

hundred simulations are done for each category, and P and R

average values are computed.

6.2.3. Comparative methods

For the quality assessment, our strategy RETIN has been

compared with three methods:

M1 a SVM classification algorithm without exploration or

active strategy. It means that we use a learning data set

where images are randomly selected in the database. Of

course, the same number of training data is used.

M2 a reference classification-based strategy for relevance

feedback. We use a Bayesian classifier with a Parzen

window density estimation according to the framework

of Vasconcelos [35].

M3 a reference active strategy learning, the SVMactive

strategy [31].

All the methods follow the same interactive protocol and do

not require any manual tuning before the process.

Table 1

COREL categories for evaluation

Category Size Description

Caverns 121 Simple, mono modal

Doors 199 Simple, rather mono modal

Flowers 506 Very large, few modes

Savanna 399 Large, few modes

Landscape 451 Complicated, many modes

5 ‘Labeled ground-truth database’, Department of Computer Science and

Engineering, University of Washington, http://www.cs.washington.edu/

research/imagedatabase/ 6 http://www-nlpir.nist.gov/project/trecvid/
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6.3. Results

6.3.1. ANN

Because of the small size of the database, the number m of

images labeled at each interactive feedback step is set to mZ5.

The number of feedbacks is set to 10. The training set contains

50 images at the end of the interactive process. The

classification performances are then provided for learning

systems trained with only 10% of the database. In that case, the

relative performances are more interesting than the absolute

ones.

Quantitative evaluation for all the categories of ANN are

summarized in Tables 2 and 3, where the bp and MAP

measures have been, respectively, reported.

The RETIN strategy gives the best results for 8 categories

out of 11 according to the bpmeasure, for 7 categories out of 11

according to the MAP measure, but the Bayesian M2 method is

sometimes better, often close. The active M3 strategy provides

poor results. The active learning seems to be very dependent on

the number of training data; when this number is very small

(only 50 here), the performances are poor. This observation

joins the Tong’s conclusion [30] about his technique. Our

active strategy coupled with exploration steps is less sensitive

and can succeed in task retrieval even when the training data

set is very small.

6.3.2. COREL

Experiments on COREL are very interesting because the

database is quite large, with many kinds of categories. In this

context, comparison between systems to retrieve large and

complex sets of images is meaningful.

The number m of images labeled at each feedback step is

mZ20 and the number of feedbacks is 10. The training set

contains 200 images at the end of the interactive learning

process. The classification performances are then provided for

systems trained with only 3% of the whole database.

First, we provide P/R curves on (respectively) doors

(Fig. 3), flowers (Fig. 4) and landscape (Fig. 5) categories to

illustrate the behavior of the methods on (respectively) an easy,

a medium and a difficult category.

Most of the time, The RETIN strategy provides the best

curves. Active learning strategies improve performances on the

difficult retrieval task (Fig. 5), but RETIN is better than the

other active strategy (SVMactive M3) on the three tested

categories.

Table 2

ANN evaluation: system performances estimated with the breakeven metric bp

(%), at the end of the interactive learning process

Category M1 M2 M3 RETIN

Arborgreens 58 73 72 79

Campusinfall 56 65 70 80

Cannonbeach 71 86 72 79

Cherries 65 84 73 86

Yellowstone 51 60 62 63

Football 95 96 95 100

Geneva 68 84 94 91

Greenlake 56 63 67 71

Sanjuans 66 79 71 72

Springflowers 74 78 81 86

Swissmountain 85 91 89 95

Table 3

ANN evaluation: system performances estimated with the MAP metric (%), at

the end of the interactive learning process

Category M1 M2 M3 RETIN

Arborgreens 63 81 79 84

Campusinfall 65 72 81 87

Cannonbeach 79 91 79 84

Cherries 72 94 82 92

Yellowstone 56 66 70 73

Football 99 99 99 100

Geneva 74 86 98 96

Greenlake 60 66 75 78

Sanjuans 74 85 79 80

Springflowers 80 83 84 91

Swissmountain 91 92 95 98

Fig. 3. P/R curve for the doors category (COREL database).

Fig. 4. P/R curve for the flowers category (COREL database).
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The bp values are reported in Table 4, and MAP in Table 5

for all the configurations.

Performances deeply depend on the complexity of the

searched category. RETIN provides the best results for both bp

and MAP statistics for all the categories. The number of

exploration steps depends on the number of retrieved images

but we noticed that it is quite stable. Active learning strategies

improve performances, even if RETIN always gives the best

scores, SVMactive M3 strategy provides good results. For the

most difficult category, the landscape category, both active

techniques, M3 and RETIN, have the same performances. The

exploration step seems to be helpless to boost the retrieval in

this case. Last rows in Tables 4 and 5 provide average

performances. The RETIN strategy outperforms other

techniques from 5 to 20%, which is a significant improvement

in image retrieval context.

One can notice that the M1 method without active learning

gives, most of the time, the worst results.

6.4. Computational aspects

The main computational needs is the O(n) computation of

membership to the relevant class (function f) on the whole

database. Other requirements are negligible against n. In

particular, the SVM optimization is not time consuming as

soon as the number of training data (user labels) is small

regarding n. In our experiments, all methods need about 1 s to

be computed with a Pentium 3 GHz. With a one million image

database, a similar configuration would require about 10 min to

be computed.

7. Conclusion

In this article, we have presented an efficient interactive

strategy for content-based image retrieval. The method is based

on a two-step sequential algorithm with an exploration step

followed by an active classification step.

The exploration step aims at providing a useful initial

training data set for the next step of classification. This process

is based on a stochastic sampling scheme. A multinomial law

with simple and powerful settings of parameters is introduced

in order to efficiently sample new images to display. In a few

interaction iterations, the method provides a semantic query

composed of all the images labeled as relevant by the user. Our

strategy catches all the aspects of the semantic category in

order to build a learning set of the searched category as various

as possible.

For the classification task, we adapted a SVM classifier to

CBIR context. We also introduced an active learning strategy

to select for labeling new images close to the boundary

between relevant and irrelevant images. This method allows to

get good performances of classification with few training sets.

This is definitively a major advantage in CBIR context where

the user interaction has to be as weak as possible.

The method has been validated through experiments on

large databases with specific grouping of images to get

complex categories. We implemented leader active learning

methods and a Bayesian classification for comparison. Our

two-step strategy outperforms other techniques from 5 to 20%

on the COREL database. In image category retrieval, the two

steps complement very well each other: the first step aims at

retrieving images from several modes scattered in the feature

space, while the second step efficiently determines the

boundary of the category.

Our current works deal with the evaluation of the scalability

of theses techniques when huge databases are considered. We

are convinced that, for category search in very large databases,

efficient exploration process before classification process will

become crucial.

Fig. 5. P/R curve for the landscape category (COREL database).

Table 4

COREL evaluation: system performances estimated with the breakeven metric

bp (%), at the end of the interactive learning process

Category M1 M2 M3 RETIN

Caverns 42 61 70 70

Doors 60 73 75 88

Flowers 51 49 52 62

Savanna 34 32 39 42

Landscape 36 30 43 44

Mean 45 49 56 61

Table 5

COREL evaluation: system performances estimated with the MAP metric (%),

at the end of the interactive learning process

Category M1 M2 M3 RETIN

Caverns 40 62 75 75

Doors 63 81 82 93

Flowers 53 55 58 67

Savanna 32 31 43 45

Landscape 34 29 47 47

Mean 44 52 61 66
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