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1. Introduction

In this paper we address thetext/non-text classification problem. The input data for this problem

is a rectangular sub-image of a digital photo or video frame.The output is a binary decision that

should be ‘TRUE’ if the sub-image contains a single line of text in Roman-like characters and

‘FALSE’ otherwise. This classification is an important stepin many applications, such as optical

character recognition (OCR), indexing, classification of images and videos, and urban navigation

aids.

Towards this goal, we describe here theT-HOG, publicly available at [1], a novel gradient-based

descriptor that efficiently and accurately characterizes images of single-line texts. We show that a

support vector machine (SVM) classifier [2] using T-HOG descriptors can effectively solve the

text/non-text classification problem. In particular, we show that the combination of a “permissive”

text detector [3] with a T-HOG based post-filter outperformsstate-of-the-art text detectors described

in the literature [4]. We also show how the T-HOG could be usedby itself in a top-down sliding-

window text detector, and as a component of an OCR system.

The T-HOG descriptor is based on the generalhistogram of oriented gradients(HOG) [5]

method for shape recognition, introduced by Dalal and Triggs for the detection of pedestrians in

photographs [5] and later used for other solid objects [6]. In order to capture the spatial distri-

bution of gradient orientations, Dalal and Triggs divided the target sub-image into a rectangular

grid of cells, computed a HOG for each cell, and concatenatedthose HOGs to obtain a composite

descriptor, which they calledR-HOG.

In 2004, Chen and Yuille [7] observed that different parts of the text regions have distinctive

distributions of edge directions. This property was exploited by other researchers who used the

R-HOG descriptors to characterize text regions [8, 9, 10].

The T-HOG descriptor is an improvement of the R-HOG, optimized for the specific task of

single-line text recognition. The differences include a contrast normalization step, a different gra-
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dient formula, and a specific cell layout with blurred boundaries. In this paper we determine ex-

perimentally the optimal cell tiling for text line recognition, which turns out to be a division of the

candidate sub-image into horizontal stripes.

The T-HOG and R-HOG descriptors have several parameters thatcan be tuned in order to

trade classifier accuracy for descriptor length. Smaller descriptors are interesting, even if less

accurate, because they are more computationally efficient and may help us identify the aspects of

the image that are most relevant for text/non-text discrimination. In this paper we also compare the

performance of both classifiers experimentally for a wide range of parameters settings. The tests

indicate that T-HOG is more accurate than R-HOG for any descriptor size.

1.1. Statement of the problem

We consider here images obtained from a physical scene. Atext objectis any part of the scene

carrying a string of two or more letters that are readable in the captured image. We are primarily

concerned with texts written in the Roman alphabet or any of its variants. See figure 1.

Figure 1: Image of an urban scene with text objects.

Our text classifier assumes that the candidate text object has been identified and its projection

on the image has been bounded by a rectangle. Furthermore, itassumes that the text consists of

a single multi-character line. Isolated characters and multiline text should be joined or split into

separate lines or words.

3



1.2. Descriptor outline

Dalal and Triggs observed that a particular texture can often be characterized by the distribution

of the directions of the image gradient. If the texture consists of simple bi-level shapes (such as

Roman letters) then the orientations of the strongest gradients tell the orientations of the edges of

those shapes.

In order to capture the spatial variation of edge orientations, Dalal and Triggs divided the input

sub-image into a rectangular grid of (possibly overlapping) cells with nx columns andny rows,

which they grouped into2 × 2 blocks. Within each cell of each block they computed a histogram

of the gradient directions (HOG) withnb bins. In these histograms the gradient direction of each

pixel is weighted by the gradient’s magnitude and by a Gaussianblock weight mask. Their complete

descriptor (R-HOG) is a vector withnxnynb features, that is the concatenation of thesenxny HOGs.

Note that up to four overlapping or coincident cells may cover the same set of pixels, and each will

generate a separate HOG, with different block weight functions. To reduce the effects of local

contrast and brightness variations, the HOGs in each block are normalized in a specific way.

Our T-HOG descriptor differs from the original R-HOG in some key details. Firstly, we use

different methods to extract the candidate text region, to normalize it for contrast, and to compute

its gradient image. Secondly, the cell grid is simplified to apartition into horizontal stripes (i. e. we

fix nx = 1). Instead of overlapping blocks and block weight functions, in the T-HOG the cells are

defined by overlappingcell weight functions. As a result, all internal cell boundaries are blurred,

unlike those of the R-HOG. See figure 2. As detailed in section 4, these changes significantly im-

proved the discriminating power for our target objects—single-line text regions of arbitrary length.

1.3. Structure of the paper

This paper is organized as follows. In section 2 we discuss some related work. In sections 3

and 4 we precisely define the R-HOG and T-HOG descriptors, and compare them experimentally.

In section 5 we describe some applications. Finally, in section 6 we state the conclusions.
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Figure 2: Computing the T-HOG descriptor for a sample image with an nx × ny = 1 × 3 cell grid andnb = 24

histogram bins per cell. The images∇Ix and∇Iy are the derivatives of the extracted and normalized sub-image I.

The imagesθ(∇I) andρ(∇I) are the direction and magnitude of the gradient. The imagesw0, w1 andw2 are the cell

weights.

2. Previous work

There is an extensive literature on textdetection, but most of it are dedicated to specific contexts

such as text detection in handwritten documents [11], text recognition in medieval manuscript

images [12], and license plate recognition [13, 14]. An exhaustive review of this work is far outside

the scope of the paper, and the reader is referred to the survey of Sharma et al. [15], that covers some

advances in this area. Comparatively little has been published about text/non-textclassification
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algorithms (our primary interest in this paper), although they are often present as components of

text detectors.

Text classification, or text verification [16], is often castas a texture classification problem,

and several texture descriptors have been considered in theliterature. For instance, in 2004, Kim

et al. [17] described a text recognizer that decomposes the candidate sub-image into a multiscale

16 × 16 cell grid and computes wavelet moments for each block. Each block is then classified as

text or not using an SVM. The ratio of text to non-text outcomes is used to decide whether the

entire sub-region is text or non-text. In 2005, Ye et al. [18]described a similar text recognizer

with multiscale wavelet decomposition but they used more elaborate features including moments,

energy, entropy, etc.

In 2010, Zhao et al. [19] used an edge detector based on the wavelet transform, and sparse rep-

resentation with discriminative dictionaries to distinguish between text-like and background-like

edge patterns. The authors then merged and trimmed the candidate text-like edges into compact re-

gions by using an adaptive run-length smoothing algorithm,morphological operations, and projec-

tion profile analysis. Also in 2010, Shivakumara et al. [20] used 6 different gradient edge features

(mean, standard deviation, energy, entropy, inertia and local homogeneity) over image blocks, to

capture the texture property of the candidate text region.

In 2004, Chen and Yuille [7] proposed a descriptor that combines several features, including 2D

histograms of image intensity and gradient, computed separately for the top, middle, and bottom

of the text region, as well as for more complex subdivisions of the image—89 features in total.

Recently some text detectors, such as the one described by Anthimopoulos et al. [21] in 2010, have

used descriptors based on multiscalelocal binary patterns(LBP) introduced by Ojala et al. [22].

Their descriptor has 256 features.

The use of gradient orientation histograms (HOGs) as texture descriptors was introduced by

Dalal and Triggs in 2005 [5] for human recognition. HOG descriptors are used in some recent

text recognizers, such as the one proposed in 2008 by Pan et al. [9]. They partition the candidate
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sub-image into 14 cells, as proposed by Chen and Yuille, but compute for each cell a 4-bin HOG

complemented by a2× 3 array of LBP features. Their complete descriptor has 140 features.

Other HOG-based text recognizers have been proposed in 2009by Hanif and Prevost [8] for

single-line text, and by Wang et al. [10] for isolated Chineseand Roman characters as well as

single-line text. Hanif and Prevost’s descriptor has 151 features (16 cells each with an 8-bin HOG,

supplemented by 7 mean difference and 16 standard deviationfeatures). The descriptor of Wang et

al. has 80 features (8 cells with an 8-bin HOG, supplemented by 1 mean difference feature and 1

standard deviation over each cell).

All the HOG-based text recognizers above use vertical cuts as well as horizontal ones when par-

titioning the candidate region, apparently inspired by theDalal and Triggs paper [5] on pedestrian

recognition. Vertical cuts may be justifiable for isolated characters, but we determined experimen-

tally (in section 4.5) that they are not useful for multi-character texts of variable width. In such

texts, the gradient distribution is largely independent ofhorizontal position. Therefore, we have de-

termined that a cell layout with vertical cuts increases thesize of the descriptor without providing

any additional relevant information.

3. The T-HOG descriptor

In this section we provide a detailed description of the T-HOG descriptor.

3.1. Size and contrast normalization

The first step of the T-HOG algorithm is to extract the sub-image and scale it to a fixed height

H, maintaining its original aspect ratio. The heightH should be large enough for the characters

to remain readable, but small enough to eliminate most of thenoise and other spurious detail. For

print-style Roman characters (upper and lower case) we obtained the best results withH between

20 and 25 pixels.
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In this step we also convert the image from color to gray scale, since the human visual system

uses only the brightness channel to recognize character shapes [23]. We observed that objects in

urban contexts are often obscured by non-uniform illumination and localized shadows or reflec-

tions. To remove these artifacts, we apply to each sampleV of the extracted sub-image a contrast

normalization procedureV ← 0.5 + (V −µ)/(3σ), whereµ andσ are the local mean and standard

deviation computed with a doubly binomial weight window of width 2H + 1. The raw deviation

σ is adjusted byσ ←
√

σ2 + ε2, whereε is the assumed standard deviation of the image sampling

noise.

3.2. The basic HOG descriptor

By definition, the HOG descriptor of an arbitrary imageI is a histogram of the gradient direction

θ(∇I), computed at each pixel, quantized into a small numbernb of bins. Each pixel contributes

to the histogram with “mass” proportional to its gradient magnitudeρ(∇I), so as to de-emphasize

the random noise-related gradient directions that occur inflat parts of the image. As observed by

Dalal and Triggs, ifθ(∇I) does not fall at the exact center of a bin, the mass should be distributed

between the two nearest bins by a linear splitting criterion. To compute the gradient∇I, we use

the simple difference schema recommended by Dalal and Triggs, namely

∇I(x, y) =
1

2
(I(x + 1, y)− I(x− 1, y), I(x, y + 1)− I(x, y − 1))

For this formula, any non-existing pixel (outside the inputsub-image) is assumed to be equal to the

nearest existing pixel. Note that we compute the gradient after grayscale conversion and contrast

normalization, whereas Dalal and Triggs compute the gradient in each color channel and then pick

the vector that has the largest norm. We then estimated the magnitude of the gradient by the formula

ρ(∇I)(x, y) =
√

max{0, |∇I(x, y)| − ε2}. Note that this formula is zero if the raw gradient norm

|∇I| is smaller than the assumed sampling noise deviationε.

The gradient directionθ(∇I) is expressed as an angle in the range[0, 2π] radians. Dalal and

Triggs found that the recognition of some classes of objects(such as humans) was improved when
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opposite directions were considered equivalent [5], in which case the range ofθ(∇I) is [0, π] radi-

ans. We found that this is not the case for text, where the directions had little effect.

Figure 3 shows the gradient magnitude and direction of four isolated letters and their corre-

sponding HOG descriptors. The HOGs have 16 bins, each bin2π/16 radians wide, centered at

orientations2kπ/16 for k = 0, 1, . . . , 15. One can see that the HOG gives the predominant orienta-

tion of the letter strokes. For example, the histogram of a rounded letter like ‘O’ is almost uniform

over the whole range[0, π], while that of ‘I’ has significant spikes in the directions perpendicular

to the letter’s stem.

I ρ(∇I) θ(∇I)

Figure 3: From left to right, in each row: the extracted imageI of an isolated letter, images with its gradient magnitude

ρ(∇I) and gradient directionθ(∇I), and the corresponding HOG.
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3.3. Multi-cell HOGs

Images of complex objects typically have different HOGs in different parts. Images of humans,

for example, have different gradient orientation distributions in the head, torso, and leg regions. It

was this observation that motivated Dalal and Triggs to use amulti-cell HOG (R-HOG) for that

application.

This observation is also true for text images. Figure 4 showsthe distributions of edge directions

in the top, middle, and bottom parts of an image containing a single-line of text. Note that the gradi-

ent orientations are predominantly 0 (or 180) and 90 (or 270)degrees, reflecting the predominance

of vertical and horizontal strokes. Also note that the top and bottom parts of the image contain a

larger proportion of horizontal strokes, so that the gradients in these parts are mostly vertical. The

middle part of the image, on the other hand, contains a largerproportion of vertical strokes, and

hence of horizontal gradients. In all three regions there isa small amount of diagonal strokes due

to letters such as ‘R’ and ‘M’; and to the rounded parts of letters such as ‘R’, ‘D’, and ‘O’. Finally,

note that opposite directions tend to be equally represented due to the fact that the two edges of a

letter stroke have opposite gradients.

Figure 4: From left to right, the 16-bin HOG descriptors of the top, middle and bottom parts of a text sub-image. The

arrows indicate the contribution of specific letter strokesto the histogram.
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For comparison, figure 5 shows the HOG descriptors of top, middle and bottom regions of some

non-text images. Note that several of these HOGs are quite distinct from those of figure 4, and some

are significantly unbalanced. On the other hand, for an imagecontaining an arbitrary single-line,

top middle bottom

Figure 5: Top, middle, and bottom 16-bin HOG descriptors of some non-text images.

multi-character text, the expected distribution of gradient orientations is largely independent of the

horizontal position along the line, as long as the segment analyzed is wide enough to include one

whole character. This intuition was confirmed by extensive experimental tests; see section 4.5.

3.4. Cell weights

If the cells were defined by sharp boundaries, their HOGs would change drastically with small

displacements of the text inside the candidate sub-image, as letter strokes would shift from one cell

to the next. See figure 6 (a,b). To reduce this problem, the T-HOG cells are defined by smoothcell

weight functions. This choice made the T-HOG more robust to such problems. Seefigure 6 (c,d).

Namely, letxmin, xmax, ymin, andymax be the minimum and maximum pixel coordinates in the

sub-image. For each pixel with center coordinates(x, y), we define therelative pixel coordinates

X(x) =
x− xmin

xmax − xmin

Y (y) =
y − ymin

ymax − ymin

(1)
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(a) (b)

(c) (d)

Figure 6: Effect of sharp cell boundaries with two differentcropped sub-images of the same text object. (a,b) The

HOG descriptors of the top, middle, and bottom parts of each sub-image using sharp cell boundaries. (c,d) The HOG

descriptors of the top, middle, and bottom parts of each sub-image using smooth cell boundaries.

The weight of that pixel relative to a cellCij in columni and rowj of the cell grid is then defined

aswij(x, y) = ui(X(x))vj(Y (y)), where each functionui or vj is 1 at the nominal axis of the

respective column or row, and falls smoothly to 0 as one movesaway from it. The gradient of

that pixel contributes to the histogram of cellCij with massρ(∇I)(x, y)wij(x, y), rather than just

ρ(∇I)(x, y).

3.4.1. Gaussian cell weights

For the one-dimensional weightsui andvj, we tested different families of functions (Gaussian

bells, Hann windows, Bernstein polynomials, etc). In these experiments, the best results were

obtained with Gaussian bell functions. Specifically, forny > 2 rows of cells, the vertical weight

function of cells in rowj is

vj(Y ) = γ

(

−µ0 +
1 + 2µ0

(ny − 1)j
,

σ0

ny

, Y

)

(2)
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whereµ0 = 0.01, σ0 = 0.5, and

γ(µ, σ, z) = exp

(

−(z − µ)2

2σ2

)

(3)

Figure 7 shows these weights forny = 3. As a special case, ifny = 1, the single vertical weight

 0  1  0  1  0  1

v0 v1 v2

Figure 7: The T-HOG vertical cell weight functionsv0, v1, andv2 for ny = 3.

functionv0 is equal to 1 everywhere. Note that the top edges of the topmost cells and the bottom

edges of the bottommost cells are still sharp. The horizontal weight functionsui are defined in the

same way.

3.4.2. Emulating cells with hard edges

Hard-edged cells can be emulated in the T-HOG by defining eachfunctionui or vj to be the

appropriate step function. See figure 8.

 0  1  0  1  0  1

v0 v1 v2

Figure 8: Step weight functionsv0, v1, andv2 used to emulate hard-edged cells in the T-HOG model.
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3.4.3. Relation to R-HOG weight functions

Dalal and Triggs also used Gaussian weight functions, but ina different and more limited way.

Their weight functions were associated to cell blocks (usually containing2 × 2 cells) rather than

individual cells. With the parameters they used for human recognition, the internal cell boundaries

in each block are sharp, while the edges of the sub-image itself fade gradually to zero.

Figure 9 (top) shows the effective R-HOG cell weight functions for the best parameter con-

figuration we found usingny = 3 cells: namely, a single block divided into1 × ny cells with a

fairly broad block weight function (σx = W/2, σy = H/2, corresponding to setting thewtscale

parameter to 1 in their implementation). With these parameters, the effective cell weight functions

have quite sharp boundaries, as shown in figure 9 (top).

Figure 9 (bottom) shows the R-HOG cell weights for the same parameters, but with narrower

block weight functions recommended by Dalal and Triggs for human recognition (σx = W/4,

σy = H/4, corresponding to the defaultwtscale = 2).

w00 w01 w02

w00 w01 w02

Figure 9: The Dalal and Triggs’s cell weight functions for a single block of1 × 3 cells. Top: optimal block weight

deviationsσx = W/2, σy = H/2. Bottom: default block weight deviationsσx = W/4, σy = H/4.

One can obtain R-HOG weights somewhat similar to the T-HOG weights of figure 7 by using

1 × ny overlapping blocks with one cell per block, as shown in figure10. Comparing the cell

weights of figures 7 and 10, we observe that the latter assignsmuch lower mass to pixels along

the edges of the sub-image (among other differences). Presumably for that reason, the R-HOG
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w00 w01 w02

Figure 10: The Dalal and Triggs’s cell weight functions for1 × 3 single-cell blocks, each with heightH/2 and

overlapped with strideH/4, and with the default block weight deviationsσx = W/4 andσy = H/8.

classifiers with the weights of figures 9 (bottom) and 10 were less accurate than the R-HOG with

the weights of figure 9 (top), for the same descriptor size; and all three were worse than the T-HOG.

3.5. Normalization

Both algorithms, R-HOG and T-HOG, normalize the resulting descriptor. Dalal and Triggs use

a per-block normalization scheme, which is intended to compensate for spatial variations of lighting

and contrast over the input image. Since the T-HOG algorithmremoves those effects beforehand,

we simply divide the final descriptor by the sum of all features plus a constantǫ (L1 norm).

3.6. Vector classification and thresholding

Like Dalal and Triggs, we use an SVM classifier [2] to turn the descriptorz ∈ R
N into a real-

valued scoref(z), such that positive scores indicate ‘probably text’ and negative scores indicate

‘probably non-text’. The SVM is defined asf(z) =
∑M

i=1
αiK(zi, z)−b whereK is thekernel[24],

a function fromR
N ×R

N to R; thezi are theM fixedsupport vectors; theαi are real weights; and

b is thebiasor decision threshold. The support vectors and weights are determined by atraining

step from representative samples of text and non-text descriptors.

3.7. Computation costs

The T-HOG and R-HOG algorithms have linear complexity, that is, proportional to the number

of pixels in the extracted sub-image. Since the candidate text image is scaled to a fixed heightH,

the cost is roughly proportional to the number of charactersin the text line.
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4. Experiments

In this section, we describe an extensive set of experimentsperformed in order to determine

optimum values for the various parameters of the R-HOG and T-HOG descriptors, and to com-

pare their performance in the basic text/non-text discrimination task. These experiments strongly

confirm the advantage of the two main T-HOG innovations, namely the splitting of the image into

overlapping horizontal cells (section 3.3) with blurred boundaries (section 3.4).

4.1. Image collections

In our tests we used single-line text samples derived from three image collections:

1. The 2005 ICDAR challenge collection [25], consisting of499 color images of book covers,

road signs, posters, etc., captured with different camerasand resolutions.

2. A subset of the iTowns Project collection [26], consisting of 100 color images of Parisian

façades taken by a camera-equipped vehicle (similar to Google’s Street View).

3. The Epshtein et al. benchmark [4], with307 color images of urban scenes, ranging from

1024× 1360 to 1024× 768 pixels, taken with hand-held cameras.

These image collections are suitable benchmarks for textdetectors, but not for textclassifiers.

Therefore, we extracted from these image collections six sets of candidate sub-images as follows:

We processed each image collection with SnooperText [3], a state-of-the-art text detector algorithm,

tuned for high recall and moderate precision. Through visual inspection, we separated the candidate

regions returned by SnooperText into a set of text regionsXi, and a set of non-text (‘background’)

regionsBi, for i = 1, 2, 3. See figure 11. Table 1 gives the number of sub-images in each set. (For

succinctness, we will often omit the indexi in the remainder of the paper.)

4.2. Error rate metrics

To quantify the performance of a binary classifier (R-HOG or T-HOG) with a specific set of

parameters, we adopted a ‘ranking-based’ approach. That is, we evaluated the ability of the classi-
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i Image Set Detected regions Text (|Xi|) Non-Text (|Bi|)
1 ICDAR 4961 1727 3234
2 iTowns 2242 714 1528
3 Epshtein 7518 1502 6016

Table 1: Sizes of the text and non-text samplesXi, Bi used in our tests.

X1 : B1 :

X2 :
B2 :

X3 :
B3 :

Figure 11: Samples of text regions (setXi) and non-text regions (setBi) extracted by SnooperText from the ICDAR,

iTowns and Epshtein image collections.

fier to score text regions higher than non-text regions, regardless of the absolute value of the SVM

scoref(z).

Specifically, in our tests we randomly divided the setX (respectivelyB) into two disjoint sets,

each one with 50% of the elements: a ‘training’ halfX ′ (respectivelyB′) and a ‘testing’ halfX ′′

(respectivelyB′′). The sets(X ′, B′) were used to train the SVM. We then applied the classifier

to the complementary sets(X ′′, B′′). For several values of the SVM thresholdb (see section 3.6),

we computed the counts TPb, TNb (correct decisions, positive and negative) and FPb, FNb (incorrect

decisions). From these counts we computed the classification success rates for the text and non-text

regions on each evaluation dataset, namely

τb =
FNb

|X ′′| =
FNb

TPb + FNb

βb =
FPb

|B′′| =
FPb

TNb + FPb

(4)
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The τb metric (false negative rate) is the complement of the well-knownrecall metric r; it is the

probability of our algorithm incorrectly rejecting a text-containing region. Theβb metric (false

positive rate) is the probability of our algorithm incorrectly acceptinga non-text region. We choose

to useβb instead of the commonprecisionmetric because the latter depends strongly on the ratio

|B′′|/|X ′′|, which is essentially arbitrary.

By adjusting the thresholdb, the user can trade one class of errors for the other. In particular,

whenb is sufficiently small, the classifier accepts all samples, sothat τb = 1 andβb = 0. Con-

versely, whenb is sufficiently large, all samples are accepted as text, thereforeτb = 0 andβb = 1.

In order to reduce the sampling error, we repeated the whole procedureL = 10 times for each

pair of datasets(X,B) resulting inL different random partitions(X ′, X ′′) and(B′, B′′) for each

set. The raw statistics TPb, TNb, FPb, FNb were averaged over theseL runs, and for eachb.

4.3. DET curve and area metric

We compare classifiers by plotting thedecision error trade-off(DET) curve[5, 27], which is

the set of pairs(τb, βb) for b ∈ [−∞, . . . , +∞]. See figure 12. For an ideal classifier, the DET

curve lies along the bottom and left edges of the unit square[0, 1]× [0, 1]. The better the classifier,

the closer its DET curve should be to this ideal.

In our tests we observed that whenever a classifierCi was significantly better than another

classifierCj for some thresholdb, the same usually happened for most other values ofb. In other

words, the entire curve ofCi was closer to the ideal than that ofCj (below and to the left of it).

Therefore, we can use thedecision error area(DEA), which is the areaA between the DET curve

and the ideal curve (the shaded region in figure 12), as a single scalar measure of the performance

of a given classifier, independent of the thresholdb. The value ofA is a monotonically decreasing

function of the classifier’s accuracy, and is zero if the classifier is perfect (i.e., if one can set the

thresholdb so that the classifier makes no mistakes). Therefore, we can compare two classifiersCi

andCj by comparing the respective decision error areasAi andAj.
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Figure 12: Area under the curveA in grey.

In order to determine whether the differenceAi − Aj is statistically significant, we computed

mean valuesµ(Ai) andµ(Aj) and the standard deviationsσ(Ai) andσ(Aj) over theL runs. We

then computed Student’s test parametert(Ci, Cj)

t(Ci, Cj) =
µ(Ai)− µ(Aj)
√

S2

L
+ S2

L

(5)

where

S2 =
(L− 1) · σ(Ai)

2 + (L− 1) · σ(Aj)
2

2L− 2
(6)

The performance variation betweenCi andCj is considered statistically significant at risk levelα

if |t(Ci, Cj)| is above the corresponding thresholdtα from Student’s table.

4.4. General parameter settings

In both the R-HOG and T-HOG algorithms, the sub-images were rescaled during extraction

with the Lanczos interpolation filter [28] to the chosen height H. Since the extracted height must

be a multiple of the effective number of cell rows, we usedH = 25 pixels for 5 rows,H = 21

pixels for 7 rows, andH = 24 pixels for all other tests (with 1, 2, 3, 4, 6, 8 and 12 rows). The

rescaled widthW was chosen so as to maintain the aspect ratio of the original sub-image, but

rounded to the nearest integer multiple of cell columns (which was 1 for most tests). For the mean-

variance normalization and for gradient magnitude computation, we assumed a sampling noise with
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deviationε = 0.02. In all tests we used a Gaussianχ2 SVM kernelK, whose standard deviation

parameterσ was optimized by cross-validation on the training sets(X ′, B′).

In an extensive series of preliminary tests, we concluded that the best performance of the R-

HOG as text classifier, for all three datasets, is achieved with L1 block histogram normalization,

RGB colorspace with gamma correction 0.5 (RGBSQRT), oriented gradient directions ranging

over [0, 2π] or [0, π], and block mask parameterwtscale set to 1 (σx = W/2, σy = H/2).

In another series of tests, the best T-HOG performance was obtained withL1 whole-descriptor

normalization, and oriented gradient directions ranging over [0, 2π] or [0, π]. These optimal settings

where then used for all subsequent tests.

4.5. Optimal cell arrangements

We next performed a series of tests to determine the optimum cell arrangement for text/non-

text classification with the R-HOG algorithm, as a function ofthe total cell countnxny. R-HOG

allows the cells to be grouped into blocks, which may partially overlap. The possible arrangements

with six cells (counting overlaps) are shown in figure 13. Arrangements (a)–(d) have disjoint, non-

(a) 6x1 (b) 3x2 (c) 2x3 (d) 1x6

(e) 6fx1 (f) 3hx2 (g) 2x3h (h) 1x6f

Figure 13: Some possible arrangements of blocks and cells that result in an R-HOG descriptor with six HOGs. Solid

and dashed lines inside the image are the cell boundaries; the external brackets show the blocks.

overlapping cells, which could be grouped into disjoint blocks in several ways. Arrangements (e)
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and (h) have two cells per block; note that the two central cells are duplicated in the final descriptor.

Arrangements (f) and (g) have single-cell blocks that overlap by half a cell.

We tested many possible cell and block arrangements with andwithout overlapping blocks. The

DET curves for some combinations ofnx andny with nb = 12 are shown in Figure 14. Note that

the countsnx andny include overlapping cells so that the descriptor always consists ofnxny HOGs.

As mentioned in section 3.4, we concluded from these experiments that arrangements with two or

more blocks, overlapping or not, are not advantageous for R-HOG. We have found that for the

same descriptor sizeN = nxnynb and number of bins, a single block is always better. Moreover,

we concluded that, for the same descriptor size, the best choice is alwaysnx = 1, that is, a grid

of ny horizontal stripes. These conclusions were confirmed by numerous tests with the other two

datasets and with different bin counts (nb = 6, 12, 18 and36).

A parallel series of tests with our T-HOG classifier gave entirely similar results, confirming that

nx = 1 is always the best choice for any descriptor size.

4.6. Performance as function of descriptor size

Having established that the best cell arrangement for R-HOG is always a single block divided

into disjoint horizontal stripes, we performed another series of tests to analyze the influence of

the number of stripesny and the number of bins per stripenb on the R-HOG classifier accuracy.

Namely, we tested all combinations ofny = 1, 2, . . . , 8, 12 andnb = 4, 5, . . . , 18, 24, 36, with

nx fixed at 1. Figure 15 shows the results of these experiments for N ≤ 250. Configurations

are identified by the notationnx×ny:nb. From these tests, we concluded that a longer R-HOG

descriptor generally gives better results. However, the advantage is very small forN greater than

100. In particular, no improvement was seen whenN increased beyond 250. We also concluded

that the R-HOG’s accuracy improves dramatically asny increases from 1 to 3, improves more

gradually untilny is 7 or so, and remains the same thereafter. These conclusions were found to

hold for all three datasets.
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Figure 14: DET curves (mean of 10 random partitions) of the R-HOG classifier, for various cell and block arrange-

ments, on the ICDAR datasetX1, B1. In each plot, except the last one, all grid configurations give the same descriptor

sizeN = nxnynb. The last plot compares the best combinations of the eight previous plots.

In figure 15 (bottom), the black dots represent the optimal combinations ofny andnb, the only

ones that are worth using for any specified descriptor sizeN . Configurations that fall above the

solid staircase line (blue dots) are fully dominated by optimal ones, in the sense that the latter

provides equal or better performance with equal or smallerN . There appears to be no simple

formula for the optimal parameters, partly becauseny andnb are constrained to be divisors ofN .
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Figure 15: Detection error areaA (mean of 10 random partitions) of R-HOG as a function of descriptor sizeN =

nxnynb, for various combinationsny andnb, with nx = 1. In the left plot, arrangements with the sameny (1, 2 or

3) and increasingnb are connected by lines. The outlined region is magnified in the right plot. The staircase curve

connects the optimal configurations (black dots).

Furthermore, the optimal configurations for the other two datasets are slightly different.

A similar series of tests were performed to determine the best combination ofny andnb for the

T-HOG classifier. We found that the optimum combinations foreachN were generally the same as

those of R-HOG (see the next section).

4.7. Comparison of T-HOG vs. R-HOG

Figures 16 and 17 compare the accuracy of the R-HOG and T-HOG classifiers, in the optimal

ny andnb configurations, for each descriptor sizeN and for each of the three datasets. As we can

see, the T-HOG significantly outperforms R-HOG in all cases. For example, a T-HOG with about

20 features has a performance similar to an R-HOG with 80 or more features.

Table 2 gives detailed data for two cell grid and bin count combinations (1×4:5, N = 20, and

1×7:9, N = 63), selected among the optimum combinations of figures 16 and 17. According
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Figure 16: Comparison between optimal configurations of R-HOG and T-HOG. The error bars show the standard

deviation over 10 random partitions of(Xi, Bi) on the Epshtein dataset.
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Figure 17: Comparison between optimal configurations of R-HOG and T-HOG. The error bars show the standard

deviation over 10 random partitions of(Xi, Bi) on the ICDAR and iTowns datasets, respectively. Note that the vertical

scale is different in each plot.

to Student’s table for2L − 2 = 18 degrees of freedom, the smallestt value in the table, 5.44,

corresponds to a riskα < 10−4.

Figure 16 shows that, for both classifiers, theICDAR-deriveddataset is significantly easier

than the other two. Presumably this is due to the fact that most ICDAR images are digitized 2D
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nx×ny:nb Dataset R-HOG T-HOG t-test

µ(A) σ(A) µ(A) σ(A)

ICDAR 0.0109 0.0010 0.0054 0.0007 14.73
1×4:5 iTowns 0.0158 0.0022 0.0082 0.0012 10.19

Epshtein0.0285 0.0023 0.0151 0.0016 15.10

ICDAR 0.0042 0.0005 0.0029 0.0005 5.81
1×7:9 iTowns 0.0087 0.0013 0.0059 0.0010 5.44

Epshtein0.0164 0.0022 0.0120 0.0014 6.14

Table 2: Statistics of R-HOG and T-HOG classifiers for two optimal cell configurations.

documents, whereas the iTowns and Epshtein images are photos of 3D urban scenes.

4.8. Blurredvs. hard-edged cells

Finally, we performed another series of tests to quantify the contribution of blurred cell bound-

aries to the T-HOG performance. Detailed data for two specific configurations (1×4:5, N = 20,

and1×7 : 9, N = 63) on the iTowns dataset are shown in table 3. According to Studentst-test, the

improvement is significant (at risk levelα = 0.05) for the1×4 : 5 descriptor (t = 8.42), but not for

the1×7:9 descriptor (t = 1.47).

nx×ny:nb Dataset Sharp Blurred t-test

µ(A) σ(A) µ(A) σ(A)

1×4:5 iTowns 0.0130 0.0014 0.0082 0.0012 8.42

1×7:9 iTowns 0.0065 0.0008 0.0059 0.0001 1.47

Table 3: Statistics for two optimal T-HOG classifiers with sharp and blurred cells.

4.9. Limitations

Figure 18 shows some false negatives and false positives reported by the T-HOG classifier (in

the1×7:9 configuration) for theXi andBi datasets. False negatives are usually due to an inaccurate
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detection of the candidate sub-image, or to those texts thatare one or two characters long, obscured,

or with incomplete characters. False positives are typically images with many line-like features in

several orientations.

(a) False negatives (b) False positives

Figure 18: Examples of sub-images incorrectly classified bythe T-HOG.

5. Applications

5.1. T-HOG as a post-filter to text detection

The motivating application for text classifiers such as T-HOG and R-HOG is the detection of

text in photos and videos of arbitrary scenes [29, 30]. Specifically, the idea is to use the classifier

to filter the output of a fast but “permissive” (high-recall and moderate-precision) detector.

To evaluate the suitability of T-HOG for this application weused the SnooperText detector of

Minetto et al. [3], which was developed within the iTowns urban documentation and navigation

project [26]. SnooperText uses a multiscale adaptive segmentation to locate candidate characters,

which are selected and grouped into words and lines by geometrical criteria. Two critical param-

eters of SnooperText are the minimum sizeλ (in pixels) of the detected character regions in each

scale, and the minimum number of characters per group (GOC). We found that the optimal values

of these parameters, when SnooperText was used alone, wereλ = 10 andGOC = 3. That is, only

words with 3 or more characters were reported. These settings are denoted ST3 in what follows.

When SnooperText was used in combination with the R-HOG or T-HOG as a post-filter, we

found that the optimum parameters wereλ = 5 andGOC = 2, which increase the recall but
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significantly reduce the precision. We denote these settings by ST2. For the T-HOG and R-HOG

we used the optimal parameters specified in section 4.4, withthe cell arrangementnx = 1, ny = 7,

andnb = 9, resulting in a descriptor of sizeN = 63. See figure 19.

Figure 19: Output of the SnooperText detector withλ = 5 andGOC = 2 (left), and the same output after filtering

with the T-HOG recognizer (right) on an image from the Epshtein collection.

5.1.1. Metrics for text detection

The standard metrics to compare text detection systems described in the literature are based on

the ICDAR 2005 measure of similarity [25] between two rectanglesr, s, and defined asm(r, s) =

S(r ∩ s)/S(r ∪ s) whereS(t) is the area of the smallest rectangle enclosing the sett. The function

m(r, s) ranges between0 (if the rectangles are disjoint) and1 (if they are identical). The metricm

is extended to a set of rectanglesZ by the formulam(r, Z) = max{m(r, s′) : s′ ∈ Z}. From this

indicator one derives the ICDARprecisionp andrecall r scores [25]

p =

∑

r∈E m(r, T )

|E| r =

∑

r∈T m(r, E)

|T | (7)

whereT is the set of manually identified text regions in the input images, andE is the set of

text regions reported by the detector. For ranking purposes, the ICDAR 2005 committee used the

f measure[25] which is the harmonic mean of precision and recallf = 2/(1/p + 1/r). There

are several ways of averaging these metrics over a multi-image database. The approach used by
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the ICDAR 2005 scoring program (method I) is to evaluatep, r andf separately for each image,

and then compute the arithmetic mean of thef -scores over all images. Another approach (II) is to

computep andr for each image, then take the arithmetic means of allp andr values, and computef

from these means. We note that the first method suffers from higher sampling noise and a negative

bias compared to the other method. These points must be considered when comparingf values

reported by different authors.

5.1.2. Results

We compared the performance of SnooperText alone and in combination with a text recognizer,

either R-HOG or T-HOG, as a post-filter. We also compared them with several state-of-the-art

detectors described in the literature. Specifically, we compared with the published scores of the

detectors that entered the ICDAR 2003 and 2005 Challenges [25], and also with the detectors of

Tian et al. [31] and Epshtein et al. [4], which had the highestf -scores reported in the literature (as

of 2011).

The results for each of the three image collections are shownin tables 4–6. Allp andr scores

were computed with the ICDAR scoring program [25]. The scoresin thefI andfII columns were

averaged by methodsI andII, respectively.

Note that T-HOG is a more effective post-filter for SnooperText than R-HOG; and that the best

combination (ST2+T-HOG) is much better than the best results of SnooperText alone (ST3). Also

note that the combination ST2+T-HOG is at least as effectiveas the best published methods on the

ICDAR dataset, and outperforms the Stroke Width Transform (SWT) [4] results of Epshtein et al.

on their own dataset. The largest difference between the R-HOG and T-HOG classifications is in

the Epshtein dataset, where the text candidates are much harder to classify (see the vertical plot

scales in figures 16 and 17).

To confirm the results of section 4.5, we tested the ST2+T-HOGcombination with a smaller

descriptor (nx = 1, ny = 4, nb = 5, N = 20). Thef -score was about1 to 2% lower, on average,
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System p r fI fII

ST2+T-HOG 0.73 0.61 0.65 0.67

ST2+R-HOG∗ 0.70 0.62 0.64 0.66

Yi and Tian [31] 0.71 0.62 0.62 0.66

Epshtein et al. [4] 0.73 0.60 0.66 0.66

ST3+T-HOG 0.72 0.57 0.62 0.64

ST3+R-HOG∗ 0.72 0.57 0.62 0.64

Hinnerk Becker† 0.62 0.67 0.62 0.64

ST3 0.64 0.59 0.59 0.61

Alex Chen† 0.60 0.60 0.58 0.60

ST2 0.42 0.65 0.47 0.51

Ashida† 0.55 0.46 0.50 0.50

HWDavid† 0.44 0.46 0.45 0.45

Wolf† 0.30 0.44 0.35 0.36

Qiang Zhu† 0.33 0.40 0.33 0.36

Jisoo Kim† 0.22 0.28 0.22 0.25

Nobuo Ezaki† 0.18 0.36 0.22 0.24

Todoran† 0.19 0.18 0.18 0.19

Full† 0.01 0.06 0.08 0.02

Table 4: Performances of various text detectors on the “testing” subset of the ICDAR image collection. The competitors

of the ICDAR 2003 and 2005 Challenges are marked with†. For this table, the T-HOG and R-HOG classifiers were

trained on the output of the ST2 detector applied to the ICDAR“training” subset. ∗Best R-HOG found using only

horizontal cuts.

for the three image collections. We also tested the ST2+T-HOG combination with the sub-image

divided into vertical stripes (nx = 7, ny = 1, nb = 9, N = 63); the f -score was about5 to 7%

lower.
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System p r fI fII

ST2+T-HOG 0.72 0.50 0.56 0.59

ST2+R-HOG∗ 0.70 0.49 0.54 0.58

ST3+T-HOG 0.72 0.43 0.51 0.54

ST3+R-HOG∗ 0.72 0.43 0.51 0.54

ST3 0.49 0.43 0.43 0.46

ST2 0.24 0.53 0.31 0.33

Table 5: Performances of SnooperText, with and without HOG post-filtering, on the whole iTowns image collection.

For this table, the R-HOG and T-HOG classifiers were trained on theX1 ∪X3 andB1 ∪ B3 datasets.∗Best R-HOG

found using only horizontal cuts.

System p r fI fII

ST2+T-HOG 0.59 0.47 0.49 0.52

ST2+R-HOG∗ 0.55 0.44 0.46 0.49

ST3+T-HOG 0.64 0.39 0.46 0.49

Epshtein et al. [4] 0.54 0.42 — 0.47

ST3+R-HOG∗ 0.62 0.37 0.43 0.46

ST3 0.46 0.42 0.41 0.44

ST2 0.19 0.54 0.25 0.28

Table 6: Performances of SnooperText, with and without HOG post-filtering, and of the Epshtein et al. detector on the

whole Epshtein image collection. For this table, the R-HOG and T-HOG classifiers were trained on theX1 ∪X2 and

B1 ∪B2 datasets.∗Best R-HOG found using only horizontal cuts.

5.2. T-HOG as a text detector

Any text recognizer can also be used on its own as a sliding-window text detector. Namely, the

recognizer is applied to a sufficiently large set of sub-regions in the input image, and the sub-regions

with the largest scores are returned as the output.

Figure 20 shows the result of such a text detector, using the T-HOG+SVM recognizer, with a
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window of fixed size (24 by 72 pixels) sliding over the whole image. Note the high selectivity of

the recognizer. For this test, we trained the SVM classifier using the setU of positive “ground-

truth” sub-regions provided by the ICDAR Challenge team [25],and a setV of negative random

sub-regions of the ICDAR images disjoint from the setU and about three times its size.

Figure 20: Top left: image PICT0031 from ICDAR dataset (640 × 480 pixels). Top right: the output of the T-

HOG+SVM sliding window classifier, encoded as the color of the central pixel (warm tones for positive output, cold

tones for negative). The white rectangle at the top left corner shows the size of the sliding window. Bottom: the union

of the 100 windows with the highest scores.

Text of variable size can be detected by running this algorithm on several reduced versions of

the input image, in a multi-scale fashion. However, this brute-force approach to text detection is

extremely expensive, since the number of windows that need to be analyzed is very large. For this

reason we did not evaluate its accuracy or compare it to otherdetectors.

5.3. T-HOG as a detection post-filter in OCR algorithms

OCR algorithms designed for unstructured 3D urban environments are of great interest to sys-

tems as the Google’s Street View and the iTowns projects, which aim to extract (offline) any textual
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information present in the images, such as street and trafficsigns, store names, and building num-

bers. With this information the user can then make textual queries to retrieve images semantically

relevant to him. However, standard OCR algorithms developedfor scanned documents perform

very poorly on photos of 3D scenes. See figure 21(top). Much better results are obtained by filter-

ing the false positives with T-HOG. See figure 21(bottom).

6. Conclusions

In this paper we describe extensive experiments with Dalal and Triggs’s multiple HOG descrip-

tor (R-HOG) and SVM classification for the text/non-text discrimination problem. These experi-

ments showed that the optimum cell configuration, for any descriptor size, consists of horizontal

bands in a single weighting and normalization block. Splitting the sub-image by vertical cuts is

never cost-effective. In retrospect, this conclusion makes sense, given the nature of the ‘object’ to

be classified – a single line of text of arbitrary length. Through these experiments, we also deter-

mined the best values for the number of cellsny and the number of binsnb, for each descriptor size

N = ny × nb. In particular, we found that increasingN beyond 100 has practically no effect on

classification accuracy.

We then defined another multiple HOG descriptor, the T-HOG, whose cells have blurred bound-

aries defined by overlapping Gaussian weight functions. An exhaustive series of experiments con-

firmed that the best cell arrangement for the T-HOG text classifier is also a stack of horizontal bands.

These tests also showed that the T-HOG classifier consistently outperforms R-HOG at text/non-text

discrimination, for any descriptor sizeN .

Finally, we described the use of T-HOG in three text-relatedapplications. First, we described

the use of T-HOG as a post-filter for a high-recall, low-precision text detector, and showed that the

combination is at least as good as the best text detectors reported in the literature. We also showed

that T-HOG is better than R-HOG for this application. Second,we described the use of T-HOG in
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Figure 21: Top left: the text detection of a top publicly available OCR (Tesseract). Top right: OCR of Tesseract with

few readable words and a lot of noise due to the false detections. Note that it is hard, in an urban context, to filter the

strings with a dictionary since noise regions can be converted to words with meaning. Bottom left: the text detection

output of Tesseract after filtering the candidates with the T-HOG classifier. Bottom right: the OCR after filtering.

a sliding-window text detector, and gave anecdotal evidence of its accuracy. Third, we described

the benefits of T-HOG in a well-known OCR software.
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