
Summarization scheme based on near-duplicate analysis

David Gorisse, Frederic Precioso and
Sylvie Philipp-Foliguet

ETIS, CNRS, ENSEA, Univ Cergy-Pontoise
F-95000

Cergy Pontoise, France
{gorisse, precioso, philipp}@ensea.fr

Matthieu Cord
LIP6, UPMC-P6

104 av Kennedy 75006
Paris, France

matthieu.cord@lip6.fr

ABSTRACT
This paper presents our approach to select relevant sequences
from raw videos in order to generate summaries to TRECVID
2008 BBC Rush Task. Our system is composed of two major
steps: First, the system detects ”semantic” shot boundaries
and keeps only non-redundant shots; then, the system esti-
mates average motion for each shot, as a criterion of amount
of information, to better share out the duration of the sum-
mary between remaining shots. The first step is based on a
fast near-duplicate retrieval using Locality Sensitive Hashing
(LSH) which provides results in few seconds (if we do not
take into account decoding and encoding processes). The
evaluation of TRECVID shows very promising results, since
we ranked 17th over 43 runs, regarding redundancy measure
(RE), and 18th for object and event inclusion (IN). These
balanced results (most of best teams for the first criterion are
among the latest for the second one) show that our method
offers a quite good trade-off between false negatives (IN) and
false positives (RE).

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Mul-
timedia information systems: video

General Terms
Algorithms, Experimentation

Keywords
LSH, Near-duplicate, Video summarization

1. INTRODUCTION
This paper describes in detail our system producing sum-

maries for Trecvid 2008 BBC Rush task. The aim of this
task is to automatically generate mpeg-1 summary clips of
2% of the original duration of raw videos. These videos are
coming directly from movie production without any post-
production process. In order to achieve this objective, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

system must remove as many repetitive shots as possible
while preserving the most significant shots. Resulting sum-
maries must be pleasant to see and most contain relevant
parts or events of the videos. Frame clustering is one of the
early approaches to address video summarization task [6, 9,
7, 8]. Following this direction, many other methods have
been recently proposed: in [11], Truong et al. proposed a
method of hierarchical shot clustering based on hierarchi-
cal Sift description of each frame. This approach intends
to avoid complex implementation in terms of concept detec-
tion and excerpt assembly (i.e, no picture-in-picture, split
screen and special transitions). In [3], Chen et al. use clus-
tering to remove redundant shots and the shot segmentation
is based on kernel correlation of pairwise inter-frame simi-
larity features (color and motion). In our method, we try
to combine several good properties of the aforementioned
methods: avoiding complex implementation in terms of con-
cept detection and excerpt assembly, hence we consider only
global features; an approximate clustering to remove redun-
dant shots but also to segment videos into semantic shots
based on a near-duplicate approach.

Our system uses one simple global descriptor, HSV color
histogram, as input of the LSH algorithm to efficiently com-
pute near-duplicates of each frame. We exploit the analysis
of the sets of near-duplicate frames LSH provides us with in
order to segment the videos into semantic fragments and re-
move redundant parts. We compute a classic skimming pro-
cess, to adapt the frame sampling rate in each relevant frag-
ment, using average motion estimation based on our phase
correlation descriptor. The computational power of LSH ap-
proach allow us to further consider larger or more complex
features which should increase the precision of semantic frag-
ment extraction and consequently improve the visual quality
of our summaries while facilitating the skimming process

2. SYSTEM OVERVIEW
Due to acting mistakes or film making process, each scene

is usually shot several times, which results in many repeti-
tive sequences of frames in rush videos. Our system selects
short excerpts from videos, identifying non-redundant seg-
ments which contain actions. In this paper, we relate action
to motion, moving objects and camera motion. The input
video is decoded and only 1 frame over 4 are kept. This
decimation allows to decrease the computational complex-
ity without loss of information. Two kinds of features are
computed from these decoded frames : HSV color histogram
and the entropy of phase correlation. Color histograms are
involved in several modules of our system: to remove junk

frames, to segment the video into ”semantic”shots and to re-
duce redundant information. The entropy of phase correla-
tion, defined on frame blocks, describes coarse local motion.
This feature is used as an action detector and a duration
factor to rule the final skimming process. Figure 1 is an
overview of our video summary system and we detail each
module in next sections.

filter
junk frame

compute
color histogram

compute entropy
phase correlation

near duplicate
detection

duplicate shot
removal

select summary
frames

summary
video

shot detection label frames

decode video

input video

block 1.b

block 3

block 2

block 5

block 6

block 4.a block 4.b

block 1.a

Figure 1: Block diagram of system

Figure 2: junk frame filtering

To briefly describe the system (fig.1):
In block 2, junk frames are removed. Junk frames include
rainbow color bars, clap-boards, black frames (that can be
due to objects accidentally covering up the camera lens) or
white frames (due to dazzling), etc., and are classically con-
sidered as useless. We provide a dataset of about one hun-

dred junk frame samples, extracted from TRECVID 2007
videos. Then, all the frames, from raw video sequences, de-
tected as near-duplicate to one of these samples are removed
(fig.2).
In block 3, a data set containing each remaining frames of
the video is formed. Iteratively, each frame is used as query
and a near-duplicate detection is carried out. The result of
this process is stored in a square binary matrix of size num-
ber of frames by number of frames. If the jth frame of the
video is a near-duplicate to the ith one, a 1 is stored at ith

row and jth column, otherwise this value is 0. The matrix
is quite sparse (fig.3).

Figure 3: Near-duplicate detection

In block 4, this matrix is analyzed to detect shots and to
label frames by clustering similar frames.
In block 5, duplicate shots are then removed by keeping the
longest one among all the shots sharing the same label.
Finally, in block 6, a variable amount of frames in each re-
maining shot is selected by considering that shots containing
more motion require more time to be summarized.

3. FAST FRAME MATCHING
In this part, we will dive into details on how we obtain

the near-duplicate matrix. This matrix is supposed to pro-
vide a clustering of all the frames having the same sementic
information in order to detect redundant shots. This lat-
ter process will be discussed in the next part. We start by
explaining the choice of features for the near-duplicate detec-
tion. Then we will present LSH algorithm which provided us
with a fast approximation of near-duplicate detection able
to process the large amount of frames of the BBC Rush
dataset.

3.1 Content representation for near-duplicate
detection

The role of the features used to represent each frame con-
tent is double: bring together the frames of a same shot and

locate duplicate shots. Since during a shot objets can move,
we only considered global features. Several features were
tested [2]: HSV color histogram of 64 bins, vertical projec-
tion accumulative histogram, horizontal projection accumu-
lative histogram... The protocol of the test is as follows:

• Extraction of the keyframes of a video (tab. 1.1)

• For each keyframe, computation of the distance distri-
bution to all frames of the video (tab. 1.2).

• Estimation of the distance between modes and selec-
tion of a threshold R.

• Visualisation of selected frame on a temporal scale
(tab. 1.3).

As we can see from table 1, the distribution of HSV his-
togram inter-frame distance reveals several distinct modes
with a fairly clear separation around 0.1 for all the keyframes.
Moreover, by locating the frames where HSV histogram dis-
tance is less than 0.1 (in red in Table (1.3)), there are many
dense blocks corresponding to shots interspersed with tran-
sitions or other shots (in blue in Table (1.3)). HSV color his-
togram were selected to describe frames because this feature,
compared to the others we tested, maximizes the distance
between modes. Each frame of the rush videos is consid-

Table 1: near-duplicate detection with HSV his-
togram (MS210470)

(1) 3 keyframes (frames: 6500, 7000, 7600)

(2) HSV distance distribution

(3) time position of image selected with R = 0.1

ered as a query and a near-duplicate search is carried out
to find all frames whose distance to the query is lower than
0.1. We store the result of these successive searches into the
near-duplicate matrix (fig.3).

As the frame number of a video is quite big, about 10,000
(after our decimation, mentionned at the beginning of this
paper), brute force search is a complete non-sense, given
the high dimensionnality and size of the data. Hence as
proposed by Chum et al. [4], we use the Locality Sensitive
Hashing (LSH) scheme, briefly described in the following
section, to efficiently find the frames within a given distance
to the query.

3.2 Locality Sensitive Hashing scheme
We shortly report in this section the basic LSH function-

alities to explain how we use it in our context.
LSH solves the (R, 1 + ǫ)-NN problem: find at least one

vector b′ in the ball B(q, (1 + ǫ)R) if there is a vector b
in the ball B(q, R). b ∈ B(q, R) if ||b − q|| ≤ R. In-
dyk and Motwani [10] solved this problem for the Hamming

metric with a complexity of O(n1/(1+ǫ)) where n is the num-
ber of vectors of the database. Datar and al. [5] proposed
an extension of this method that solves this problem with
the Euclidean metric and with similar time performances.
The method generates some hash tables of points, where
the hashing function works on tuples of random projections
of the form:

ha,c(b) =
¨a.b + c

w

˝

where a is a random vector whose each entry is chosen inde-
pendently from a Gaussian distribution, c is a real number
chosen uniformly in the range [0, w] and w specifies a bin
width (which is set to be constant for all projections).

A tuple of projections specifies a partition of the space
where all points inside the same part have the same key.
All points with the same key are stored in the same bucket
C. Clearly, if the number of projections is carefully cho-
sen, then two points which hash into the same bucket C will
be nearby in the feature space. To avoid boundary effects,
many hash tables are generated, each using a different tu-
ple of projections. In practice, a proportion of these points
(called ”false matches”) will be at a distance greater than R

from the query point q. That is why, a check (computation
of the Euclidean distance between all points b of bucket C

and q) is carried out to remove ”false matches”.
In our case, we do not want to find only one vector b ∈

B(q, (1 + ǫ)R) but all of them. For that, we use a method
from E2LSH [1] which is a modified version of [5] to solve
the (R, 1− δ)-near-neighbor problem: each vector b satisfy-
ing ||b − q|| ≤ R has to be found with a probability 1 − δ.
Thus, δ is the probability that a near-neighbor b is not re-
ported.

For our experiments, we used 10 random projections for 50
hash tables, and R = 0.1. With this parameter, we reached
9.75 sec to compute a near-duplicate matrix of 10.000 frames
on a 3.2GHz Pentium IV PC with 8Go of RAM memory.

4. REDUNDANT SHOT DETECTION
In this part, we detail the three stages of redundant shot

detection from the near-duplicate matrix. The first two
stages: shot segmentation and frame labelling, consist in
clustering the frames. The last stage: shot labelling, unifies
the two previous decisions to detect redundant shots. It may
seem useless to use two separate clusterings but as we will
see, these two stages have complementary behaviours.

4.1 Shot segmentation
The aim of this module is to cluster adjacent near-duplicate

frames along the diagonal of the near-duplicate matrix.
To achieve good performance in computing time, we pro-

cess data sequentially. In the ideal case, all frames of a shot
are near-duplicate of the others, one decision by shot is suffi-
cient. We could process the near-duplicate search of a frame
l. Initializing two pointers on the column l, one looking for
the first 0 before l and the other one, looking for the first

0 after l, we could search the longest interval of continuous
near-duplicate frames containing the frame l and thus de-
tect the shot Sl. Hence, it could be sufficient to detect the
next shot to repeat the process with the frame next the end
of the shot Sl. But as we can see on figure 4, transitions

Figure 4: Transition between shots are not sharp

between shots are rarely abrupt and shot detection must
be more robust. For instance, claps which caracterize shot
transition appear progressively and as we use 64 bits color
histogram, the descriptor is gradually deteriorated. Instead
of taking one detection for each shot, we made the previously
described detection for each frame and we merged decisions.

Figure 5 shows a result of our shot detection scheme (in
red) on the near-duplicate matrix.

Figure 5: Shot detection from the near-duplicate
matrix of fig.3

4.2 Frame labelling
The aim of this module is to cluster all frames that con-

tain the same semantic information. As the shot detection,
frame clustering is carried out using near-duplicate detection
and to speed up the process, the clustering is iteratively per-
formed after each query. The idea is to decide which group
the current frame belongs to, then to propagate the decision
to the near-duplicate frames. As a current decision does
not affect a previous decision, we only need to consider the
upper triangular of the near-duplicate matrix.

To do that, a table TLabel of size number of frames is
initialized to 0. For each query frame q, the label contained
at bin q of TLabel is selected. If the label is 0, a new label
is affected. For each near-duplicate frame b of query q, we
modify the value TLabel(b) into TLabel(q).

The noise in the near-duplicate matrix (fig.3) may signif-
icantly degrade the clustering. Indeed, a false detection can
unify two groups of frames that do not share the same infor-
mation. To limit this problem, we have filtered the matrix
by removing all groups of near-duplicate frames of less than
25 ms.

As we can see on figure (fig.6), we managed to split the
matrix into 3 groups.

Figure 6: label frames

4.3 Shot labelling
The unification of the two previous stages of clustering

is quite simple, it consists in scanning each shot obtained
by shot detection step and in assigning a label provided by
the stage frame labelling. As the clustering provided by the
frame labelling step is not perfect, noise of the near-duplicate
matrix can induce false detection, shots may contain sev-
eral labels. For this reason, we affect the predominant label
(fig.7). It may happen that some shots (those which last less
than 25 sec) do not contain labelled frames. In this case, we
assume these shots are too short to represent significant in-
formation and thus are removed.

Figure 7: shot labelling

5. FRAME SKIMMING
From now on, we have detected shots and set them a la-

bel that allow to identify redundant shots. To build the
summary, we have just to remove redundant shots and to
select relevant frames of each remaining shot respecting the
duration assigned.

5.1 Redundant shot removal
It is difficult to know what shots have to be kept to make

the final summary. If we consider that a shot is replayed
when an actor makes a mistake, common sense would like to
keep the last detected duplicate but sometimes, only a part
of the shot is replayed. Thus we decided to keep the longest
shot (fig.8). As we can see on figure (fig.7), some shots are
replayed after other ones, the shot in green is replayed after
the shot in red. If we decide to delete the first green shot
and to keep the first red shot, the two shots order will be
reversed. Hence we sort shots by order of label, which helps

keeping the order in which shots were played for the first
time.

Figure 8: duplicate shot removal

5.2 Summary frame selection
We now have the main shots of rush, we must then se-

lect some frames of each shot to respect the limited time
of the summary. The duration of the summary is limited
to 2% of the duration of the video. To prevent automatic
scoring from misleading our video summary systems to fa-
vor extremely short clips, we imposed a constraint that all
shots of a summary must last at least 1 second. 1 second
is close to the lower limit that humans can comfortably re-
conize non-trivial visual content on a screen.

After this selection, two cases may occur: either the dura-
tion of the abstract is too long, or it is too short. As long as
the duration of the summary exceeds the limited time, we
remove the shortest shot. We assume that the more motion
a shot contain the more time it requires to sum it up. Hence,
as long as the summary is not long enough, we increase the
duration of shots that contain the most motion.

In this way we guarantee that the duration of a summury
does not exceed the limited time.

Once the time is divided between shots in this way, we
sample each shot by uniformaly selecting the number of
frames assigned throughout shot.

6. RESULTS
To evaluate the TRECVID 2008 Rushes Task, the NIST

considers 8 criteria : DU - duration of the summary (sec),
XD - difference between target and actual summary size
(sec), TT - total time spent judging the inclusions (sec),
VT - total video play time (versus pause) judging the inclu-
sions, IN - fraction of inclusions found in the summary, JU -
Summary contained lots of junk, RE - Summary contained
lots of duplicate video and TE - Summary had a pleasant
tempo/rythm.

Regarding the visual aspect of summaries, our results are
not good, we are ranked 37th over 43 runs for TE. We can
conclude that our frame selection consisting of uniformely
sample shots are not a good choice. Indeed, summary re-
sulting are very jerking. Moreover, this effect also makes
difficult the understanding of our summary, that also affects
our ranking for TT and VT (respectively 38th and 34th).

Our results for IN and RE are very promising, we are
ranked 18th and 17th. Indeed, all our scheme is based on
the detection and removal of duplicate shots. The fact that
we are properly classified for these two tasks shows that

we have a good trade-off between non-detection and false
detection.

Despite the fact that we are classified 40th for effort con-
suming with 15236,2 sec on average per summary, the strong
point of our method is that we have proposed a very fast
scheme based on LSH to built summary. Indeed, once the
features are extracted, our system creates the summary in
less than 12 sec (for junk frame filtering, redundant shot
detection and frame skimming) when run on a 3.2GHz pro-
cessor and 8Go of main memory. We explain this difference
of time by the fact that the program used to extract both
HSV color histogram and phase correlation, is developed
with Matlab whitout optimization. We can reasonably hope
to decrease the computational time by a factor 10 by opti-
mizing the program and reach a factor 100 by rewritting the
program in C.

7. CONCLUSIONS
To summarize the video content, we proposed a system

using mainly one simple global descriptor, HSV color his-
togram, as input of an approximate clustering based on
LSH to reach good computational performance. Our sys-
tem gives encouraging results for redundancy removal and
relevant video fragment extraction. We use a classic skim-
ming process, to adapt the frame sampling rate in each rele-
vant fragment, based on an average motion estimation pro-
vided by our phase correlation descriptor. However, our
frame sampling rate, for each summarized fragment, pro-
duces parkling effects and thus provided us with a low score
for ”pleasant rythm/tempo” criterion. The computational
power of LSH approach allow us to further consider larger
or more complex features which should increase the precision
of the semantic fragment extraction and consequently facil-
itate the skimming process and improve the visual quality
of our summaries.

8. REFERENCES
[1] A. Andoni. E2lsh. http://www.mit.edu/∼andoni/LSH/.

[2] G. Camara-Chavez, M. Cord, S. Philipp-Foliguet, F. Precioso,
and A. de Araujo Albuquerque. Robust scene cut detection by
supervised learning. EUSIPCO, 2006.

[3] F. Chen, M. Cooper, and J. Adcock. Generating
comprehensible summaries of rushes sequences based on robust
feature matching. ACM int. workshop on TRECVID video
summarization, pages 30–34, 2007.

[4] O. Chum, J. Philbin, M. Isard, and A. Zisserman. Scalable near
identical image and shot detection. ACM CIVR, pages
549–556, 2007.

[5] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. Symposium on Computational Geometry, pages
253–262, 2004.

[6] A. M. Ferman. Two-stage hierarchical video summary
extraction to match low-level user browsing preerences. IEEE
Trans. on Multimedia, 5(2):244–256, 2003.

[7] Y. Gong and X. Liu. Summarizing video by minimizing visual
content redundancies. IEEE ICME, 2001.

[8] Y.-H. Gong. Summarizing audio-visual contents of a video
program. In EURASIP JASP, 2003.

[9] R. L. A. Hanjalic and J. Biemond. Automated high-level movie
segmentation for advanced video retrieval systems. IEEE
Trans. CSVT, 9(4):580–588, 1999.

[10] P. Indyk and R. Motwani. Approximate nearest neighbors:
towards removing the curse of dimensionality. 30th Symposium
on Theory of Computing, pages 604–613, 1998.

[11] B. T. Truong and S. Venkatesh. Generating comprehensible
summaries of rushes sequences based on robust feature
matching. ACM int. workshop on TRECVID video
summarization, pages 30–34, 2007.

