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Abstract In this article, we propose a new video object retrieval system. Our approach is based on a Spatio-
Temporal data representation, a dedicated kernel design and a statistical learning toolbox for video object
recognition and retrieval. Using state-of-the-art video object detection algorithms (for faces or cars, for ex-
ample) we segment video object tracks from real movies video shots. We then extract, from these tracks,
sets of spatio-temporally coherent features that we call Spatio-Temporal Tubes. To compare these complex
tube objects, we design a Spatio-Temporal Tube Kernel (STTK) function. Based on this kernel similarity we
present both supervised and active learning strategies embedded in Support Vector Machine framework. Ad-
ditionally, we propose a multi-class classification framework dealing with unbalanced data. Our approach is
successfully evaluated on two real movies databases, the french movie “L’esquive” and episodes from “Buffy,
the Vampire Slayer” TV series. Our method is also tested on a car database (from real movies) and shows
promising results for car identification task.

Keywords Kernel design · Object recognition · Video object retrieval · Spatio-Temporal Tube Kernel

1 Introduction

In the context of video object category classification, tasks become more and more challenging, as some of
the 20 “features” from the high-level feature task from TRECVid 2009 campaign illustrates it:

– Classroom: a school - or university-style classroom scene. One or more students must be visible. A
teacher and teaching aids (e.g. blackboard) may or may not be visible.

– Person-playing-a-musical-instrument - both player and instrument visible
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– Bus: external view of a large motor vehicle on tires used to carry many passengers on streets, usually
along a fixed route. NOT vans and SUVs

– Person-riding-a-bicycle - a bicycle has two wheels; while riding, both feet are off the ground and the
bicycle wheels are in motion

– ...

The “high level features” or video object categories to be classified and retrieved are not only classes of ob-
jects with wide appearance variability (e.g. person, vehicle...), but also classes representing abstract concepts,
such as events or actions. In order to handle such complex categorization problems, we need a fast and ef-
ficient content-based video retrieval system, which depends on good video object detection, relevant visual
features extraction and powerful machine learning techniques. In our work we will consider that the video
object detection task is achieved by any recent and very efficient algorithm from state-of-the-art works.

In the framework of retrieving actors in movies, Everingham et al. in [4] proposed to represent an actor
by a “face track”, represented by a set of face descriptors and clothing descriptors. The matching between
two face tracks is based on min distance between the two sets of descriptors and on quasi-likelihoods to
obtain posterior probability of matching. In a recent work, Kumar et al. [8] proposed a novel algorithm to
find faces in databases of more than 3 millions of images and even distinguish different facial expressions. In
[1], Apostoloff and Zisserman extended the descriptors of face track aforementioned with 4 additional facial
features and preprocessed the data before the matching process. Furthermore, the matching is not anymore
based on evaluating the maximum of posterior probability of a label but on random-fern classifiers. In [6]
Guillaumin et al. proposed an approach based on a graph of 13 facial features for single-person retrieval and
multi-person naming. In [17] Sivic et al. introduced multiple kernel learning (MKL) based on facial features
as in [1,4,6].

In our work, we also consider face tracks in video as the data to represent and classify. However, we
propose a framework to get rid off introducing prior knowledge on the structure of video objects of interest. In
case of actor face for example, we want to avoid to use facial models to target a more generic representation.
We use a SVM classifier combined with kernel similarity functions for the retrieval and recognition task.
Instead of considering classical supervised approaches, our kernel-based machine learning method allows us
to provide either a supervised classification of the data or, exploiting recent advances in machine learning
techniques, an interactive retrieval system, based on active learning strategies.

In our previous work [25], a video object is represented by a set of temporally consistent chains of
local descriptors SIFT (a bag of bags of features). A “kernel on bags of bags” is designed to compare the
similarity of two video objects. In [24], the video object is represented by a “tubes” of visual features as
well as spatial location of features. The design of a new kernel embedding this spatial constraint has been
proved to be more powerful for actor retrieval in a real movie. In this paper, we extend the actor retrieval of
[25,24] to multi-class object recognition task. Our system is not only applied to category “person”, but other
category like “car model”. We obtain very interesting results for actor multi-class recognition and exhibit the
generalization capability of our approach to car model retrieval.

This paper is organized as follow:

– In section 2, we introduce spatio-temporal coherency in the data representation, which considers a video
track as an entire object instead of a set of individual images or key-frames [6]. From an object video
track, we extract a set of spatio-temporally consistent chains of local descriptors SIFT, that we call a
“Spatio-Temporal Tube”.

– In section 3, we design a kernel “STTK” dedicated to our “Spatio-Temporal Tube” data representation.
– In section 4, we describe our kernel-based SVM classification framework for both two-class retrieval task

and multi-class recognition task. We also describe how to deal with unbalanced training data, which is
one of the undesirable problem with SVM machine learning.

– In section 5, our approach is tested on two real movie databases: the movie “L’esquive” and episodes of
the TV series “Buffy, the Vampire Slayer”, as well as on a car database.

An overview of our system is presented in Fig. 1.
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Fig. 1 STTK kernel-based actor learning and retrieval and recognition system.

2 Spatio-Temporal Tube

2.1 Video tracks

For the databases “L’esquive”, faces of actors are detected by the algorithm AdaBoost of Viola and Jones
[20], extended by Lienhart and Maydt [9], and segmented by ellipses which approximate face contours [25].

For the databases “Buffy”, in order to make a fair comparison with the work done by Apostoloff and
Zisserman [1], the actor face extraction process for the TV series “Buffy” database is not computed and we
directly use face detection and tracking results provided by the authors: face position, scale, frame number,
with its ground truth label. In a recent work, Cour et al. [2] showed that a partially labeled data framework
could lead to obtain a very large set of such data with ground truth more easily. From the position and scale
factor of face region they provided for Episode 2 and 5 of season 5 of TV series “Buffy, the Vampire Slayer”,
we define an ellipse (instead of the usual rectangle) to approximate the contour of the face. We then extract
from each shot containing the face track made of the face regions in the successive frames.

2.2 Scale adaptive SIFT-based features

The first step of the feature extraction process is to detect points of interest and extract SIFT descriptors
automatically by Lowe [10] approach in each frame of the face track. One face track is described by a set
of vectors (several thousands of vectors for a typical track) where each vector is a 128-dimensional SIFT
descriptor representing the 16 8-bin histogram of image gradient orientations inside a 4 x 4 spatial grid
centered on one detected SIFT point. Our process of extraction and representation of video object is an
unsupervised process, without introducing any model or dedicated facial feature in the region of interest
pre-detected.

One of the main issues concerning the extraction of SIFT descriptors with original algorithm [10] lies in
the large variation in the size of face images in real movies, which cause large variations of SIFT descriptors
in face images, e.g. from several points to several thousand points per image depending on the original image
scale. For example, a foreground face track and background face track contain very different information
because of the different resolutions. Even in a same face track (of the same actor in the same scene), with
“zoom in” and “zoom out” of the camera, two face images in this same track might have a big difference
in terms of size (in our experiments it reaches a factor 10). When tracking similar SIFT points along a
face track, those variations avoid to match points which should be matched, leading thus e.g.. from several
tracked points to several hundred untracked ones. Fig. 2(a) shows example of SIFT feature extraction for
three different images representing large-scale, normal-scale and small-scale images. We can see that for
large-scale images, we extracted too many small-scale keypoints (that are not reliable features), together with
few large-scale keypoints (that are more reliable features). To reduce the irrelevant features and make the
algorithm tractable, the scales of images must be reduced. However, if we reduce all the images at a same
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proportion, there might be no feature extracted from small-scale images, see Fig. 2(b). To solve this scaling
problem, we use adaptive scale SIFT extraction, so that we can extract enough SIFT points even if the images
are small while reducing the number of irrelevant points extracted in big images, see Fig. 2(c).

(a) original scale (b) reduced scale (c) adaptive scale

Fig. 2 Comparing fixed scale and adaptive scale for SIFT extraction.

In our work, we use the codes of “SIFT++” of A. Vedaldi [19], which is based on the algorithm of [10],
to detect points of interest on face images and extract SIFT feature from these points. The SIFT algorithm
is based on a Gaussian pyramid of the input image. The Gaussian image is down-sampled by a factor of 2
after each octave to produce the difference-of-Gaussian images (see [10]). Setting the index of the first octave
“first-octave” to n = −1,0,1,2... make the base of the pyramid to be 2−n times of the input image, e.g. −1
corresponding to two times larger than the input image. We make the “first octave” parameter adaptive to the
scale of the face image by selecting n that limits the scale of the first octave within a certain range (50 to 100
pixels in width).

We extract also the spatial position of each SIFT points in the track, then normalize it with respect to the
size of the face image, to finally enrich SIFT points with their relative position in the track.

2.3 Optimized Spatio-Temporal feature extraction

An ideal face track should contain only consistent information to process face recognition. However, since
we do not preprocess the face tracks, the relevant SIFT points, present in almost each frame of the track (for
instance, SIFT on the nose, on the eyes or on a scar...), are mixed up with many other SIFT points which are
artefacts as lighting changes, occlusions (hair, glasses...), or video compression blocks, etc. In order to clean
up these false points of interest, a tracking process assuming the spatio-temporal coherency of relevant visual
features in the face track is used to eliminate non-persistent points in the face track.

One of the classic approach of SIFT points matching is to find the 2 nearest neighbors of each keypoint
from the first image among those in the second image, and only accepting a match if the distance to the closest
neighbor is less than 0.6 of that to the second closest neighbor (see [10]). In this paper, we propose successive
frame spatio-temporal coherency features tracking strategy for SIFT points matching. The tracking is done by
selecting from two consecutive frames the 40 pairs of best matched points with feature similarity (L2 distance
of SIFT vectors below 150) and spatial proximity (relative position below 0.2) and link them into chains. See
red lines of Fig. 5. There are two advantages of our tracking approach: First, we consider the spatio-temporal
coherency of relevant visual features of successive frames in the face track, because matching for successive
frames is more stable than matching for isolated images, as illustrated in Fig. 3; Second, as two successive
frames in a track are very similar, our matching of keypoint compute only the distances between keypoint of
similar position and similar scale (relative to face scale), that makes our algorithm much more efficient than
matching by computing all the couples of keypoints of the two images.

The tracking is based on the L2 distance between pairs of SIFT descriptors from two consecutive frames;
we will call this distance “SIFT distance”. In order to match the relevant points in a track, we should compute
for each couple of consecutive frames, the SIFT distances between all the possible pairs of SIFT descriptors
and fill a matrix as shown in Fig. 4(a). In order to reduce the computation time, we assume that two SIFT
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Fig. 3 Comparing of SIFT matching for isolated images and for successive frames. The numbers of these eight frames are
10156,10159,10163,10174,10176,10178,10181 and 10183 respectively.

descriptions of a temporally persistent point must be very similar in scale and position. Thus, we sort the
SIFT vectors by ascendant order of scale, then we do not compute the entire matrix as presented in Fig.
4(a) but we consider only pairs of SIFT points, of similar scale, whose SIFT distance will be around the
diagonal (10% of the size of the matrix). We effectively compute the SIFT distance for remaining pairs of
points with a position difference lower than 20% of the size of the face images, Fig. 4(b). From the remaining
pairs of SIFT points in the sparse matrix, we first keep pairs of points whose SIFT distance is lower than an
experimentally determined threshold (fixed to 150, which are selected by cross-validation on the training set
tracks of “L’esquive” database). Then, among those remaining pairs, we consider up to 40 of the best matching
pairs. The resulting matrix is presented in Fig. 4(c) where the remaining points represent the tracked SIFT
points between two consecutive frames.

Fig. 4 Matrix of distances for two consecutive frames (black points: nearest SIFT descriptors) (a) full matrix; (b) sparse matrix;
(c) selected matrix

All the pairs of matched SIFT points are linked into chains. These chains of matched SIFT points, ob-
tained from a face track, that we call a “tube”, hence represent the temporal coherent support of face infor-
mation. Such approach for SIFT point tracking is quite economic, from a time processing point of view.

Nevertheless, this first alignment of SIFT points is not relevant enough because some points of interest
are disappearing in some frames. In fact, when tracking similar SIFT points along a track, the condition
variations (scale, luminance, position, etc.) avoid to match points which should be matched, leading thus an
abundance of short chains in a tube. This causes redundant data representation and expensive computing.

We then propose “intra-tube chains tracking” technique [24] to obtain more consistent and more compact
chains extracted from each video track while reducing the number of chains and thus reducing computational
complexity. See green line of Fig. 5. The intra-tube tracking is achieved by matching two short chains through
their average SIFT vectors (L2 distance below 200 in our case) and the relative average positions (below 0.3
in our work). The matching chains are then considered as the same point tracked on the face and linked into a
long chain. Thus, the chains of SIFT descriptors become more consistent and the number of chains per tube
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Fig. 5 Intra-tube chain tracking. (Solid lines: consistent chains, dash lines: noise, green lines: link of two short chains)

is highly reduced. Such process provides quite stable SIFT points in the feature space as shown on Fig. 6(b)
(one line represents a 128-dimensional SIFT vector while in column you can see the variation of one of these
128 values along the chain).

2.4 Spatio-Temporal Tube data representation

As a result of our spatio-temporal coherent feature tracking, a video object is represented by a tube of con-
sistent chains of SIFT descriptors. To better represent this structural visual information, we introduce the
position of each SIFT point in the representation of points in the tube, so that comparisons of chains in “same
areas” (of a face) have a stronger impact on overall similarity than comparisons of chains from different areas.

We concatenate spatial positions after 128-dimension description of each SIFT to obtain 130-dimension
vectors and to provide tubes containing rich visual information, that we call “Spatio-Temporal Tube”. Three
examples of Spatio-Temporal Tubes are shown in Fig. 6 (a), (b) and (c), while Fig. 6 (d), (e) and (f) illustrate
the temporal stability of SIFT descriptors along its tracked chain.

Fig. 6 Spatio-Temporal Tube, SIFT points along the same chain are of the same color (a)(b)(c) examples of two face tubes and a
car tube; (d)(e)(f) stability of SIFT points along three chains.

3 Kernel design for Spatio-Temporal Tube

In our work, we design a kernel dedicated to our data representation, in order to compare the similarity of
two face video tracks, which are represented by two spatio-temporal tubes of features. This kernel is called:
Spatio-Temporal Tube Kernel (STTK).
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Let us denote Ti a tube, Cri a chain of Vlri “SIFT” vectors and Vlri a 130-dimension vector (128-dimension
SIFT vector Slri + 2-dimension spatial position Plri). Using set formulation: Ti = {C1i, . . . ,Cki} and Cri =
{V1ri, . . . ,Vpri}, We want to design a kernel function K(Ti,Tj) which will represent the similarity between two
tubes.

As presented in section 2, SIFT vectors from the same chain are spatio-temporally consistent. To reduce
the amount of data to be processed, we propose to factorize the SIFT tracked chains by representing each
chain Cri with a unique vector Cri: the mean of all the SIFT descriptors along this chain. It has to be noticed
here that the factorization process of SIFT tracked chains is not a simple averaging process of all SIFT vectors
along an interesting point into one mean SIFT vector. Indeed, although SIFT points are tracked along object
track in order to provide more temporally consistent chains, “the same” interesting point along object track
can lead to several chains depending on the variability of its SIFT description in this track or view angles
tolerated for the object, etc. This is illustrated on Fig. 6(b) with, for instance, a SIFT point extracted on Buffy
mouth: brown chain “becoming” dark green chain. We want to separate SIFT description from spatial position
in the “SIFT” vector Vlri in order to better handle each one of these features. This factorization and separation
process is achieved through two mapping functions:

φ f (Cri) =
1
p

p

∑
l=1

Slri = Sri (1)

providing the mean SIFT vector and

φp(Cri) =
1
p

p

∑
l=1

Plri = Pri (2)

providing the mean position vector.
We can prove that the similarity functions we are designing are valid kernels, using definitions, proofs

and properties on kernels from Chapter 3 in [16].
Proved it exists an embedding function Φ : T→ H, which maps any tube Ti to Φ(Ti) in a Hilbert space

H, one can define the kernel on bags K by a dot product in the induced space H:

K(Ti,Tj) =< Φ(Ti),Φ(Tj) > (3)

The “power” similarity function between bags K, is a kernel function if the similarity function between
chains kc is a kernel:

K(Ti,Tj) = ∑
r

∑
s

|Cri|
|Ti|

|Cs j|
|Tj| kc

q(Cri,Cs j), (4)

where |Cri| represents the length (number of frames) of the chain Cri, |Ti| represents the length of the tube Ti.
Indeed, if kc

q is a kernel, by definition there exists a mapping function φc such that:

kc
q(x,y) =< φc(x),φc(x) > .

Thus, we can rewrite K as:

K(Ti,Tj) = ∑
r

∑
s

|Cri|
|Ti|

|Cs j|
|Tj| < φc(Cri),φc(Cs j) > .

Then, using dot product bilinear properties:

K(Ti,Tj) =< ∑
r

|Cri|
|Ti| φc(Cri),∑

s

|Cs j|
|Tj| φc(Cs j) >,

which is still a dot product. We can then define a new mapping function such that:

Φ(Ti) = ∑
r

|Cri|
|Ti| φc(Cri).
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Thus, if kc
q is a kernel then K(Ti,Tj) is a kernel.

Let us focus now on the similarity function on “SIFT” Chains:

kc(Cri,Cs j) = k f (φ f (Cri),φ f (Cs j))kp(φp(Cri),φp(Cs j)), (5)

where k f is the feature similarity function between mean SIFT vectors of each chain and kp is the position
similarity function between mean position vectors of the same two chains. If k f and kp are kernels over
X xX then the product k f kp is also a kernel. Thus, if k f and kp are kernels, kc is a minor kernel and kc

q in
Eq.4 also.

Using the power q in the definition of K leads to a good approximation of max function which, despite
the claim in [21], turns out to be false since max function is actually not positive definite as demonstrated
by Siwei Lyu in the appendices of [11]. For this reason, from a theoretical point of view, it is not safe to use
max function as a kernel in an SVM. However, from a practical point of view, it might still achieve good
performances.

We have then to show that k f and kp are two kernel functions over (Cri,Cs j): We use the Gaussian χ2

kernel for the feature similarity function on chains:

k f (φ f (Cri),φ f (Cs j)) = exp
(
− 1

2σ2
1

χ2 (
φ f (Cri),φ f (Cs j)

))
. (6)

Let us remind that if φ is a mapping over X and if k is a kernel over X xX then k(φ(x),φ(y)) is a kernel
function. Thus, using φ f the mapping function defined in Eq.1, k f in Eq.6 is a kernel function.

The position part of the minor kernel on chains kc is defined as the following similarity function on the
relative positions of the chains:

kp(φp(Cri),φp(Cs j)) = exp
(
−‖φp(Cri)−φp(Cs j)‖2

2σ2
2

)
= exp

(
− (xri−xs j)

2 +(yri−ys j)
2

2σ2
2

)
, (7)

where (xri,yri) = φp(Cri) is the mean position of SIFT points along chain Cri of tube Ti. Combined with the
mapping function φp defined in Eq.2, kp in Eq.7 is a kernel function.

Let us remind that the position of a SIFT point is normalized by the size of the face image. The position
part kp introduces the importance of the comparison between two chains approximately at the same position,
e.g. left eye chain of tube Ti and left eye chain of tube Tj. For the comparison between two chains at much
different positions, e.g. left eye chain of tube Ti and mouth chain of tube Tj, the weight is reduced. Thus, the
importance of this matching in the evaluation of the similarity is also lowered.

One second effect of the kernel of Eq.4 that can cause problems is the influence of the the “size” of the
tube (the length of the video track and the size of face images in the track). Since the kernel is defined by
form of “sum”, the “bigger” the tube, the more chains it contains, hence the higher the value of the kernel
concerning the tube. For example, the kernel value between a tube of 100 chains and any other tube is almost
always higher than that between a tube of only 5 chains and any other tube. To remove this effect, one
technique is to normalize the kernel as described in Chapter 3 of [16]:

K′(Ti,Tj) =
K(Ti,Tj)√

K(Ti,Ti) ·K(Tj,Tj)
. (8)

After normalization of kernel, the similarity of each tube with itself is always 1, however large its “size”.
Again, the proof that K′ in Eq.8 is a kernel can be found in Chapter 3 of [16].
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4 Multi-class STTK SVM for object retrieval and recognition

We use a kernel-based SVM as classifier: the SVM is a robust and powerful classification technique for two-
class problems when data can be linearly separated; kernel functions enable the linear separation of data,
which cannot be linearly separated in the original feature space, by projecting them into a Hilbert space of
higher dimension.

For the multi-class classification task, we use the one-vs-all strategy, where N binary SVMs are trained
for solving a N-class problem. For each one of the q classes, we train a binary SVM classifier and get the
decision function:

uq(x) =
l

∑
i=1

αiyiK(xi,x)+b. (9)

The training process (finding the optimal αi) corresponds to a QP problem that we solve with the classic
SMO algorithm [14] which terminates when all of the Karush-Kuhn-Tucker (KKT) optimality conditions are
fulfilled. These conditions introduce a global bound C on αi values which set the trade-off between the largest
possible margin between examples and the number of errors allowed.

Then we normalize uq(x) into Rq(x) ∈ [−1,1], and defined it as the “relevance” of each example. Labels
are assigned to data according to the highest relevance among the N SVMs:

n = arg max
q=1,...,N

{Rq(x)}. (10)

If Rn(x) is over the confidence threshold, the label n is assigned to x.
One of the problems of the multi-class SVM classification is often to deal with unbalanced datasets where

negative examples far outnumber positive examples. An unbalance training dataset could cause the excursion
of separation boundary.

Many approaches have been used to deal with the unbalanced data. Biased Penalties [12,13,22] consider
different error costs for the positive (C+) and negative (C−) classes instead of the global classic cost C
mentioned previously. In our experimentation we use the Biased Penalties proposed by Morik et al. [12]:

C+

C−
=

N−

N+ , (11)

with N+ the number of positive samples and N− the number of negative samples.

5 Experiments

We have tested our STTK-based object retrieval and recognition system on three real movie databases and
obtained interesting results: (1) TV series “Buffy, the Vampire Slayer” with same tracked ground truth data
as in [1] to compare the performance of our actor recognition framework with facial feature based approach
and key-frame based approach, to test our method of balancing unequal classes, to evaluate our adaptive
SIFT feature extraction and to evaluate our system against occlusion; (2) Movie “L’esquive” to compare the
performance of our actor retrieval framework with our previous works [24,25]. (3) “Car model” database to
evaluate the capacity of our system to be applied to other video object categories.

From the face tracks (respectively car tracks) of these three databases, we extract sets of spatio-temporally
coherent features, tubes of consistent chains of SIFT descriptors, with the mean normalized position of SIFT
points in each chain. These visual features have been used as input to the retrieval system RETIN [5], with
our STTK kernel for SVM core.



10

5.1 Actor recognition on TV series “Buffy”

The database “Buffy” consists of episodes 2 and 5 from season 5 of the TV series “Buffy, the Vampire Slayer”,
and contains 2462 tracks over 12 actors. The tracks vary in length from 1 to 404 frames, and there are 53032
labeled face detections in the database.

The two experimental scenarii on “Buffy” are precisely the ones defined in Apostoloff and Zisserman
work [1]: the first is the intra-episode recognition, we train our classifiers on the 159 training tracks of episode
2 season 5, and test them on all other tracks of the same episode that are at least 10 frames long (constraints
from [1]); the second is the inter-episode recognition, we used the 533 tracks from episode 2 season 5 (training
tracks and testing tracks of the first scenario) to train the classifiers and then test them on the other episode,
episode 5 season 5, which contains 482 tracks of at least 10 frames.

The average number of SIFT chains extracted from a track is 68, varying from 1 to 253. We then put
these tubes of SIFT vectors into our multi-class SVM machine learning system for object recognition using
our STTK kernel functions of Eq.4, 5 and 8. In our work, we set parameters q = 2,σ1 = 3,σ2 =

√
0.05, which

are selected by cross-validation on the training set tracks from episode 2 season 5 of “Buffy” database.

5.1.1 Evaluation of STTK-based approach

We use the test set tracks from episode 2 season 5 of “Buffy” movie to: evaluate adaptive SIFT feature
extraction, test our method of balancing unequal classes, and compare our system with key-frame based
approach.

For the evaluation of our adaptive SIFT feature extraction, we test on different way of extraction: with or
without intra-tube tracking as described in section 2.3, with fixed scale (first-octave n = 0) or with adaptive
scale (first-octave n = ...− 1,0,1,2...) as described in section 2.2. As showed in Fig. 7(a), the intra-tube
tracking process obtains more consistent chains extracted from each video track, thus increases the precision
while reducing the amount of data (number of chains from 82 to 65). With scale-adaptive SIFT feature
extraction, we extract almost the same average number of chains per tube (from 65 to 66) while improve
the precision because of the enhancement resolution for minor images and the reduction of noise for larger
images.

For the evaluation of balancing unequal classes, we test respectively with same penalties C (no balancing)
and with Biased Penalties C (balancing). Fig. 7(b) shows the difference of before/after balancing training data
with Biased Penalties. The precision/recall curve of balanced training set is much better than that without
balancing process.

To compare with key-frame based approach for recognition, we select manually the best representative
image for each track of episode 2 season 5 of “Buffy”. We test on the database and select best parameters for
key-frame based approach. We use same parameters of SIFT extraction as STTK based approach to extract
SIFT features from the key-frame of each track. The average number of SIFTs in a tube is 48, varying from
9 to 117. We use the same configuration of kernel of that in STTK-based approach replacing two chains Cri
and Cs j by two SIFT vectors Sri and Ss j. See Fig. 7(c) for the comparison of key-frame based and STTK
based SVMs. The STTK based system is much better than the key-frame based one, illustrating that the
factorization of SIFT chains is not equivalent to a key-frame based approach.

5.1.2 Comparison with facial features based approach

For the comparison with the Random-ferns approach proposed by Apostoloff and Zisserman [1], which is one
of the facial features based approaches, we test our multi-classes actor recognition system on two same sce-
narii as in [1]: intra-episode and inter-episode actor recognition. Our precision/recall curves of intra-episode
and inter-episode are showed in Fig. 8 (continuous red lines). We have extracted Precision of Random-ferns
approach for several Recall rates from the curves of [1] and reported in Table 1 which illustrates that our
approach performs better than Random-ferns approach. As explained in [1], the intra-episode performs bet-
ter than inter-episode due to the “ABAB shots” that are present in the same episode, e.g. two alternate view
angles during a face to face conversation.
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Fig. 7 Precision/recall curves for actor recognition on “Buffy” database. Recall is the proportion of tracks assigned labels at a
given confidence level, and precision the proportion of correctly labelled tracks.(a) evaluation of adaptive SIFT extractions and
intra-tube tracking; (b) evaluation of balancing; (c) comparing key-frame based and STTK based approach.

Table 1 Quantitative precision results at different levels of recall.

Intra-episode Inter-episode
Recall 20% 40% 60% 80% 100% 20% 40% 60% 80% 100%
Random-ferns 0.98 0.94 0.78 0.68 0.6 0.9 0.8 0.75 0.65 0.55
Proposed method 1 0.97 0.91 0.81 0.7 0.91 0.85 0.76 0.71 0.65

A sample set of identification results of our STTK based actor recognition system is showed in Fig. 9.

5.1.3 Robustness of data representation to occlusion

Facial occlusion is one of the challenging problem for face recognition. It has been already shown in [3] that,
given a registered face image, the facial occlusion causes only a small drop in local approaches. To illustrate
the robustness of our approach against occlusion, we create image with different occlusion: “half upper face”
images and “half left face” images, see Fig. 10. We use entire faces to train our system then compare multi-
class precision/recall of recognizing entire faces, respectively with upper half faces and left half faces. The
curves of Fig. 8 show that our system can overcome the problem of occlusion with a slight loss of precision.
This robustness to occlusion or partial data extraction is one explanation of our choice not to consider facial
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Fig. 8 Precision/recall curves for actor recognition on “Buffy” database: (a) intra-episode, (b) inter-episode.

Fig. 9 Sample identifications from episode 05-05. Green squares mean correctly matched faces, while red squares mean failure
cases.

features at first. Furthermore, this data representation is also more generic as the next experiments illustrate
it.

5.2 Active learning for object retrieval

This experiment exhibits the two main interesting properties of our framework. First, designing a kernel
function allows us not only to consider a recognition context as presented before but also to take benefit
from recent advances in machine learning techniques to propose an interactive video object retrieval sys-
tem. Second, our data representation and our STTK-based SVM retrieval system shows high potential of
generalization to other kind of video objects. Active learning is a powerful machine learning technique to
incrementally build the training set instead of preprocessing it. The high generalization capability and good
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(a) (b) (c)

Fig. 10 Test on occlusion: (a) entire face; (b) half upper face; (c) half left face.

user adaptability of active learning made this technique attractive as well for binary object recognition tasks
[7], as for relevance feedback in video [23]. Several strategies have been proposed to iteratively either mini-
mize the error of generalization [15] or focus on most uncertain data [18] in order to increase the size of the
training set.

5.2.1 Comparison with previous work on Film “L’esquive”

In order to detect faces from the french movie “L’esquive”, we use the extension of Lienhart and Maydt [9]
of the popular face detection algorithm based on AdaBoost proposed by Viola and Jones [20], implemented
in the OpenCV library. Faces are segmented by ellipses which approximates face contours [25]. This face
detection algorithm is actually the same as the one used in [1] and thus previous experiments on Buffy
database except that we do not perform any face tracking after detection. The database “L’esquive” contains
200 face tracks of 11 actors, with 54 images of face in each track on average. From the 200 tacks of the
database “L’esquive”, we extract tubes of chains of SIFT descriptors. The number of chains extracted in a
tube is either 169 (varying from 19 to 741) with short chains and fixed scale for the “first-octave” as in [25],
or 64 (varying from 16 to 260) with long chains and adaptive scale for the “first-octave” as in [24]. We then
put these tubes of SIFT vectors into our machine learning system using our STTK kernel functions of Eq.4,
5 and 8. In our work, we set the same parameters as for actor recognition (q = 2,σ1 = 3,σ2 =

√
0.05).

For the comparison with previous works, we train a binary SVM classifier for each actor on “L’esquive”
database with few examples: 2, 4 ... 20 examples are picked up randomly in the whole database but preserving
balance between positive and negative examples. The Mean Average Precision (MAP) on the whole database
of 200 tracks is computed for character “Lydia” (as in previous works) to evaluate the improvements of
introducing adaptive scale SIFT feature extraction, optimizing parameter σ1 and normalizing the kernel.

From Fig. 11(a) we can see that with the adaptive scale SIFT feature extraction, we have more information
for minor tubes and less noise for larger tubes, and thus obtain improvements on Mean Average Precision,
and reduce the average number of chains per tube from 169 to 52. The kernel normalization (which can deal
with the great variation of chains numbers in the tubes) and the optimization of parameter σ1 (which was set
to 1 in previous works by cross-validation on training set from “L’esquive” database) by cross-validation on
the larger training set from episode 2 season 5 of “Buffy database”, improves about 3% on Mean Average
Precision. On Fig. 11(a) we show that our STTK system incrementally learns the 3 most significant classes
from “L’esquive database“.

5.2.2 Car model active retrieval

We test our STTK-based object retrieval system on a database of car tracks containing 3 car models (volkswa-
gen beatle, volkswagen new beatle and mini cooper S), extracted by hand, from different movies “The Italian
Job” (both versions 1969 and 2002 remake) and “Herbie: Fully Loaded” (2004). We make the assumption,
as in many previous works [1,4,6], that an object detection algorithm is provided. The object detection step
is thus seen as a data pre-processing, and we focus on the objet retrieval task. In order to extract enough car
tracks, the movies we chose are movies in which cars get some kind of first role. The 52 car tracks vary in
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Fig. 11 MAP(%) for actor retrieval for the database “L’esquive”: (a) results for actor “Lydia”; (b) results of the latest STTK
version for the 3 most present actors “Lydia”, “Hanane” and “Crimon” and an average on these actors.

length from 6 to 155 frames for a total of 2143 images and 30,357 SIFT vectors. The average number of SIFT
chains extracted from a track is 103, varying from 3 to 283.

We use the same parameter values as for the previous actor retrieval task except for σ2 (higher) because
position prior is less relevant for cars. Indeed, if faces are meaningful mostly when captured in a frontal
position, cars in movies are meaningful from any view angle. Thus, including a spatial constraint on tracked
points is not relevant when view angles of the object in the tube are changing a lot.

We evaluate the performances of our system for retrieving different video objects with respect to small
sizes of training set using the same data representation and the same kernel function as for actor retrieval. We
train our STTK-based classifier for each car model. We focus on retrieval results for training sets of up to 8
examples picked up randomly in the whole database but preserving balance between positive and negative
examples. Results are reported for the 3 car models, using MAP (Mean Average Precision) statistics on Fig.
12. These results illustrate that our retrieval system achieves to learn, to classify the 3 different classes from
very few examples.
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Fig. 12 MAP(%) for the car model retrieval. The learning starts with one positive and one negative examples.
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5.2.3 Interactive learning car retrieval

Interactive learning [18] is a powerful active learning technique that interactively builds the training set using
annotations given by the user at each iteration. One of the most popular active strategy focuses on most
uncertain data [18]. In this experiment, we use this latter strategy.

Fig. 13 shows the interactive retrieval process of a car database. One car track is displayed with 4 frames
in order to better illustrate the variability of car view angles. First iteration, the user initializes a query on
Volkswagen Beetle (track with a green square on Fig. 13(a)), all the tubes are ranked regarding their similarity
to the query, 4 tubes among the 20 first displayed contain Mini Cooper S model (Fig. 13(b)); second iteration,
the user provides 3 more annotations with one more positive example(green squares) and two negative ones
(red squares on Fig. 13(c)); after only 2 iterations : there is 1 tube of Mini Cooper S model remaining among
the 20 first tubes displayed (Fig. 13(d)).

From our first tests on car model retrieval, we confirm the ability of our system to generalize, as it is in
terms of data representation and kernel design, to other video objects rather than just faces. We also illustrate
here the interest of designing kernel function as similarity measure in order to take benefit from all recent
advances in machine learning such as active learning strategies. We are currently considering to implement
recent boosting car detection algorithms to automatically extract more car tracks from movies, build a large
database of car tracks and make it publically available.

6 Conclusions

In this article, we have presented an efficient video object retrieval system, which considered video object
tracks as video objects. From each video object track, a set of spatio-temporally consistent chains of tracked
SIFT points is extracted. These sets are automatically filtered in order to optimize our data representation and
to define our “spatio-temporal tubes”. In order to handle such complex data representation, we have designed
a relevant kernel function, Spatio-Temporal Tube Kernel. We have integrated this kernel function in our multi-
class SVM which provides very interesting results on databases of real movies, allowing to address both actor
retrieval task and actor recognition within the same framework while dealing with unbalanced classes and
occlusion. Our approach has been successfully evaluated on two real movies databases, the french movie
“L’esquive” and episodes from “Buffy, the Vampire Slayer” TV series. Our method has also been tested on
a car database (from real movies) and showed promising results for car retrieval task. Future work will be to
embed generative models into our learning system using Bayesian kernels.

Acknowledgements We want here to thank a lot, Andrew Zisserman and Josef Sivic for providing us the data to compare our
results with theirs and for the very interesting exchanges we had on this work. We also want to thank Philippe-Henri Gosselin for
providing the codes of kernel-based SVM with active learning within the retrieval system RETIN.

References

1. Apostoloff, N.E., Zisserman, A.: Who are you? real-time person identification. In: BMVC (2007)
2. Cour, T., Sapp, B., Jordan, C., Taskar, B.: Learning from ambiguously labeled images. In: CVPR (2009)
3. Ekenel, H.K., Stiefelhagen, R.: Why is facial occlusion a challenging problem? In: Intl. Conf. on Biometrics (ICB’09),

LNCS, vol. 5558, pp. 299–308. Alghero, Italy (2009)
4. Everingham, M., Sivic, J., Zisserman, A.: Hello! my name is... buffy – automatic naming of characters in tv video. In: BMVC

(2006)
5. Gosselin, P.H., Cord, M.: Active learning methods for interactive image retrieval. IEEE Trans. on Image Processing 17(7),

1200–1211 (2008)
6. Guillaumin, M., Mensink, T., Verbeek, J., Schmid, C.: Automatic face naming with caption-based supervision. In: CVPR,

pp. 1–8 (2008)
7. Kapoor, A., Grauman, K., Urtasun, R., Darrell, T.: Active learning with gaussian processes for object categorization. In:

ICCV (2007)
8. Kumar, N., Belhumeur, P., Nayar, S.K.: Face tracer: A search engine for large collections of images with faces. In: ECCV

(2008)



16

9. Lienhart, R., Maydt, J.: An extended set of haar-like features for rapid object detection. In: ICIP, vol. 1, pp. I–900–I–903
vol.1 (2002)

10. Lowe, D.: Distinctive image features from scale-invariant keypoints. In: IJCV, vol. 20, pp. 91–110 (2003)
11. Lyu, S.: Mercer kernels for object recognition with local features. In: Technical Report TR2004-520. Dartmouth College

(2004)
12. Morik, K., Brockhausen, P., T., J.: Combining statistical learning with a knowledge-based approach-a case study in intensive

care monitoring. In: ICML, pp. 268–277 (1999)
13. Osuna, E.E., Freund, R., Girosi, F.: Support vector machines: Training and applications. Tech. rep., AI Memo 1602, MIT

(1997)
14. Platt, J.: Fast Training of Support Vector Machines Using Sequential Minimal Optimization. MIT Press (1998)
15. Roy, N., McCallum, A.: Toward optimal active learning through sampling estimation of error reduction. In: ICML (2001)
16. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge, UK (2004)
17. Sivic, J., Everingham, M., Zisserman, A.: “Who are you?” – Learning person specific classifiers from video. In: CVPR

(2009)
18. Tong, S., Koller, D.: Support vector machine active learning with application to text classication. JMLR 2, 45–66 (2001)
19. Vedaldi, A.: URL http://www.vlfeat.org/ vedaldi/code/siftpp.html
20. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR (2001)
21. Wallraven, C., Caputo, B., Graf, A.: Recognition with local features: the kernel recipe. In: ICCV, vol. 2, pp. 257–264 (2003)
22. Wu, G., Chang, E.: Class-boundary alignment for imbalanced dataset learning (2003)
23. Yan, R., Yang, J., Hauptmann, A.: Automatically labeling video data using multi-class active learning. In: ICCV (2003)
24. Zhao, S., Precioso, F., Cord, M.: Spatio-temporal tube kernel for actor retrieval. In: ICIP. Cairo, Egypt (2009)
25. Zhao, S., Precioso, F., Cord, M., Philipp-Foliguet, S.: Actor retrieval system based on kernels on bags of bags. In: EUSIPCO.

Lausanne, Switzerland (2008)



17

(a)

(b)

(c)

(d)

Fig. 13 Results of our interactive car retrieval system, one track is displayed with 4 frames: (a) Query initialization; (b) First
iteration: tracks ranked regarding their similarity to the query; (c) Second iteration with one more positive example(green squares)
and two negative examples (red squares); (d) Results after 2 iterations.


