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ABSTRACT

In this paper, we tackle the problem of detecting drawn symbols in
old maps. We propose a novel approach that combines powerful
low level descriptors to represent the local content of the objects,
and contextual features to overcome the local analysis ambiguity.
Our contribution is two-fold. Firstly, we propose a novel contextual
feature adapted to our problem, where the context is integrated at
two levels. In a close neighborhood, a local analysis is carried out
to remove visual ambiguities between symbols. In a larger extent,
co-occurrence statistics between classes are stored. Secondly, we
propose an entire processing chain for learning and detection. The
proposed method is evaluated on real french maps from the 18th

century. The experiments show the efficiency of the detection sys-
tem, and validate the relevance of the proposed contextual feature to
improve detection performances.

Index Terms— Object Detection, Contextual Features, Pattern
Recognition

1. INTRODUCTION

Object detection in images is an important task in computer vision
and has a huge area of applications. In this paper, we are interested
in detecting symbols in old french maps drawn by Cassini in the
18th century. This research are part of the ANR project GeoPeu-
ple, in partnership with EHESS/LaDéHis 1 and IGN/COGIT 2. Each
map has been drawn manually, and 181 maps have been produced to
cover the whole french territory (Fig 1). In that context, automatic
object detection is mandatory to prevent the manual annotation in
such a huge database. In line with the GeoPeuple 3 project, this au-
tomatic detection may help the creation of an historical geodatabase
useful for demographers to study the French population evolution
from 1750 to present, and more specifically the relationships be-
tween landscape and demography during 2 centuries.

In this work, we focus on the detection of 8 different classes of
symbols presented in Fig 2. In natural images, state of the art ap-
proaches for object detection are based on sliding window strategies
[1], that scan the whole image and use learned classifier to decide if
a given image region contains the object of interest. We propose here
to evaluate this sliding window mechanism in our old map database,
and report promising results for this first level of detection. How-
ever, the geometric structure of some classes of symbols can be very
simple, like calvary or watermill, which basically look like crosses
and circles. In these situations, the visual local information is not
enough discriminant to accurately classify the symbol against the
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Fig. 2. Symbol examples for 8 classes. All the symbols are drawn
by hand.

large number of similar shapes in the background or in other sym-
bols. Therefore, incorporating contextual feature is necessary to im-
prove detection performances.

The literature about context modeling is vast, and a general re-
view is outside the scope of the paper. Some methods [2, 3] use very
local context based on pixel analysis. These methods are not directly
connected to our problem, since we want to encode a contextual fea-
ture based on the output of an object detector. A good review about
context for object detection is available in [4]. In a finer-grained
analysis, the method on context for object detection can be classified,
as proposed in [5], between Stuff-Thing, Stuff-Stuff, Thing-Thing.
Another important criterion to distinguish methods is to consider if
the context is defined a priori as in [6, 7, 8], or if it is learned from
data [9, 10, 11]. We propose to learn a Thing-Thing contextual ob-
ject detector. The approach the most connected to ours is the work of
Felzenszwalb et.al. [10, 11]. We improve their contextual feature by
incorporating spatial information, and use a second level of context
encoding based on a co-occurrence statistics analysis.

In this paper, we present a new system to learn spatial contextual
information and then use it for detection or to refine a visual classifi-
cation. We propose a two-level system detailed in section 3: we use
HOG features for the first level of the detection, and show that they
offer a good description of the local appearance of old drawn map
symbols. Then, the second level analyses the output of the first level
classifier, extract contextual feature and provide a final decision to
classify each image region. This process is detailed in section 2.

2. PROPOSED CONTEXTUAL DESCRIPTOR

As previously mentioned, running sliding window detectors inde-
pendently inevitably leads to some misclassifications. Some obvious
cases of visual local ambiguities are shown in Fig 3.a: for example,
a calvary detector will happily fires at the top of churches. To solve
this visual ambiguities, we propose to add, in a second detection

http://geopeuple.ign.fr/


Fig. 1. Cassini digitized map with a zoom.

step, a contextual information. This is done by incorporating relative
position information between classes in a very close neighborhood
of the detection window, as described in section 2.1. Afterwards,
we store statistics of co-occurrences between classes in a larger ra-
dius (section 2.2). As shown on Fig 3.b, there is always text near a
symbol. Therefore, the fact that the calvary classifier often yields an
alignment of good matching scores on text structure can be used as
contextual cues. This spatial distribution around the first detection
should help a lot to better identify symbols.

(a) (b)

Fig. 3. (a) Visual ambiguities between classes. (b) Calvary detec-
tion close to the considered symbol.

2.1. Small neighborhood: local context

Our extraction of the local context was inspired of the work of
Felzenswalb in [10], but we enrich his contextual description with a
position information.

We consider a region of the map where k classifiers (C1, ..., Ck)
based on visual appearance were applied. The output of these clas-
sifiers give k sets of windows (D1, ..., Dk), where each window
d ∈ Di is defined by its center g = (gx, gy) and its classification
score si. Let wj = (gj , sj), j ∈ [1, k] be a window that we want
to classify and d∗i be the highest scoring window of Di in an area of
radius dmax from gw. We define our close context of a class i for
wj by:

ni(wj) = (σ(d∗i ), dx, dy)

where σ(d∗i ) is defined by:

σ(d∗i ) =

{
d∗i .s if d∗i exists
−1 if no occurrence of the class i

(1)

For the case i = j, d∗i cannot overlap with wj . dx, dy is a couple
of values defining relative positions of d∗i from wj , normalized as
dx, dy ∈ [0, 1]. The local context of wj for the k classes is defined
by the concatenation of close context of each class:

N (wj) = (sj , n1(w), ..., nk(w))

2.2. Large neighborhood: global context

In a second time, we want to add the contextual information con-
tained in a larger radius. We describe the more distant context by
series of crowns, which are assigned for each statistic on occurrence
of every class. Let (R1, ..., Rn) the n rings around the window wj .
The minimum radius of the first crown is dmax, and the maximum
radius of the last crown is rmax. The thickness of each one is given
by:

rmax − dmax

n

We define our large context, for a class i, of wj by:

li(wj , n) =

 ∑
di∈R1

si, ...,
∑

di∈Rn

si


The global large context of wj with k classes is defined by:

L(wj , n) = (l1(w, n), ..., lk(w, n))

Our final feature of a window wj is then:

F(wj , n) = (N (wj),L(wj , n))

Fig. 4. Representation of the global context.

Our feature vector is L2 normalized. This descriptor possesses
three hyper parameters. The maximum distance of the close context,
that is also the minimum radius of the crowns dmax, the maximum
radius of the global context rmax and the number of ring n.



Fig. 5. Method’s overview.

3. SYSTEM DETECTION FOR A WHOLE MAP

In this section, we present a whole and effective detection system
using contextual feature. Our processing chain, shown on Fig 5, is
divided into several parts. Learning and detection are performed in
two steps.
The first step is based on an efficient descriptor, the Histograms of
Oriented Gradients (HOG) [1], to describe the local appearance of
symbols. This representation is fast and effective for all type of ob-
jects detection in complex images [4]. Therefore it seems relevant
to use HOG for black and white symbols which are rich in gradients
information. A database is made for each class, positive examples
are the annotations and negatives examples are the windows that do
not overlap them. When training our model for symbols detection,
we have a very large number of negative examples. Thus we use a
classical approach for data learning in computer vision, and we con-
struct a hard negatives database with a subset of negative examples.
We fed a SVM classifier for each class with these databases, that
creates our first level of classification.
The second step is to form the contextual feature as described in
the previous section. Outputs of the visual detection performed with
HOG are the set of windows (D1, ..., Dk). Contextual classifier can
be used in two different modes:

• Detection: perform the sliding window on the whole map, as
the first level classification. By using contextual feature in
this way, it allows to recover false negatives of the first level,
at the risk of emergence of new false positives.

• Filtering: we don’t take into consideration windows with a
negative visual score. This mode is more faster, but it is im-
possible to recover false negatives.

4. EXPERIMENTS AND RESULTS

An evaluation of our algorithms for the 181 Cassini old maps is pro-
posed. They are digitized at 600 dpi, providing high resolution im-
ages with a size of about 25000 pixels by 17000 each. We carry out
a quantitative assessment on one map for which we have annotations
made by the National Geographic Institute (IGN). The groundtruth
is manually labeled and the number of annotations is identified in the
table 6.

Calvary Church Castle Chapel Watermill House Hamlet Windmill
55 285 100 23 182 127 118 47

Fig. 6. Number of annotations.

Boxes have a size of 41 x 56 pixels for the smallest class (cal-
vary), and 121 x 126 pixels for the largest class (church), it represents
about one hundred million windows per class to classify during the
detection with a step of 2 pixels.

(a) (b)

Fig. 7. Results obtained with resolved visual ambiguities, (a) cal-
vary detection with HOG only, (b) calvary detection with context.

We evaluate four types of features: the histogram of oriented
gradients, the feature used by Felzenswalb in [10], our close con-
text descriptor and finally the full feature which combines local and
global context. Our HoG descriptor follows the configuration of [1]
with a window cut in 4 ∗ 4 cells, and gradients voting for a 9 bins
histogram evenly space over 0◦ to 180◦. Then cells are grouped
with 2 ∗ 2 blocks, and the final feature is L2-Norm. For the feature
of [10], it is comparable to our close context description, without the
position information, but scores are renormalize with a logistic func-
tion σ(x) = 1/(1 + exp(−2x)). For the close context description,
we set the dmax to 70 pixels, and for the large context description,
we set the number of crowns n to 3 and rmax to 500 pixels, which
seems to give better results.
The map is split into three equal parts to make training, test and
validation subsets. We perform the training of the two levels of clas-
sification on the same data. The validation database allows to adjust
hyper parameters of the section 2.2. We apply the two classifiers to
make a comparison between the two levels, visual and contextual,
on the set of maps. As expected, see Fig 7.a, the visual classification
for the class calvary have some ambiguities at the top of the church.
After adding context information, Fig 7.b, our classifier successfully
filters the false positives of the first level.
Shown in the table 8.a, the quantitative results of our methods in de-
tection and filtering mode on one map. As we can see, HOG gives
already good results with a mean average precision of 45% for highly
unbalanced database between positives and negatives. Moreover, we
notice that our contextual feature is more suited for filtering.
In columns detection and filtering of the table 8.a there are best re-
sults for a fixed set of parameters for each method. A lot of different
parameter sets have been tested for each method (last column of 8.b)
but only best results are finally kept for each class in filtering mode.
In detection and filtering mode, with dmax fixed to the same value



Detection Filtering
Classes HOG Felz [10] Close Large Felz [10] Close Large
Calvary 40.8 43.2 41.2 43.7 40.2 36.1 34.6
Church 57.0 53.8 58.4 51.8 53.8 59.8 59.7
Castle 9.1 3.7 9.1 13.1 3.7 13.3 14.0
Chapel 17.1 14.9 17.5 14.4 15.0 41.6 41.6

Watermill 91.1 79.2 90.8 91.1 77.7 90.4 90.4
House 49.0 51.7 51.0 49.1 51.2 53.0 55.3
Hamlet 51.3 51.7 51.6 48.3 49.4 52.0 50.2

Windmill 51.7 45.1 51.6 52.0 45.1 46.5 54.3
MAP 45.8 42.9 46.4 45.4 42.0 49.0 50.0

(a)

Max
Classes Felz [10] Close Large
Calvary 40.7 41.6 44.7
Church 56.7 59.8 59.9
Castle 15.1 13.3 14.4
Chapel 15.0 45.8 50.0

Watermill 85.3 91.2 91.1
House 51.2 53.0 56.0
Hamlet 51.6 53.1 52.9

Windmill 48.3 50.0 56.0
MAP 45.4 50.4 53.1

(b)
Fig. 8. (a) Comparative results between HOG and contextual descriptors with fixed hyper parameters (b) Best results with a different set of
parameters for each class.

for the [10] and our close context, performances decrease for [10]
when they increase for us. We assume that only presence informa-
tion in a close neighborhood is not relevant in our case and brings
more noise than information. The global context gives best results
for a fixed set of parameters in filtering mode. By selecting best
hyper parameters for each class, we can see a significant improve-
ment of the performances. Our future work shall focus on making
this task automatic. The Fig 9 summarizes results for hamlet cate-
gory, and shows that the use of context can significantly improve the
detection accuracy.

Fig. 9. Recall precision curve for the class hamlet.

5. CONCLUSION

We have proposed a complete system for symbol detection and
recognition in old maps. Our approach is based a novel contextual
feature modeling adapted to this specific type of detection problem.
The spatial context is integrated at two levels around a detected
symbol: in a small neighborhood to remove visual ambiguities be-
tween symbols, and in a larger area with co-occurrence statistics
between classes. Our approach gives outstanding results on a large
dataset extracted from Cassini maps, and outperforms state of the art
methods on this type of detection problems. The main direction for
future works concerns interactive learning [12, 13] that could help
to better focus on difficult examples and boost the full annotation
process of the 181 Cassini maps. Moreover our current method
is based on HOG only for the visual classification, and combining
visual features like in [14] would improve our results. Finally, to
improve the global contextual description further investigation about
including orientation information or using recent geographic data is

definitely a promising research direction.
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