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Abstract

We discuss the use of histogram of oriented gradients (H@Ggriptors as an effective tool for
text description and recognition. Specifically, we propaselOG-based texture descriptor (T-
HOG) that uses a partition of the image into overlappingzwrial cells with gradual boundaries,
to characterize single-line texts in outdoor scenes. Tpetiof our algorithm is a rectangular im-
age presumed to contain a single line of text in Roman-likeasdtars. The output is a relatively
short descriptor, that provides an effective input to an SMaésifier. Extensive experiments show
that the T-HOG is more accurate than Dalal and Triggs’s nalgHOG-based classifier, for any
descriptor size. In addition, we show that the T-HOG is aaai¥e tool for text/non-text discrimi-
nation and can be used in various text detection applicatimnparticular, combining T-HOG with
a permissive bottom-up text detector is shown to outperftate-of-the-art text detection systems
in two major publicly available databases.
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1. Introduction

In this paper we address ttext/non-text classification probleffihe input data for this problem
Is a rectangular sub-image of a digital photo or video fraiflee output is a binary decision that
should be ‘TRUE’ if the sub-image contains a single line oft tea Roman-like characters and
‘FALSE’ otherwise. This classification is an important stepnany applications, such as optical
character recognition (OCR), indexing, classification ofgemand videos, and urban navigation
aids.

Towards this goal, we describe here ThBlOG, publicly available at [1], a novel gradient-based
descriptor that efficiently and accurately characterinesges of single-line texts. We show that a
support vector machine (SVM) classifier [2] using T-HOG dgxors can effectively solve the
text/non-text classification problem. In particular, wewstthat the combination of a “permissive”
text detector [3] with a T-HOG based post-filter outperfostae-of-the-art text detectors described
in the literature [4]. We also show how the T-HOG could be usgdself in a top-down sliding-
window text detector, and as a component of an OCR system.

The T-HOG descriptor is based on the gendratogram of oriented gradient¢éHOG) [5]
method for shape recognition, introduced by Dalal and &ifyy the detection of pedestrians in
photographs [5] and later used for other solid objects [@)].oider to capture the spatial distri-
bution of gradient orientations, Dalal and Triggs dividee target sub-image into a rectangular
grid of cells, computed a HOG for each cell, and concatenidiese HOGs to obtain a composite
descriptor, which they calle@-HOG

In 2004, Chen and VYuille [7] observed that different partshef text regions have distinctive
distributions of edge directions. This property was expliby other researchers who used the
R-HOG descriptors to characterize text regions [8, 9, 10].

The T-HOG descriptor is an improvement of the R-HOG, optimifar the specific task of

single-line text recognition. The differences include atcast normalization step, a different gra-
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dient formula, and a specific cell layout with blurred boumefa In this paper we determine ex-
perimentally the optimal cell tiling for text line recogiaih, which turns out to be a division of the
candidate sub-image into horizontal stripes.

The T-HOG and R-HOG descriptors have several parametersémabe tuned in order to
trade classifier accuracy for descriptor length. Smallescdptors are interesting, even if less
accurate, because they are more computationally efficrehtvaay help us identify the aspects of
the image that are most relevant for text/non-text diseration. In this paper we also compare the
performance of both classifiers experimentally for a wideggeaof parameters settings. The tests

indicate that T-HOG is more accurate than R-HOG for any desursize.

1.1. Statement of the problem

We consider here images obtained from a physical scenextfbjectis any part of the scene
carrying a string of two or more letters that are readabldédaptured image. We are primarily
concerned with texts written in the Roman alphabet or anysofatiants. See figure 1.
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Figure 1: Image of an urban scene with text objects.

Our text classifier assumes that the candidate text objedb&en identified and its projection
on the image has been bounded by a rectangle. Furthermassuimes that the text consists of
a single multi-character line. Isolated characters andilimal text should be joined or split into

separate lines or words.



1.2. Descriptor outline

Dalal and Triggs observed that a particular texture camdfeecharacterized by the distribution
of the directions of the image gradient. If the texture cstssof simple bi-level shapes (such as
Roman letters) then the orientations of the strongest gnegitell the orientations of the edges of
those shapes.

In order to capture the spatial variation of edge orientetj®alal and Triggs divided the input
sub-image into a rectangular grid of (possibly overlappicgjls with n, columns andz, rows,
which they grouped int@ x 2 blocks. Within each cell of each block they computed a histog
of the gradient directions (HOG) with, bins. In these histograms the gradient direction of each
pixel is weighted by the gradient’s magnitude and by a Ganédock weight maskT heir complete
descriptor (R-HOG) is a vector with,n,n, features, that is the concatenation of these, HOGs.
Note that up to four overlapping or coincident cells may c¢dlie same set of pixels, and each will
generate a separate HOG, with different block weight fumsti To reduce the effects of local
contrast and brightness variations, the HOGs in each blech@malized in a specific way.

Our T-HOG descriptor differs from the original R-HOG in someyldetails. Firstly, we use
different methods to extract the candidate text regionoinalize it for contrast, and to compute
its gradient image. Secondly, the cell grid is simplified fmaatition into horizontal stripes (i. e. we
fix n, = 1). Instead of overlapping blocks and block weight functianghe T-HOG the cells are
defined by overlappingell weight functions As a result, all internal cell boundaries are blurred,
unlike those of the R-HOG. See figure 2. As detailed in sectighekse changes significantly im-

proved the discriminating power for our target objects—gharine text regions of arbitrary length.

1.3. Structure of the paper

This paper is organized as follows. In section 2 we discusses@lated work. In sections 3
and 4 we precisely define the R-HOG and T-HOG descriptors, angpbare them experimentally.

In section 5 we describe some applications. Finally, inised@ we state the conclusions.
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Figure 2: Computing the T-HOG descriptor for a sample imagle ann, x n, = 1 x 3 cell grid andn;, = 24
histogram bins per cell. The imag&l, andV I, are the derivatives of the extracted and normalized sulgénia
The image®(VI) andp(VI) are the direction and magnitude of the gradient. The images); andw, are the cell

weights.
2. Previouswork

There is an extensive literature on tettection but most of it are dedicated to specific contexts
such as text detection in handwritten documents [11], tegbgnition in medieval manuscript
images [12], and license plate recognition [13, 14]. An exdtiae review of this work is far outside
the scope of the paper, and the reader is referred to theysofr#narma et al. [15], that covers some

advances in this area. Comparatively little has been puddistbout text/non-textlassification
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algorithms (our primary interest in this paper), althougéytare often present as components of
text detectors.

Text classification, or text verification [16], is often cast a texture classification problem,
and several texture descriptors have been considered Iidragure. For instance, in 2004, Kim
et al. [17] described a text recognizer that decomposesahdidate sub-image into a multiscale
16 x 16 cell grid and computes wavelet moments for each block. E&mtkls then classified as
text or not using an SVM. The ratio of text to non-text outcenee used to decide whether the
entire sub-region is text or non-text. In 2005, Ye et al. [ti8Fcribed a similar text recognizer
with multiscale wavelet decomposition but they used moabailate features including moments,
energy, entropy, etc.

In 2010, Zhao et al. [19] used an edge detector based on theetvaransform, and sparse rep-
resentation with discriminative dictionaries to distirgjubetween text-like and background-like
edge patterns. The authors then merged and trimmed thededadext-like edges into compact re-
gions by using an adaptive run-length smoothing algoritmorphological operations, and projec-
tion profile analysis. Also in 2010, Shivakumara et al. [26¢d 6 different gradient edge features
(mean, standard deviation, energy, entropy, inertia aaal loomogeneity) over image blocks, to
capture the texture property of the candidate text region.

In 2004, Chen and Yuille [7] proposed a descriptor that coedseveral features, including 2D
histograms of image intensity and gradient, computed sé¢glgrfor the top, middle, and bottom
of the text region, as well as for more complex subdivisiohthe image—389 features in total.
Recently some text detectors, such as the one described hyagoulos et al. [21] in 2010, have
used descriptors based on multiscialeal binary patterndLBP) introduced by Ojala et al. [22].
Their descriptor has 256 features.

The use of gradient orientation histograms (HOGS) as texti@scriptors was introduced by
Dalal and Triggs in 2005 [5] for human recognition. HOG dgsors are used in some recent

text recognizers, such as the one proposed in 2008 by Pan[®}. alhey partition the candidate
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sub-image into 14 cells, as proposed by Chen and Yuille, bupate for each cell a 4-bin HOG
complemented by & x 3 array of LBP features. Their complete descriptor has 14@feat

Other HOG-based text recognizers have been proposed in®08&nif and Prevost [8] for
single-line text, and by Wang et al. [10] for isolated Chinesel Roman characters as well as
single-line text. Hanif and Prevost's descriptor has 1%itees (16 cells each with an 8-bin HOG,
supplemented by 7 mean difference and 16 standard deviaatures). The descriptor of Wang et
al. has 80 features (8 cells with an 8-bin HOG, supplemenyet] tmean difference feature and 1
standard deviation over each cell).

All the HOG-based text recognizers above use vertical anugsdl as horizontal ones when par-
titioning the candidate region, apparently inspired by@fa¢al and Triggs paper [5] on pedestrian
recognition. Vertical cuts may be justifiable for isolatdtracters, but we determined experimen-
tally (in section 4.5) that they are not useful for multi-cheter texts of variable width. In such
texts, the gradient distribution is largely independertaizontal position. Therefore, we have de-
termined that a cell layout with vertical cuts increasesdilze of the descriptor without providing

any additional relevant information.

3. TheT-HOG descriptor

In this section we provide a detailed description of the T&i@escriptor.

3.1. Size and contrast normalization

The first step of the T-HOG algorithm is to extract the subgmand scale it to a fixed height
H, maintaining its original aspect ratio. The heiglitshould be large enough for the characters
to remain readable, but small enough to eliminate most ohthee and other spurious detail. For
print-style Roman characters (upper and lower case) weraatdhe best results witH between
20 and 25 pixels.



In this step we also convert the image from color to gray sctee the human visual system
uses only the brightness channel to recognize charactpesha3]. We observed that objects in
urban contexts are often obscured by non-uniform illuniamatind localized shadows or reflec-
tions. To remove these artifacts, we apply to each sawiphé the extracted sub-image a contrast
normalization procedur€ «— 0.5+ (V' — 1)/(30), wherep ando are the local mean and standard
deviation computed with a doubly binomial weight window afith 2H + 1. The raw deviation
o is adjusted by «— /o2 + €2, wheree is the assumed standard deviation of the image sampling

noise.

3.2. The basic HOG descriptor

By definition, the HOG descriptor of an arbitrary imalis a histogram of the gradient direction
0(V1I), computed at each pixel, quantized into a small numfeaf bins. Each pixel contributes
to the histogram with “mass” proportional to its gradientgniéudep(V 1), so as to de-emphasize
the random noise-related gradient directions that occélatrparts of the image. As observed by
Dalal and Triggs, iP(V ) does not fall at the exact center of a bin, the mass shouldsbetdited
between the two nearest bins by a linear splitting criteriém compute the gradiet /, we use

the simple difference schema recommended by Dalal and §;riggnely

Vi(z,y) = 5@+ Ly) — I = Ly), I,y +1) ~ I,y — 1))

For this formula, any non-existing pixel (outside the inpub-image) is assumed to be equal to the
nearest existing pixel. Note that we compute the gradidet gfayscale conversion and contrast
normalization, whereas Dalal and Triggs compute the gradiieeach color channel and then pick

the vector that has the largest norm. We then estimated thaeitude of the gradient by the formula

p(VI)(z,y) = \/max{0, |VI(z,y)| — £2}. Note that this formula is zero if the raw gradient norm
|VI]| is smaller than the assumed sampling noise deviation
The gradient directiofd(V ) is expressed as an angle in the raf@ér| radians. Dalal and

Triggs found that the recognition of some classes of objattsh as humans) was improved when
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opposite directions were considered equivalent [5], inclvitase the range 6fV 1) is [0, | radi-

ans. We found that this is not the case for text, where thetilmes had little effect.

Figure 3 shows the gradient magnitude and direction of fealated letters and their corre-
sponding HOG descriptors. The HOGs have 16 bins, eacl2bin6 radians wide, centered at
orientation®k7 /16 for k = 0,1,...,15. One can see that the HOG gives the predominant orienta-
tion of the letter strokes. For example, the histogram ofumded letter like ‘O’ is almost uniform
over the whole rang), 7|, while that of ‘I' has significant spikes in the directionsrpendicular

to the letter’s stem.

p(VI)
o,
i Sy
=

70
=
Q“‘

Figure 3: From left to right, in each row: the extracted imagé an isolated letter, images with its gradient magnitude

p(V1I) and gradient directiofi(VI), and the corresponding HOG.



3.3. Multi-cell HOGs

Images of complex objects typically have different HOGsiffedent parts. Images of humans,
for example, have different gradient orientation disttidws in the head, torso, and leg regions. It
was this observation that motivated Dalal and Triggs to usauli-cell HOG (R-HOG) for that
application.

This observation is also true for text images. Figure 4 shbeslistributions of edge directions
in the top, middle, and bottom parts of an image containingg@le-line of text. Note that the gradi-
ent orientations are predominantly O (or 180) and 90 (or 2é@yees, reflecting the predominance
of vertical and horizontal strokes. Also note that the togd battom parts of the image contain a
larger proportion of horizontal strokes, so that the graidién these parts are mostly vertical. The
middle part of the image, on the other hand, contains a lgyggyortion of vertical strokes, and
hence of horizontal gradients. In all three regions thegesmall amount of diagonal strokes due
to letters such as ‘R’ and ‘M’; and to the rounded parts of tsteich as ‘R’, ‘D’, and ‘O’. Finally,
note that opposite directions tend to be equally repredetie to the fact that the two edges of a

letter stroke have opposite gradients.

Figure 4: From left to right, the 16-bin HOG descriptors df thp, middle and bottom parts of a text sub-image. The

arrows indicate the contribution of specific letter strot@the histogram.
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For comparison, figure 5 shows the HOG descriptors of topdhaidnd bottom regions of some
non-text images. Note that several of these HOGs are guiti@ctifrom those of figure 4, and some

are significantly unbalanced. On the other hand, for an incagéaining an arbitrary single-line,
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Figure 5: Top, middle, and bottom 16-bin HOG descriptorsomhs non-text images.

multi-character text, the expected distribution of grati@ientations is largely independent of the
horizontal position along the line, as long as the segmeaiiyaed is wide enough to include one

whole character. This intuition was confirmed by extenskgegimental tests; see section 4.5.

3.4. Cell weights
If the cells were defined by sharp boundaries, their HOGs evolbinge drastically with small
displacements of the text inside the candidate sub-imagettar strokes would shift from one cell
to the next. See figure 6 (a,b). To reduce this problem, th€©GHells are defined by smootkell
weight functionsThis choice made the T-HOG more robust to such problemsfi@ae 6 (c,d).
Namely, letz i, Tmaxs Ymin, @NAYma, be the minimum and maximum pixel coordinates in the

sub-image. For each pixel with center coordindtes)), we define theelative pixel coordinates

X(z) = L~ Pmin Y(y) = _Y = Ymin 1)

Lmax — Lmin Ymax — Ymin
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Figure 6: Effect of sharp cell boundaries with two differenbpped sub-images of the same text object. (a,b) The
HOG descriptors of the top, middle, and bottom parts of eathimage using sharp cell boundaries. (c,d) The HOG

descriptors of the top, middle, and bottom parts of eachis#ye using smooth cell boundaries.

The weight of that pixel relative to a cell;; in columni and row; of the cell grid is then defined
asw;;(z,y) = w(X(x))v;(Y(y)), where each functiom; or v; is 1 at the nominal axis of the
respective column or row, and falls smoothly to 0 as one mawvesy from it. The gradient of

that pixel contributes to the histogram of céll; with massp(V1)(z,y)w;;(x,y), rather than just
p(VI)(z,y).

3.4.1. Gaussian cell weights

For the one-dimensional weights andv;, we tested different families of functions (Gaussian
bells, Hann windows, Bernstein polynomials, etc). In theggeements, the best results were
obtained with Gaussian bell functions. Specifically, #gr> 2 rows of cells, the vertical weight

function of cells in row;j is

1+2:U’0 (o))
(V)= (—pg 4 —2F0 %0y
UJ( ) 7( M0+(ny—1)] ) nya ) (2)
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wherep, = 0.01, oy = 0.5, and

202

v(p, 0,2) = exp (_M) 3)

Figure 7 shows these weights foy = 3. As a special case, if, = 1, the single vertical weight

0 1 0 1 0 1
Vo U1 V2

Figure 7: The T-HOG vertical cell weight functions, v,, andv, for n, = 3.

functionv, is equal to 1 everywhere. Note that the top edges of the topoetls and the bottom
edges of the bottommost cells are still sharp. The horizevegght functionsu; are defined in the

same way.

3.4.2. Emulating cells with hard edges
Hard-edged cells can be emulated in the T-HOG by defining &auttion«; or v; to be the

appropriate step function. See figure 8.

Vo U1 (%)

Figure 8: Step weight functions, v;, andv, used to emulate hard-edged cells in the T-HOG model.
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3.4.3. Relation to R-HOG weight functions

Dalal and Triggs also used Gaussian weight functions, batdifferent and more limited way.
Their weight functions were associated to cell blocks (Ugwantaining2 x 2 cells) rather than
individual cells. With the parameters they used for humaogaition, the internal cell boundaries
in each block are sharp, while the edges of the sub-imadéfasie gradually to zero.

Figure 9 (top) shows the effective R-HOG cell weight functidar the best parameter con-
figuration we found using, = 3 cells: namely, a single block divided intox n, cells with a
fairly broad block weight function«, = W/2, o, = H/2, corresponding to setting tlvetscale
parameter to 1 in their implementation). With these paransethe effective cell weight functions
have quite sharp boundaries, as shown in figure 9 (top).

Figure 9 (bottom) shows the R-HOG cell weights for the samarpaters, but with narrower
block weight functions recommended by Dalal and Triggs fomhn recognitiond, = /4,

= H/4, corresponding to the defauwittscale = 2).

- .
===

Figure 9: The Dalal and Triggs’s cell weight functions foriagse block of1 x 3 cells. Top: optimal block weight
deviationss, = W/2, 0, = H/2. Bottom: default block weight deviations, = W/4, 0, = H/4.

One can obtain R-HOG weights somewhat similar to the T-HO@ktsiof figure 7 by using
1 x n, overlapping blocks with one cell per block, as shown in figlée Comparing the cell
weights of figures 7 and 10, we observe that the latter assigredh lower mass to pixels along

the edges of the sub-image (among other differences). edsdy for that reason, the R-HOG
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Figure 10: The Dalal and Triggs’s cell weight functions forx 3 single-cell blocks, each with heighff /2 and
overlapped with stridéf /4, and with the default block weight deviatioas = W/4 ando, = H/8.

classifiers with the weights of figures 9 (bottom) and 10 wess laccurate than the R-HOG with

the weights of figure 9 (top), for the same descriptor sizd;aithree were worse than the T-HOG.

3.5. Normalization

Both algorithms, R-HOG and T-HOG, normalize the resultingcdesor. Dalal and Triggs use
a per-block normalization scheme, which is intended to camspte for spatial variations of lighting
and contrast over the input image. Since the T-HOG algorinmoves those effects beforehand,

we simply divide the final descriptor by the sum of all featupdus a constart(Z; norm).

3.6. Vector classification and thresholding

Like Dalal and Triggs, we use an SVM classifier [2] to turn tlescriptorz € RY into a real-
valued scoref(z), such that positive scores indicate ‘probably text’ andatieg scores indicate
‘probably non-text’. The SVMis defined g$z) = SV | o, K (2;, 2) —b whereK is thekernel[24],

a function fromRY x R to R; the z; are theM fixed support vectorsthea; are real weights; and
b is thebiasor decision thresholdThe support vectors and weights are determined trgiaing

step from representative samples of text and non-text qi¢sis.

3.7. Computation costs

The T-HOG and R-HOG algorithms have linear complexity, tegproportional to the number
of pixels in the extracted sub-image. Since the candidatdrtege is scaled to a fixed height,

the cost is roughly proportional to the number of charadtetise text line.
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4. Experiments

In this section, we describe an extensive set of experimaat®rmed in order to determine
optimum values for the various parameters of the R-HOG andGHilescriptors, and to com-
pare their performance in the basic text/non-text diseration task. These experiments strongly
confirm the advantage of the two main T-HOG innovations, rgitie splitting of the image into

overlapping horizontal cells (section 3.3) with blurreduibdaries (section 3.4).

4.1. Image collections

In our tests we used single-line text samples derived frametimage collections:

1. The 2005 ICDAR challenge collection [25], consistingle$ color images of book covers,
road signs, posters, etc., captured with different cameamdgesolutions.

2. A subset of the iTowns Project collection [26], consigtof 100 color images of Parisian
facades taken by a camera-equipped vehicle (similar t@&&oStreet View).

3. The Epshtein et al. benchmark [4], wish7 color images of urban scenes, ranging from
1024 x 1360 to 1024 x 768 pixels, taken with hand-held cameras.

These image collections are suitable benchmarks fordeteéctors but not for textclassifiers
Therefore, we extracted from these image collections s @&ecandidate sub-images as follows:
We processed each image collection with SnooperText [34ta-®f-the-art text detector algorithm,
tuned for high recall and moderate precision. Through Visispection, we separated the candidate
regions returned by SnooperText into a set of text regidnsand a set of non-text (‘background’)
regionsB;, fori = 1,2, 3. See figure 11. Table 1 gives the number of sub-images in etcfFor

succinctness, we will often omit the indéin the remainder of the paper.)

4.2. Error rate metrics

To quantify the performance of a binary classifier (R-HOG di@G) with a specific set of

parameters, we adopted a ‘ranking-based’ approach. Thaeisvaluated the ability of the classi-
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i | Image Set Detected regions Text (|.X;|) | Non-Text (B;])

1| ICDAR 4961 1727 3234
2| iTowns 2242 714 1528
3 | Epshtein 7518 1502 6016

Table 1: Sizes of the text and non-text samptesB; used in our tests.

X, : FORL\F!EE AT ¢ B, :
X, - | EAsTic TR e 7277

BQZ
[ [l

Figure 11: Samples of text regions (S€f) and non-text regions (sét;) extracted by SnooperText from the ICDAR,

iTowns and Epshtein image collections.

fier to score text regions higher than non-text regions,roégss of the absolute value of the SVM
scoref(z).

Specifically, in our tests we randomly divided the SefrespectivelyB) into two disjoint sets,
each one with 50% of the elements: a ‘training’ half (respectivelyB’) and a ‘testing’ halfxX”
(respectivelyB”). The setq X', B’) were used to train the SVM. We then applied the classifier
to the complementary setX”, B”). For several values of the SVM threshaél¢see section 3.6),
we computed the counts TH'N, (correct decisions, positive and negative) angl FR, (incorrect
decisions). From these counts we computed the classificsticcess rates for the text and non-text
regions on each evaluation dataset, namely

_FN PN FR PR
"X’ T TR, +FN, "7 |B" TN,+FR,

(4)

Ty
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The 7, metric false negative rafeis the complement of the well-knownecall metricr; it is the
probability of our algorithm incorrectly rejecting a texéntaining region. Thej, metric false
positive rate is the probability of our algorithm incorrectly acceptiagon-text region. We choose
to usep, instead of the commoprecisionmetric because the latter depends strongly on the ratio
|B”|/|X"|, which is essentially arbitrary.

By adjusting the thresholbl the user can trade one class of errors for the other. Incpéati
whenb is sufficiently small, the classifier accepts all samplesthsdr, = 1 and3, = 0. Con-
versely, wherb is sufficiently large, all samples are accepted as textetbezr, = 0 andj3, = 1.

In order to reduce the sampling error, we repeated the wholeepurel = 10 times for each
pair of dataset$.X, B) resulting inL different random partition§X’, X”) and(B’, B”) for each

set. The raw statistics TPTN,, FP,, FN, were averaged over thegeruns, and for each

4.3. DET curve and area metric

We compare classifiers by plotting thlecision error trade-off( DET) curve[5, 27], which is
the set of pairg, 3,) for b € [—oo,...,+o0]. See figure 12. For an ideal classifier, the DET
curve lies along the bottom and left edges of the unit sgiiafde x [0, 1]. The better the classifier,
the closer its DET curve should be to this ideal.

In our tests we observed that whenever a classifiewas significantly better than another
classifierC’; for some threshold, the same usually happened for most other valués of other
words, the entire curve af; was closer to the ideal than that 6f (below and to the left of it).
Therefore, we can use thiecision error aregDEA), which is the areal between the DET curve
and the ideal curve (the shaded region in figure 12), as aessugllar measure of the performance
of a given classifier, independent of the threshiol@he value ofA is a monotonically decreasing
function of the classifier’'s accuracy, and is zero if the sifger is perfect (i.e., if one can set the
threshold so that the classifier makes no mistakes). Therefore, weaapare two classifiers;

andC; by comparing the respective decision error aréaand A;.
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Figure 12: Area under the curvkin grey.
In order to determine whether the differendge— A; is statistically significant, we computed
mean valuegs(A;) andu(A;) and the standard deviatiops A;) ando (A;) over theL runs. We
then computed Student’s test parametét;, C;)

t(C;, Cy) = (5)

where
(L-1)-a(4)®+(L-1) a(A))’
2L — 2 (6)

The performance variation betweéhandC; is considered statistically significant at risk level

%=

if |t(C;, C;)| is above the corresponding threshgldrom Student’s table.

4.4. General parameter settings

In both the R-HOG and T-HOG algorithms, the sub-images weseated during extraction
with the Lanczos interpolation filter [28] to the chosen I¢i§f. Since the extracted height must
be a multiple of the effective number of cell rows, we ugéd= 25 pixels for 5 rows,H = 21
pixels for 7 rows, andd = 24 pixels for all other tests (with 1, 2, 3, 4, 6, 8 and 12 rows).eTh
rescaled widthi/ was chosen so as to maintain the aspect ratio of the origutaisage, but
rounded to the nearest integer multiple of cell columns ¢Wwhvas 1 for most tests). For the mean-

variance normalization and for gradient magnitude conmtputawe assumed a sampling noise with
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deviations = 0.02. In all tests we used a Gaussigh SVM kernel K, whose standard deviation
parameter was optimized by cross-validation on the training $éf§ B').

In an extensive series of preliminary tests, we concludadttie best performance of the R-
HOG as text classifier, for all three datasets, is achieved v block histogram normalization,
RGB colorspace with gamma correction 0.5 (RSBRT), oriented gradient directions ranging
over [0, 2x] or [0, 7], and block mask parametartscale setto 1 ¢, = W/2, 0, = H/2).

In another series of tests, the best T-HOG performance wesnelol with .; whole-descriptor
normalization, and oriented gradient directions rangivey @, 27| or [0, 7]. These optimal settings

where then used for all subsequent tests.

4.5. Optimal cell arrangements

We next performed a series of tests to determine the optimelhacangement for text/non-
text classification with the R-HOG algorithm, as a functiortto# total cell count:,n,. R-HOG
allows the cells to be grouped into blocks, which may paytiaverlap. The possible arrangements

with six cells (counting overlaps) are shown in figure 13.algements (a)—(d) have disjoint, non-

|

{=fn)uld I [EREenAny [ENErnmas EnEeasaed
F:FF\EE-D UM TTEELUl aEeetY Eneeee
(a) 6x1 (b) 3x2 (c) 2x3 (d) 1x6

EMEEANN LERErnay HERErnaN Henesn
CREEDDM Hi-REEDEM, (HeREEDDM,

-
==

(e) 6fx1 (f) 3hx2 (g) 2x3h (h) 1x6f

Figure 13: Some possible arrangements of blocks and cellsekult in an R-HOG descriptor with six HOGs. Solid

and dashed lines inside the image are the cell boundaresxternal brackets show the blocks.

overlapping cells, which could be grouped into disjointdi® in several ways. Arrangements (e)
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and (h) have two cells per block; note that the two centrds$ @gk duplicated in the final descriptor.
Arrangements (f) and (g) have single-cell blocks that agely half a cell.

We tested many possible cell and block arrangements witlwghdut overlapping blocks. The
DET curves for some combinations of andn, with n, = 12 are shown in Figure 14. Note that
the counts:, andn, include overlapping cells so that the descriptor alwaysists ofn,n, HOGs.
As mentioned in section 3.4, we concluded from these exmaisthat arrangements with two or
more blocks, overlapping or not, are not advantageous foild&HWe have found that for the
same descriptor siz& = n,n,n;, and number of bins, a single block is always better. Morgover
we concluded that, for the same descriptor size, the bestelwalwaysn, = 1, that is, a grid
of n, horizontal stripes. These conclusions were confirmed byemaus tests with the other two
datasets and with different bin counis, (= 6, 12, 18 and36).

A parallel series of tests with our T-HOG classifier gavereftisimilar results, confirming that

n, = 1 is always the best choice for any descriptor size.

4.6. Performance as function of descriptor size

Having established that the best cell arrangement for R-HO#@bways a single block divided
into disjoint horizontal stripes, we performed anotheliesepf tests to analyze the influence of
the number of stripes, and the number of bins per stripg on the R-HOG classifier accuracy.
Namely, we tested all combinations of = 1,2,...,8,12 andn, = 4,5,...,18,24,36, with
n, fixed at 1. Figure 15 shows the results of these experimentd/fe< 250. Configurations
are identified by the notation, xn,:n,. From these tests, we concluded that a longer R-HOG
descriptor generally gives better results. However, theathge is very small foN greater than
100. In particular, no improvement was seen wh€rincreased beyond 250. We also concluded
that the R-HOG's accuracy improves dramaticallyngsincreases from 1 to 3, improves more
gradually untiln, is 7 or so, and remains the same thereafter. These condusiere found to

hold for all three datasets.
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Figure 14: DET curves (mean of 10 random partitions) of thel@®G classifier, for various cell and block arrange-
ments, on the ICDAR datasét;, B;. In each plot, except the last one, all grid configurations ¢iie same descriptor

size N = ngnyny. The last plot compares the best combinations of the eigiviqus plots.

In figure 15 (bottom), the black dots represent the optimailmioations ofr, andn;, the only
ones that are worth using for any specified descriptor aizeConfigurations that fall above the
solid staircase line (blue dots) are fully dominated by roali ones, in the sense that the latter
provides equal or better performance with equal or smallerThere appears to be no simple

formula for the optimal parameters, partly becatug@ndn, are constrained to be divisors of.
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Figure 15: Detection error ared (mean of 10 random partitions) of R-HOG as a function of dpsor size N =
ngnyny, for various combinations, andn,, with n, = 1. In the left plot, arrangements with the samg(1, 2 or
3) and increasing,, are connected by lines. The outlined region is magnified énripht plot. The staircase curve

connects the optimal configurations (black dots).

Furthermore, the optimal configurations for the other twiaglets are slightly different.
A similar series of tests were performed to determine thédmabination of,, andn,, for the
T-HOG classifier. We found that the optimum combinationssfach/V were generally the same as

those of R-HOG (see the next section).

4.7. Comparison of T-HOG vs. R-HOG

Figures 16 and 17 compare the accuracy of the R-HOG and T-H@&xsSiftiers, in the optimal
n, andn,, configurations, for each descriptor sixeand for each of the three datasets. As we can
see, the T-HOG significantly outperforms R-HOG in all cases.dxample, a T-HOG with about
20 features has a performance similar to an R-HOG with 80 oerfeatures.

Table 2 gives detailed data for two cell grid and bin count borations ( x4:5, N = 20, and

1x7:9, N = 63), selected among the optimum combinations of figures 16 &dAkcording
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Figure 16: Comparison between optimal configurations of ®&Hand T-HOG. The error bars show the standard

deviation over 10 random partitions X, B;) on the Epshtein dataset.
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Figure 17: Comparison between optimal configurations of ®aHand T-HOG. The error bars show the standard

deviation over 10 random partitions @X;, B;) on the ICDAR and iTowns datasets, respectively. Note travéhtical

scale is different in each plot.

to Student’s table foe — 2 = 18 degrees of freedom, the smalléstalue in the table, 5.44,

corresponds to a risk < 1074,

Figure 16 shows that, for both classifiers, @DAR-deriveddataset is significantly easier

than the other two. Presumably this is due to the fact that i@I3AR images are digitized 2D
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ng Xn,:my | Dataset R-HOG T-HOG t-test

n(4) | o(4) | ula) | o(4)

ICDAR |{0.01090.00100.0054 0.000714.73
1x4:5 | iTowns |0.0158 0.002% 0.008% 0.001% 10.19
Epshtein0.02850.0023/0.01510.0016(15.10

ICDAR 0.0043 0.0005/0.00290.0005| 5.81
1x7:9 | iTowns |0.00870.0013/0.00590.0010| 5.44
Epshtein0.0164 0.0022|0.0120 0.0014/ 6.14

Table 2: Statistics of R-HOG and T-HOG classifiers for twaoimmogd cell configurations.
documents, whereas the iTowns and Epshtein images aresphfcd@® urban scenes.

4.8. Blurredvs. hard-edged cells

Finally, we performed another series of tests to quantiédbntribution of blurred cell bound-
aries to the T-HOG performance. Detailed data for two specdnfigurations(x4:5, N = 20,
and1x7:9, N = 63) on the iTowns dataset are shown in table 3. According toesttsd-test, the
improvement is significant (at risk level= 0.05) for the1x4 : 5 descriptor { = 8.42), but not for
thelx7:9 descriptor { = 1.47).

ng Xn,:ny, | Dataset Sharp Blurred t-test
u(A) | o(A) | pA) | o(A)
1x4:5 |iTowns|0.01300.0014/0.00820.0012| 8.42
1x7:9 |iTowns|0.00650.0008(0.00590.0001 1.47

Table 3: Statistics for two optimal T-HOG classifiers wittaghand blurred cells.

4.9. Limitations

Figure 18 shows some false negatives and false positivesteepby the T-HOG classifier (in

thelx7:9 configuration) for theX; and B; datasets. False negatives are usually due to an inaccurate
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detection of the candidate sub-image, or to those textatkaine or two characters long, obscured,

or with incomplete characters. False positives are tylyicgalages with many line-like features in

1]

(a) False negatives (b) False positives

several orientations.

———

vincENNEs !

F

Figure 18: Examples of sub-images incorrectly classifiethleyT-HOG.

5. Applications

5.1. T-HOG as a post-filter to text detection

The motivating application for text classifiers such as T&lénd R-HOG is the detection of
text in photos and videos of arbitrary scenes [29, 30]. Siady, the idea is to use the classifier
to filter the output of a fast but “permissive” (high-recatidamoderate-precision) detector.

To evaluate the suitability of T-HOG for this application weed the SnooperText detector of
Minetto et al. [3], which was developed within the iTowns ambdocumentation and navigation
project [26]. SnooperText uses a multiscale adaptive satatien to locate candidate characters,
which are selected and grouped into words and lines by gemaletriteria. Two critical param-
eters of SnooperText are the minimum sizén pixels) of the detected character regions in each
scale, and the minimum number of characters per grédp{). We found that the optimal values
of these parameters, when SnooperText was used alone)werd andGOC = 3. That s, only
words with 3 or more characters were reported. These settirggdenoted ST3 in what follows.

When SnooperText was used in combination with the R-HOG or T5H{3 a post-filter, we

found that the optimum parameters wevre= 5 and GOC' = 2, which increase the recall but
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significantly reduce the precision. We denote these sesttiygST2. For the T-HOG and R-HOG
we used the optimal parameters specified in section 4.4 thétleell arrangement, = 1,n, = 7,

andn, = 9, resulting in a descriptor of siz&€ = 63. See figure 19.

A 3 - e
. POLARIS] ~ = r POLARIS)
«"' ' [EPOLARIS NAILESPA ” 3 " [EPOLARIS NAL&SPA]

Figure 19: Output of the SnooperText detector witk= 5 andGOC = 2 (left), and the same output after filtering
with the T-HOG recognizer (right) on an image from the Epsheellection.

5.1.1. Metrics for text detection

The standard metrics to compare text detection systemsildedadn the literature are based on
the ICDAR 2005 measure of similarity [25] between two rectasg, s, and defined asu(r, s) =
S(rns)/S(rUs) whereS(t) is the area of the smallest rectangle enclosing the §éte function
m(r, s) ranges betwee (if the rectangles are disjoint) andif they are identical). The metria
is extended to a set of rectanglédy the formulam(r, Z) = max{m(r,s’) : s € Z}. From this

indicator one derives the ICDAPrecisionp andrecall r scores [25]

_ 2repm(n,T) _ 2rer™(r, E)
el o

whereT is the set of manually identified text regions in the input g@s, andF is the set of
text regions reported by the detector. For ranking purpdbessCDAR 2005 committee used the
f measurdg25] which is the harmonic mean of precision and re¢ak= 2/(1/p + 1/r). There

are several ways of averaging these metrics over a mulggntitabase. The approach used by
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the ICDAR 2005 scoring program (method 1) is to evaluate and f/ separately for each image,
and then compute the arithmetic mean of fhscores over all images. Another approach (ll) is to
computep andr for each image, then take the arithmetic means qf atidr values, and computg
from these means. We note that the first method suffers frgimehisampling noise and a negative
bias compared to the other method. These points must bedesadiwhen comparing values

reported by different authors.

5.1.2. Results

We compared the performance of SnooperText alone and inioatidn with a text recognizer,
either R-HOG or T-HOG, as a post-filter. We also compared theti several state-of-the-art
detectors described in the literature. Specifically, we garad with the published scores of the
detectors that entered the ICDAR 2003 and 2005 Challengesdf@8]also with the detectors of
Tian et al. [31] and Epshtein et al. [4], which had the highfestores reported in the literature (as
of 2011).

The results for each of the three image collections are shiowables 4—6. Allp andr scores
were computed with the ICDAR scoring program [25]. The scardke f; and f;; columns were
averaged by methodsand I, respectively.

Note that T-HOG is a more effective post-filter for SnoopetThan R-HOG; and that the best
combination (ST2+T-HOG) is much better than the best reqilSnooperText alone (ST3). Also
note that the combination ST2+T-HOG is at least as effeets/the best published methods on the
ICDAR dataset, and outperforms the Stroke Width Transfor'WTH[4] results of Epshtein et al.
on their own dataset. The largest difference between the Bld@d T-HOG classifications is in
the Epshtein dataset, where the text candidates are mudbrharclassify (see the vertical plot
scales in figures 16 and 17).

To confirm the results of section 4.5, we tested the ST2+T-HO@bination with a smaller

descriptor ¢, = 1,n, = 4, n, = 5, N = 20). The f-score was abot to 2% lower, on average,
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System D r fr| fu
ST2+T-HOG | 0.73| 0.61| 0.65| 0.67
ST2+R-HOG* | 0.70| 0.62| 0.64| 0.66
Yiand Tian [31] | 0.71] 0.62| 0.62| 0.66
Epshtein et al. [4] 0.73| 0.60| 0.66 | 0.66
ST3+T-HOG | 0.72] 0.57| 0.62| 0.64
ST3+R-HOG* | 0.72] 0.57| 0.62| 0.64
Hinnerk Becket | 0.62| 0.67 | 0.62| 0.64

ST3 0.64| 0.59| 0.59]| 0.61
Alex Cheri 0.60| 0.60| 0.58| 0.60

ST2 0.42]| 0.65| 0.47| 0.51

Ashidd 0.55| 0.46| 0.50| 0.50

HWDavid' 0.44] 0.46| 0.45]| 0.45

Wolff 0.30| 0.44| 0.35| 0.36

Qiang Zhu 0.33] 0.40| 0.33| 0.36
Jisoo Kimi 0.22] 0.28| 0.22| 0.25
Nobuo Ezaki | 0.18| 0.36| 0.22| 0.24
Todoran 0.19| 0.18] 0.18] 0.19

Fullf 0.01]| 0.06| 0.08]| 0.02

horizontal cuts.

29

Table 4: Performances of various text detectors on theifiggssubset of the ICDAR image collection. The competitors
of the ICDAR 2003 and 2005 Challenges are marked witRor this table, the T-HOG and R-HOG classifiers were
trained on the output of the ST2 detector applied to the ICD&&NIng” subset. *Best R-HOG found using only

for the three image collections. We also tested the ST2+GHOmbination with the sub-image

divided into vertical stripesi(, = 7,n, = 1, n, = 9, N = 63); the f-score was about to 7%




System P r Jr| Ji
ST2+T-HOG | 0.72| 0.50| 0.56| 0.59
ST2+R-HOG* | 0.70| 0.49| 0.54| 0.58
ST3+T-HOG | 0.72] 0.43| 0.51| 0.54
ST3+R-HOG* | 0.72]| 0.43| 0.51| 0.54

ST3 0.49| 0.43| 0.43| 0.46
ST?2 0.24]| 0.53| 0.31| 0.33

Table 5: Performances of SnooperText, with and without H@&t{iiltering, on the whole iTowns image collection.
For this table, the R-HOG and T-HOG classifiers were trainethe X; U X3 andB; U B3 datasets.*Best R-HOG

found using only horizontal cuts.

System p T Jr | fu
ST2+T-HOG 0.59]0.47| 0.49| 0.52
ST2+R-HOG* | 0.55| 0.44| 0.46| 0.49
ST3+T-HOG | 0.64| 0.39| 0.46| 0.49
Epshteinetal. [4] 0.54| 0.42| — | 0.47
ST3+R-HOG* | 0.62| 0.37| 0.43| 0.46

ST3 0.46| 0.42| 0.41| 0.44

ST2 0.19/ 0.54| 0.25| 0.28

Table 6: Performances of SnooperText, with and without HO&-filtering, and of the Epshtein et al. detector on the
whole Epshtein image collection. For this table, the R-H®@ &HOG classifiers were trained on thg U X, and

By U Bs datasets.*Best R-HOG found using only horizontal cuts.

5.2. T-HOG as a text detector

Any text recognizer can also be used on its own as a slidimglowi text detector. Namely, the

recognizer is applied to a sufficiently large set of subargin the input image, and the sub-regions

with the largest scores are returned as the output.

Figure 20 shows the result of such a text detector, using #HHOG+SVM recognizer, with a
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window of fixed size (24 by 72 pixels) sliding over the wholeaige. Note the high selectivity of
the recognizer. For this test, we trained the SVM classifééngithe sel/ of positive “ground-
truth” sub-regions provided by the ICDAR Challenge team [2ld a sel” of negative random

sub-regions of the ICDAR images disjoint from the Eeand about three times its size.

Figure 20: Top left: image PICT0031 from ICDAR datasetq x 480 pixels). Top right: the output of the T-
HOG+SVM sliding window classifier, encoded as the color & tlentral pixel (warm tones for positive output, cold
tones for negative). The white rectangle at the top left eoshows the size of the sliding window. Bottom: the union

of the 100 windows with the highest scores.

Text of variable size can be detected by running this allgoriopn several reduced versions of
the input image, in a multi-scale fashion. However, thistéifiorce approach to text detection is
extremely expensive, since the number of windows that neée einalyzed is very large. For this

reason we did not evaluate its accuracy or compare it to olterctors.

5.3. T-HOG as a detection post-filter in OCR algorithms

OCR algorithms designed for unstructured 3D urban enviransngre of great interest to sys-

tems as the Google’s Street View and the iTowns projects;iwdiim to extract (offline) any textual
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information present in the images, such as street and teidfics, store names, and building num-
bers. With this information the user can then make textualigs to retrieve images semantically
relevant to him. However, standard OCR algorithms develdpedcanned documents perform
very poorly on photos of 3D scenes. See figure 21(top). Mutietkesults are obtained by filter-

ing the false positives with T-HOG. See figure 21(bottom).

6. Conclusions

In this paper we describe extensive experiments with DaldlTaiggs’s multiple HOG descrip-
tor (R-HOG) and SVM classification for the text/non-text disgnation problem. These experi-
ments showed that the optimum cell configuration, for anyde®r size, consists of horizontal
bands in a single weighting and normalization block. Splitthe sub-image by vertical cuts is
never cost-effective. In retrospect, this conclusion rsadense, given the nature of the ‘object’ to
be classified — a single line of text of arbitrary length. Tugb these experiments, we also deter-
mined the best values for the number of celjsand the number of bins,, for each descriptor size
N = n, x ng. In particular, we found that increasing beyond 100 has practically no effect on
classification accuracy.

We then defined another multiple HOG descriptor, the T-HORse cells have blurred bound-
aries defined by overlapping Gaussian weight functions. ¥kaestive series of experiments con-
firmed that the best cell arrangement for the T-HOG text diasss also a stack of horizontal bands.
These tests also showed that the T-HOG classifier condisteriperforms R-HOG at text/non-text
discrimination, for any descriptor size.

Finally, we described the use of T-HOG in three text-relatpglications. First, we described
the use of T-HOG as a post-filter for a high-recall, low-psem text detector, and showed that the
combination is at least as good as the best text detectargeedn the literature. We also showed
that T-HOG is better than R-HOG for this application. Secamel described the use of T-HOG in
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Figure 21: Top left: the text detection of a top publicly dable OCR (Tesseract). Top right: OCR of Tesseract with
few readable words and a lot of noise due to the false detectidote that it is hard, in an urban context, to filter the
strings with a dictionary since noise regions can be coadet words with meaning. Bottom left: the text detection

output of Tesseract after filtering the candidates with #¢0G classifier. Bottom right: the OCR after filtering.

a sliding-window text detector, and gave anecdotal evideridts accuracy. Third, we described

the benefits of T-HOG in a well-known OCR software.
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