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Model-Based Analysis-Synthesis for Realistic

Tree Reconstruction and Growth Simulation

Corina Iovan, Paul-Henry Cournède, Thomas Guyard, Benoı̂t Bayol, Didier

Boldo, Matthieu Cord

Abstract

Due to its complexity, vegetation analysis and reconstruction from remote sensing data is a challeng-

ing problem. Using architectural tree models combined with model inputs estimated from aerial image

analysis, this paper presents an analysis-synthesis approach for urban vegetation detection, modelling

and reconstruction. Tree species, height and crown size information are extracted by aerial image

analysis. These variables serve for model inversion to retrieve plant age, climatic growth conditions and

competition with neighbours. Functional-structural individual-based tree models are used to reconstruct

and visualize virtual trees and their time evolutions realistically in a 3D viewer rendering the models with

geographical coordinates in the reconstructed scene. Our main contributions are: (i) a novel approach

for generating plant models in 3D reconstructed scenes based on the analysis of the geometric properties

of the data, and (ii) a modelling workflow for the reconstruction and growth simulation of vegetation

in urban or natural environments.

Index Terms

vegetation detection, species classification, image-based vegetation modeling, functional-structural

tree growth model, dynamic scene evolution.
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(INRIA) and P-H. Cournède is with the MAS laboratory in Ecole Centrale Paris (ECP).

Manuscript received May 16, 2012; revised October 7, 2012; revised January 21, 2013; revised February 10, 2013

February 10, 2013 DRAFT

Page 1 of 28 Transactions on Geoscience and Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2

I. INTRODUCTION

Until recently, trees or vegetation have merely been considered as contextual elements in

virtual environments. They are generally used to add some visual realism to the virtual scene.

For this purpose, gifted computer graphists can provide some very beautiful and satisfying results

[1], [2].

However, with the increasing environmental concern [3], virtual trees and plants get growing

attention and their biophysical realism may be as important as their visual realism for specific

applications, in both urban and natural contexts. Particularly, one may be interested in the

dynamical evolution of the virtual environment. For example, for urban applications, we may

be interested in visualizing what the evolution of a park will be after a few years. For forestry

applications, it is crucial to predict the growth of a population of trees, according to scenarios of

exploitation. In both cases, the virtual environment should also help answering some scientific

questions, e.g. what will be the consumption of carbon dioxide of trees in the city/forest over

the years [4], [5].

Canopy reconstruction algorithms have known great interest as a useful tool for forest ecosys-

tem studies [6]. Understanding the backscattering processes in forest canopies is useful for

monitoring vegetation canopies and potentially provides insight on the type of forest or pro-

cesses driving its development. To this end, several models were designed to simulate the radar

backscatter response for a variety of forest stands [7] [8].

In this context, the aim of this paper is to reconstruct functional vegetation in virtual environ-

ments, both geometrically and biophysically by using model-based analysis-synthesis approach.

More specifically, we consider the case of 3D city models including vegetation. A set of

parameters for individual trees in a scene are estimated by image analysis from aerial data.

They are used as inputs for a discrete dynamic system to generate functional-structural tree

models for visualization and growth simulation. Moreover, the dynamic model of tree growth

can be used to visualize the time evolution of the scene.

The methodology is based on recent progress in the characterization of vegetation from

aerial image analysis [9] and in functional-structural plant growth models, which combine the

description of both architectural development (and thus plant geometry) and functional growth,

in interaction with the environment [10].
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The analysis of aerial data aims at identifying vegetation characteristics. The system extracts

vegetation areas, separates them into high- and low-height vegetation, delineates individual tree

crowns, extracts 3D tree parameters (such as crown area and tree height) and classifies them

according to their species. With this information, the objective is thus to reconstruct all trees in

the scene, from the functional-structural individual-based model of tree growth. The parameters

specific to each species are known a priori, as they are estimated through specific experiments,

mainly conducted by biologists. The missing pieces of information are tree ages, and conditions

of growth (environmental, competition conditions). For each species, we perform a minimization

of the distance between tree model simulation outputs and analysis results regarding height and

crown size. From the model thus parameterized, we obtain the geometry of all plants and produce

corresponding graphic models to be used for visualization in the 3D city model.

The paper starts by presenting image analysis from aerial data and estimation of model inputs,

in section II. Section III gives an overview of an individual-based architectural model of tree

growth combining both structural development and biophysical functioning. The methodology

for model parameterization from aerial imagery is detailed in section IV. Experimental results

are presented in section V. Finally, conclusions and perspectives of our work are presented in

section VI.

II. AERIAL DATA ANALYSIS

This section presents urban vegetation analysis from high-resolution aerial imagery. Part of the

works presented hereafter were presented in [9] and will be briefly summarised in the following.

For a detailed description of the entire system, please refer to the beforementioned publication.

The approach to analyse vegetation from high resolution aerial imagery is a hierarchical one:

regions of interest containing vegetation are extracted in a first step and category of objects

present therein are analysed in following steps either through segmentation or classification

approaches. Figure 1 illustrates the whole system for vegetation detection and characterization

from aerial images.

A. Data and Study Area

The input of the system represents standard types of data produced for 3D city modelling

applications, such as high-resolution georeferenced aerial images with a resolution of 20 cm per
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Fig. 1. Urban vegetation analysis - system overview. The first module extracts vegetation areas from high resolution aerial data

of urban areas. Vegetation masks are processed by the following module which separates them into short and tall vegetation

areas and performs individual tree crown delineation. The last module is used to estimate 3D parameters of trees and to classify

them according to their species.

pixel and having 4 channels (red (R), green (G), blue (B) and near-infrared (IR)).

The aerial images were acquired according to a flight plan (see Figure 2 ) containing flight

strips ensuring an overlap of 60% between images taken within each strip and 60% between

two adjacent strips. This ensures that all the points of the studied area are visible on at least

four to nine images. The charged-coupled device (CCD) matrix is made up of more than 16

millions pixels (4096 × 4096) each having a size of 9 µm [11]. The four channels (R, G, B

and IR) were acquired simultaneously by four different acquisition heads of a four-head camera

system [12]. All aerial images were acquired the same day and pre-processed prior to vegetation

extraction by correcting radiometric errors (haze reduction) and distortions of digital images.

Radiometric corrections address variations in the pixel intensities that are not caused by the

object or scene being scanned. Atmospheric haze reduction is a simple method that assumes that

some image pixels should have a reflectance of zero [13]. Actual values of zero pixels result

from atmospheric scattering. The method employed for haze correction consists in subtracting

the histogram offset from all pixels in a specific band.

The flow chart presented in Figure 3 illustrates the process of obtaining additional data from

multi-view aerial imagery. Four channel orthophotographs are obtained by removing the effects

of image perspective and relief and creating a planimetrically correct image, having a constant

scale wherein features are depicted in their true plan positions. A dense Digital Surface Model
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(a) (b)

Fig. 2. Flight plan for the 2004 aerial-image acquisition campaign for the city of Marseille. (a) A total of 23 flight-strips were

flown, 6 of which are perpendicular. Dots on each flight strip stands for the position where an image was captured. (b) Enlarged

detail of flight strips 19, 20 and 21 illustrating the 60% overlap between images taken on the same strip and 60% between two

adjacent strips. Areas covered by images taken in each strip is presented by a bounding rectangle.

(DSM) is computed from multiple images using MICMAC 1 a multi-view matching algorithm

[12]. Buildings are masked on the DSM, and the resulting depth map is subsequently used to

estimate the terrain surface, thus obtaining a Digital Terrain Model (DTM) [14] which is a

digital representation of the topographic surface. A normalized Digital Surface Model (nDSM),

containing the height of above ground objects, is computed as the difference between DSM and

DTM. Sample data (aerial images, DSM and orthophotograph) for the scene of Marseille are

depicted in Figure 4.

The study area is located in the city of Marseille, situated in the south-east of France.

Marseille’s climate is Mediterranean, with a great variety of vegetation species. It is a complex

urban area, with many green resting places, highly intermingled with buildings. Figure 5 depicts

the location of the study area used in this study.

B. Vegetation Detection

Traditionally, vegetation indexes such as the Normalised Difference Vegetation Index (NDVI)

[15] are used to extract vegetation areas from remote sensing imagery. While such indexes were

1http://www.micmac.ign.fr
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Fig. 3. Overview of the methodological process for dataset creation and data samples. Aerial images and cadastral data are

used to obtain additional data. Due to the overlap between aerial images, the DSM obtained is accurate enough for 3D object

analysis.

developed for different applications and particular types of input data and acquisition conditions

(which can be incompatible with the urban environment), there is no ideal index designed to

characterise the urban environment [16]. The urban environment is a mixture of different land-

use/land-cover classes. Therefore, the spectral response of urban vegetation is altered by the

presence of different land-use/land-cover classes such as lawns, shrubs and treed areas having

similar spectral signatures. Moreover, the atmospheric conditions over urban areas are greatly

influenced by the presence of pollutants and dust issued from industrial plants which are mainly

located around big cities. All these factors induce great variations in the spectral reflectance of

the same urban material.

To overcome the limitations of such methods, we use a supervised classification approach

based on spectral features and a Support Vector Machines (SVMs) [17] classifier to extract

vegetation in urban areas. This task is seen as a binary classification problem, where SVMs

are used to learn from a set of labelled examples a classification rule which should be used to

predict the class of new unlabelled examples. Geometrically, this rule could be expressed as the

hyperplane that separates the input space into two half-spaces, and the prediction of the class of a

new point depends on the position of this point on one or the other side of the hyperplane. SVMs

learn a classification function that, among all separating hyperplanes, maximises the distance to

the closest data point from the training data set.

The discriminative power of SVMs can be enriched via kernel functions which allow the
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Fig. 4. Sample data acquired over the Marseille city in 2004. Left: A set of four images from 2 neighbour flight strips in which

the same building is visible. There are high-resolution RGB images in a conique prespective. The DSM obtained by correlation

from the multi-view images. Right: The resulting orthophotograph of the same area.

mapping of data points from the original space to another space, where linear classification

between data sets might be possible. As the kernel defines a distance between data points, it can

be seen as a measure of similarity between them: the larger the kernel, the closer data points are

in the initial feature space. Several kernels were analysed: linear, polynomial and radial basis

function (RBF). For the classifier implementation, the LIBSVM [18] library was used.

Reflectance values of pixels in the IR, R, G and B channels were used to compose the feature

vector used by the SVM classifier during training. Several colour transformations have been

applied to the R, G and B components of the feature vector. Components of the Hue, Saturation,

and Value (HSV), XYZ and Lab colour spaces were used in addition to the IR channel to perform

vegetation detection.
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Fig. 5. The study area is located in the south of France, city of Marseille.

Training and tests were performed on manually delineated samples of vegetation and non-

vegetation areas. Table I gives the total number of pixels used for training and test. Training

was performed on the same amount of pixels for the vegetation and non vegetation classes, in

order to build reliable models. As for the test data set, the differences between the sizes of the

two classes comes from the absence of enough ground truth pixels to test models on larger data

sets.

TABLE I

SIZE OF TRAINING AND TEST DATA SETS FOR VEGETATION DETECTION.

Training Test

# pixels # pixels

Vegetation Areas 100,000 250,000

Non-vegetation Areas 100,000 1,000,000

TOTAL 200,000 1,250,000

Vegetation detection performances for the SMV classifier are given bellow by means of True

Positives (TP) rates for three False Positives (FP) cases: FP = 0.0001, FP = 0.001, FP = 0.01,
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meaning, respectively, that one pixel out of 10000, 1000 and 100 is misclassified.

TABLE II

RESULTS FOR VEGETATION DETECTION BY SVM CLASSIFIER AND COMPARISON TO THE NDVI INDEX. FEATURE VECTORS

ARE COMPUTED IN DIFFERENT COLOUR SPACES. TRUE POSITIVES (TP) RATE IS PRESENTED FOR THREE VALUES OF FALSE

POSITIVES (FP) RATE.

Colour space kernel FP=1e-4 FP=1e-3 FP=1e-2

NDVI – 0.0882 0.907 0.998

RGB linear 0.57 0.903 0.997

RGB poly 0.848 0.993 0.997

RGB rbf 0.498 0.811 0.981

HSV linear 0.539 0.76 0.979

HSV poly 0.867 0.99 0.994

HSV rbf 0.467 0.939 0.988

XYZ linear 0.398 0.661 0.792

XYZ poly 0.467 0.696 0.816

XYZ rbf 0.397 0.649 0.776

Lab linear 0.629 0.991 0.998

Lab poly 0.859 0.98 0.994

Lab rbf 0.678 0.967 0.998

Table II emphasises the great potential of the SVM-based approach for vegetation detection

in urban areas compared to the traditional NDVI-based approach. For a fixed FP rate of 0.0001,

i.e. one out of 10000 pixels is misclassified, performances of the NDVI-based approach are

inferior to performances of all other SVM-based approaches for vegetation detection. For a FP

rate of 0.001, the SVM-based approach still outperforms the NDVI one, by an approximately

9% increase of the TP rate for the RGB colour space and a polynomial kernel. For FP rates

of 0.01, the NDVI-based approach performs equally to the SVM-based one, for the Lab colour

space with linear or rbf kernels.

Figure 6 illustrates experimental results of the vegetation detection strategy proposed here and

compares it to the traditional NDVI index.

The linear kernel gives very good results for the feature vector computed in the Lab colour

space, which could be the result of the non-linear relationships between the L, a and b components

of the colour space as they intend to mimic the logarithmic response of the eye.
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Fig. 6. Results for the vegetation detection step. Left: original RGB image. Middle: NDVI image - green pixels depict vegetation

areas. Right: SVM Classifier, linear kernel and feature vector computed on the Lab colour space.

The polynomial kernel gives equally good performances for the RGB and the Lab colour

spaces whereas the RBF kernel gives best performances on the Lab colour space.

C. Vegetation Segmentation

The results of the first module are used as input for the vegetation segmentation module, con-

structed around a two-step strategy, starting with lawn delineation and continuing with individual

tree crown delineation. Given the vegetation mask previously obtained and the DSM, height

is the main source of information exploited to separate lawns from trees, and to individually

separate tree crowns. As the aim of the first step is to distinguishing between two spectrally close

classes (lawn areas and trees), texture characteristics computed on the DSM were exploited to

differentiate between grass and trees. To extract lawns from the vegetation areas previously

delineated, the local height variance was computed on the vegetation areas corresponding to the

DSM. This texture feature accentuates large changes in height values between adjacent pixels.

Based on such features, decision is made by simple thresholding techniques.

The methodology for lawn delineation can be resumed by the following steps:
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(1) the DSM of the area is used to compute variance,

(2) the vegetation mask is used on the image obtained after the first step to hide all non-

vegetation areas,

(3) the resulting image is passed on to a decision module which separates lawns from trees,

(4) the output is saved as binary images representing lawn and tree areas.

Height local variance was computed by using a sliding window of an empirically determined

size of 11×11 pixels. This settings allowed us to capture both fine-scale and coarser-scale height

characteristics of urban vegetation. The variance texture data was separated into low- and high-

values using a histogram-based thresholding method.

Provided an accurate DSM is available, the method gives reliable results for separating lawn

areas from trees. In the context of our application, experimental results obtained by applying

this method to separate trees from lawns proved to be highly satisfactory. At the output of the

lawn delineation step, two thematic classes are isolated from the vegetation class. The first one

contains lawn areas and the second, trees.

Tree crown delineation problems have been tackled through top-down or bottom-up ap-

proaches. Top-down methods include an input model for tree crowns [19] into the segmentation

algorithm, in contrast to bottom-up approaches which aim to group pixels according to feature

similarities such as continuity of pixel intensities [20], [21], texture [22], and bounding contours

[23]. To delineate individual tree crown boundaries, we use a region growing approach which

belongs to the class of bottom-up methods and exploits tree height information from the DSM.

It overcomes the drawback of top-down approaches on a priori knowledge of tree-crown shapes

needed to generate the model. It consists of two steps. In the first one seed regions, corresponding

to tree tops, are extracted from height information from the DSM. The algorithm used for seed

extraction is given below:
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H← DSM ∗ N (0, 1σ)

h← max(H)

LBL← −1

lbl← 1

while h ≥ 0 do

Hslice ← Hij such that h < Hij < h+ ∆h

R ← Extract regions from Hslice

for k = 1 to nb of regions in R do

if LBL(Rk) = −1 & Rk isolated then

LBL(Rk)← lbl

lbl← lbl + 1

end if

end for

h← h−∆h

end while
First the DSM is smoothed by a two-dimensional Gaussian Filter, and the result is stored in

H. Then a local maximum search is performed and pixels corresponding to seed regions are

labeled in the LBL image. These seed regions are grown in a second step by a watershed [24]

like algorithm in which the growing process of a region stops when it connects to another region.

The output of the vegetation segmentation module consists of individual regions corresponding

to each tree crown which will be exploited by the vegetation characterisation module for both

identifying morphological characteristics of trees and to perform tree species classification.

D. Vegetation Characterisation

Given the individual tree crown regions obtained by the segmentation module, image data

and height information, the first component of the vegetation characterisation module extracts

morphology attributes for each tree crown. The second component, deals with tree species

classification by means of supervised classification techniques. This is performed by using ground

truth data of tree species, tree crown regions and spectral and spatial characteristics computed

for each individually delineated tree region.

Tree crown diameter cd and tree height h, are estimated for each tree T from regions Ri
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obtained after tree crown delineation. The diameter of a crown (cd) is estimated by measuring the

length along one axis from edge to edge through the region’s center. Tree height h is estimated

for each region from the nDSM.

Tree species are identified by an SVM-based supervised classification approach using spectral

and texture features extracted from image data for each individual tree crown. The system used

to perform tree species classification is illustrated in Figure 7.

Fig. 7. System overview for tree species classification.

Input tree crown samples of each tree species (class) are used to extract spectral and spatial

features which will form the feature vector for the training stage. During training, feature vectors

belonging to one species are used to find the boundary separating all samples belonging to the

class taken in consideration from all other samples not belonging to the class. During the test

stage, features of an unknown tree sample are compared to models computed for each species

during the training stage. The sample is assigned to the class giving the highest membership

probability.

Let R1, R2,...,RN denote tree crown regions in the segmented image i(x, y). To classify the

regions, feature vectors composed of spectral and texture measures are computed on whole tree

crown samples Ri.

The distribution of reflectance values of pixels belonging to a tree crown region Ri are modeled

by a multivariate Gaussian model with full covariance matrix N (µ,Σ). The spectral feature
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vector thus obtained is concatenated with a texture feature vector, composed of second order

statistics of the texture of each tree crown region Ri extracted from the Gray Level Co-occurrence

Matrix (GLCM) [25], namely Mean, Standard Deviation, Range, Angular Second Moment,

Contrast, Correlation, Entropy, Inverse Difference Moment. The choice of an appropriate distance

d between pixels is closely related to the coarseness or the fineness of the texture being analyzed.

The coarser the texture, the more the distance between pixels can be increased. Distance was

set to d = 1 to characterize texture in its finest level of detail. Direction is important in case

of anisotropy in the texture. This is not the case for tree crowns. Thus, second order statistics

were computed over a direction of 0 ◦. Both spectral and texture features were computed for

each channel of different color spaces RGB, XYZ, Lab, HSV [26] as well as the IR channel.

A linear SVM classifier ( [18]) was trained by using a feature vector obtained by concatenating

the spectral and the texture feature vectors. The discriminative SVM classifier was used in “one-

against-all“ configuration. Feature vectors were used in the training phase to build a set of binary

classifiers able to separate each class from all others. This method trains s SVMs (where s is the

number of classes which corresponds to tree species in the study area) and there are s decision

functions. In this work, s = 6. An unknown tree sample T is classified as belonging to the class

for which the largest decision value was determined [27].

Table III presents the division of the samples per group and species. The total of 267 tree

crown contours was randomly divided into training and test subsets. Half of the total number of

samples for each class is used to train the SVM classifier while the other half is used for tests.

TABLE III

TREE SPECIES DATASET: SPECIES NAMES AND NUMBER OF SAMPLES

Scientific species name Samples Train Test

Platanus sp. 69 35 34

Sophora japonica L. 32 16 16

Tilia sp. 83 42 41

Celtis australis L. 29 15 14

Pinus pinea L. 36 18 18

Cupressus sempervirens L. 18 9 9

Classification accuracy varies with the type of input features. Results obtained for tree species
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classification by using spectral and texture features, are presented in Table IV for the best

combination of feature vectors and color spaces, evaluated in terms of overall accuracy (%) (as

the number of classes is higher than two). Best results were obtained when combining spectral

features extracted on RGB color space with texture features computed on the HSV color space.

TABLE IV

OVERALL ACCURACY (%) FOR SPECTRAL AND TEXTURE FEATURE VECTORS COMPUTED ON DIFFERENT COLOUR SPACES.

PPPPPPPPPPSpectral

Texture
RGB HSV XYZ Lab

RGB 65.5 76.2 65.7 69.3

HSV 69.7 73.2 67.8 73

XYZ 67.9 74.8 65.2 61.1

Lab 70.6 73.9 68.8 68

Figure 8 illustrates tree species classification results obtained for tree crown areas delineated

by the algorithm presented in the previous step.

The confusion matrix obtained for tree species classification is given below for spectral features

computed on the RGB color space and spatial ones computed on the HSV color space. On line

i and column j of the confusion matrix is the percentage of samples that belong to class i

according to the ground truth and have been classified as j by the SVM classifier based on

spectral and texture features. In the ideal case, the confusion matrix should be diagonal.

TABLE V

CONFUSION MATRIX FOR TREE SPECIES CLASSIFICATION.

Ground Truth

Platanus Sophora Tilia Celtis Pinus Cupressus

Platanus 100 0 19.5 28.6 0 0

C
la

ss
ifi

ca
tio

n

Sophora 0 93.8 9.76 0 0 0

Tilia 0 6.25 26.8 7.14 0 0

Celtis 0 0 36.6 64.3 5.56 11.1

Pinus 0 0 2.44 0 83.3 0

Cupressus 0 0 4.88 0 11.1 88.9
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Tree species identification from aerial imagery is a very difficult task, even for highly ex-

perimented photo-interpreters. Due to the high variety of species and the high variability of a

species characteristics it is not easy to identify reliable features for species classification. The

approach presented in this article for tree species classification evaluates spectral and spatial

statistical characteristics of tree crowns. Reported results for tree species classification provide

initial proofs that spectral and spatial feature vectors can accurately differentiate between tree

species belonging to the same taxonomic group. Spectral characteristics are very reliable in

separating between taxonomic classes, i.e. deciduous from coniferous tree species. Adding spatial

characteristics computed from tree crown regions improves the separation abilities of the SVM

classifier for trees belonging to the same taxonomic group.

Tree species information and 3D tree parameters estimated from aerial imagery are used in

section IV to parametrize by inference an architectural model of tree growth which is detailed

in section III.

III. AN ARCHITECTURAL MODEL OF TREE GROWTH

Tree architecture can be seen as the result of the complex interaction of two processes,

structural development (based on organogenesis) and functional growth (biomass accumulation

and distribution, in interaction with the environment) [10], [28]. Functional-structural models

of tree growth aim at dynamically describing these two processes. In the following, we use a

derivation of the GreenLab model [29]. Important concepts of the model are presented hereafter.

A. Tree Structural Development

Trees develop rhythmically by the successive productions of architectural growth units by

buds. A growth unit is composed of a set of phytomers, considered as the elementary botanical

units of constant composition (generally an internode, a leaf and potential axillary buds). A

growth cycle is defined as the time elapsing between the appearances of two growth units [30],

[31].

Since plant development can be seen as the result of bud functioning, parallel generative

grammars (L-Systems) describing the production of buds have shown to be particularly adapted

to model mathematically plant development [32], [33], [34].
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The botanical concept of Physiological Age (PA) [31] helps differentiate between the different

types of axes (and accordingly the organs they are composed of) according to some morphological

properties. The main trunk has a physiological age 1 and the oldest physiological age (denoted

P ) is the ultimate state of differentiation for an axis, it is usually short, without branches.

Usually, less than 5 physiological ages are necessary to describe the axis typology in trees. Such

characterization was recently used in [30] to define the 0L-System of the GreenLab model of

plant development, as follows.

1) A 0L-System for GreenLab organogenesis: A 0L-System [35] is defined by an alphabet,

an axiom (or seed) and production rules.

• GreenLab alphabet G is given by the set of phytomersM and buds B. A phytomer is defined

with four indices: its chronological age: n, its physiological age p, the physiological age of its

axillary buds: q, (q ≥ p), the chronological age of the plant t. It is denoted by mt
pq(n). Note

that taking into account the temporal indices (t and n) is necessary for the functional growth,

since the physical characteristics of the phytomers (masses, dimensions) will vary with time. A

bud is simply defined with its physiological age p and plant chronological age t, it is denoted

by btp. The organogenesis alphabet is given by:

G =M∪B (1)

with

M = {mt
pq(n)}{1≤p≤P, p≤q≤P, 1≤t≤T,1≤n≤t} (2)

and

B = {btp}1≤p≤P, 0≤t≤T . (3)

T denotes the maximum time of the simulation. No symbols are considered for organs since the

constitution of a phytomer is supposed fixed by botanical rules.

• The seed is a bud of physiological age 1 b01.

• GreenLab production rules Pr are given by:

For all (p, t) ∈ [1;P ]× [0;T − 1]:

btp −→

(
P∏
q=p

(
mt+1
pq (1)

)upq(t+1) (
bt+1
q

)vpq(t+1)

)
bt+1
p (4)
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and for all (t, n, p, q) ∈ [1;T − 1]× [1; t]× [1;P ]× [p;P ]:

mt
pq(n) −→ mt+1

pq (n+ 1) (5)

with:

• upq(t): number of phytomers mpq in a growth unit of PA p, appearing at growth cycle t,

• vpq(t): number of active axillary buds of PA q in a growth unit of PA p, appearing at growth

cycle t.

(upq(t))t, (vpq(t))t are the development sequences of the model.

2) Structural Factorization: A fundamental result (or rather hint) given by [32] is the ability to

factorize the L-system productions. It showed particularly adapted to the concept of physiological

age, plant structure can be factorized into smaller parts that may repeat themselves a large number

of times.

Definition 1 (Substructure): At growth cycle t ≥ 0, a substructure of physiological age p, 1 ≤

p ≤ P and chronological age n, 0 ≤ n ≤ t is a word on the alphabet G defined as the complete

plant structure that is generated after n cycles by a bud of physiological age p. It is denoted by

Stp(n) (corresponding to the structure generated by bt−np after n growth cycles).

Substructures of chronological age 0 are buds. The fundamental property is that in the deter-

ministic case, at a given growth cycle, all the substructures with the same physiological and

chronological ages are identical.

By iterating the production rules, the following important result is deduced in [30].

Theorem 1 (Dynamic Equation of Plant Development): For all t ≥ 1, n ∈ [1, t], p ∈ [1, P ],

q ∈ [p, P ], we have:

Stp(n) = Rt
p(n)Stp(n− 1) (6)

with

Rt
p(n)=

[ ∏
p≤q≤P

(
mt
pq(n)

)upq(t+1−n) (
Stq(n− 1)

)vpq(t+1−n)
]

In Equation (6), substructure Stp(n) is decomposed into :

- its oldest growth unit, called base growth unit:∏
p≤q≤P

(
mt
pq(n)

)upq(t+1−n)
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- the lateral substructures borne by the base growth unit (they are one cycle younger):∏
p≤q≤P

(
Stq(n− 1)

)vpq(t+1−n)

- the substructure grown from the apical bud of the base growth unit (also one cycle younger)

Stp(n− 1).

Substructures and phytomers will be repeated a lot of times in the tree architecture, but they

need to be computed only once for each kind, by a recursive construction [30].

B. Functional Growth in Interaction with the Environment

Biomass production and allocation in GreenLab are described with a source-sink model [36].

Biomass production is computed according to Beer-Lambert’s law [37] and to the environmental

conditions. For an individual tree, the biomass production at growth cycle t denoted Q(t) is

given by

Q(t) = E(t)µSp(t)

(
1− e−k

S(t)
Sp(t)

)
(7)

where E(t) is an environmental function at growth cycle t related to light radiation and to hydric

stress, S(t) is the tree leaf surface area, k is the extinction coefficient for Beer-Lambert’s law, µ

is the conversion efficiency and Sp(t) is a characteristic surface area related to tree crown x− y

projection and to the space potentially available for tree development. As proposed in [29], Sp(t)

is given at growth cycle t by:

Sp(t) = min

[
S0

(
S(t)

S0

)α
, Sd

]
(8)

with S0 and α two empirical coefficients estimated by model inversion from experimental data

and Sd, the surface area of the Voronoi cell which can be associated to the individual tree when

considering the Voronoi diagram obtained from the distribution of all tree locations. Sp(n) grows

with the development of leaf surface and saturates at Sd.

Biomass is then allocated to the root system, to rings for the secondary growth and to buds for

the new growth units proportionally to sink strengths [36], defined as parametric functions. The

sum of all sink strengths at growth cycle t defines the plant demand D(t). Along plant growth,
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the ratio of available biomass to demand Q(t)/D(t) is thus representative of the competition for

resources between organs.

All the functional state variables are computed only once for each phytomer and each sub-

structure of each type, and since the number of phytomers and substructures is proportional to

plant age, the computation time of a simulation is a quadratic function of the final plant age,

and is no longer proportional to the number of organs (which can increase exponentially with

the simulation time for complex trees, cf. [10]). The computation of S(t) and D(t) is done

recursively by applying a proper morphism to Equation (6).

C. Interaction Structure - Function

A fundamental property of trees is their plasticity in response to changes in their growth

conditions. Plants are seen as self-regulating systems that can react to exogenous (e.g. environ-

mental stresses that reduce plant production; organ or branch pruning that reduce plant demand)

or endogenous (e.g. apparition of new branches or fruits that increase demand) influences.

To model this plasticity, the ratio of available biomass to demand (Q/D) controls the appear-

ance and longevity of new organs and branches, thus updating the potential structure at each

growth cycle. The development sequences (upq(t))t and (vpq(t))t driving the production rules

of the development grammar (cf. Equation (4)) can be modeled as functions of this ratio, for

example: 
upq(t) =

⌊
A1
pq + A2

pq ·
Q(t−1)
D(t−1)

⌋

vpq(t) =
⌊
B1
pq +B2

pq ·
Q(t−1)
D(t−1)

⌋ (9)

where for a real number x, bxc represents its rounded value and A1
pq, A

2
pq, B

1
pq, B

2
pq are model

parameters. In Figure 9, are presented the simulation results for trees of the same type and same

age growing in different competition conditions. It impacts the production Equation (7) via the

Equation of Sp(t) giving the potential space for each tree in Equation (8), thus implying drastic

changes in the ratio of available biomass to demand and different architectural development.

D. Model Parameterization

An objective of plant growth models is to help decorrelate genetic and environmental effects in

plant growth [38]. Ideally, model parameters driving the structural development and biophysical
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interaction with the environment should be characteristic of a species, and remain stable in a

large range of environmental conditions: ”one genotype = one set of parameters”. In [39], the

same set of GreenLab parameters was used to fit experimental data of beech trees grown in

very different environmental conditions. The estimation process described in [39] is however

quite complex, especially since most parameters are hidden parameters and the collection of

detailed enough experimental data on trees is tedious. Therefore, the parameters of only a few

species have been estimated so far. The other inputs for the model are thus: (1) the environmental

conditions E(t) in Equation (7), (2) the potentially available space Sd in Equation (8), (3) plant

age.

IV. IMAGE-BASED MODEL PARAMETERIZATION

In this section we present the methodology used to parameterize GreenLab tree model with

tree variables extracted by means of aerial image analysis.

For a tree T in a given scene to be modeled, we need to characterize all the necessary inputs

described in Section III-D: species-specific parameters, environmental conditions, potentially

available space (characteristic of the level of competition with neighbours), and plant age. It is

thus necessary that parameters of the species identified by image analysis (II) are available.

For the identified species, we will assume that the parameterization has been performed in

other field studies, and that the species-specific parameters are available. The objective is thus

to estimate plant age N , the environmental conditions (supposed as an average constant value

E) and the potentially available space Sd. The latter can be directly deduced by computing the

Voronoi diagram of the scene from tree locations. For N and E, we simply use a least-square

estimator. Tree height and crown diameter are model outputs (tree geometry is simply obtained

from tree structure and organ dimensions with some geometrical rules). We thus minimize:

J(E,N) =
(
h̃(E,N)− h

)2
+
(
c̃d(E,N)− cd

)2
,

in which h̃ and c̃d are computed with the model, and h, cd are the height and crown diameter

estimated from aerial imagery. Mostly because of tree plasticity, the function is non-convex, but

can be minimized with simple heuristics like Simulated Annealing. Note that the retroaction

of functioning on structure development is a key process of the model which allows a proper

exploration of the real state space. Another advantage of the GreenLab model for this study
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is that the structural factorization induces a very efficient growth simulation, which makes it

possible to perform the minimization. It would be prohibitive without the grammar factorization.

Finally, some prior knowledge can be used, like tree age (often available in urban environments

or in plantations), or specific dendrometric relationships (linking age, environment, tree shape)

in forestry literature.

Individual simulations with GreenLab for all trees in the scene provides architectural and

geometrical variables, at organ scale. It is thus possible to obtain realistic 3D rendering for each

tree. After simulation, each tree is described through a high-level format, based on the AMAP

technology [40]. It represents a tree through an organ list, each with its associated location

and orientations. The data thus produced can be used for very detailed scene visualization. For

quick visualisation purposes, large scale scenes or real-time applications, simple billboarding is

prefered to illustrate experimental results.

V. RESULTS AND EVALUATION

Results of architectural tree growth model parameterization obtained from image analysis are

presented in the following. Heights h, crown diameters cd, positions and species are extracted

from aerial data for a population of trees in an urban environment. Only one species is represented

in this set (Platanus) but with some diversity in crown sizes and heights. Figure 10 shows

billboard representations of the functional tree models automatically inserted in the corresponding

3D city model according to location parameters estimated for each tree as the barycenter of the

tree crown.

Figure 10(a) shows a part of the downtown Marseille, France consisting of several trees of

different crown sizes and heights. Trees are represented by billboards obtained from screenshots

of the functional tree models parameterized to fit tree crown area and tree height estimated for

each tree crown by image analysis.

Tree billboards were automatically inserted into the 3D city model according to location

parametrs extracted for each tree. The accuracy of the location parameters for the trees can

be visually verified. The interest of having used a functional model of plant growth for 3D

reconstruction is that it allows to see the evolution of the tree populations across years. Figure

10(b) illustrates the appeareance of urban vegetation in the same scene as in Figure 10(a) after

a period of 5 years and under the assumption that no branch pruning was performed during the
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elapsed time.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a complete and novel approach for the automatic reconstruction of natural

environments from aerial imagery data. Unlike existing techniques, the vegetation component of

the environment is modeled by functional-structural individual-based models of tree growth. To

achieve this, aerial data is analyzed and vegetation characteristics estimated are used to generate

individual-based models of tree growth. Experimental results were presented, which verify the

validity of our approach which can successfully be applied to different 3D virtual environments.

Finally, we have presented the time evolution simulation of the generated 3D individual plant-

growth models within the 3D environment.

Linking the recent progresses in both vegetation analysis from aerial images and vegetation

functional-structural modeling offers interesting perspectives for the reconstruction of both urban

or natural environments, with potential applications offered by the possibility of simulating the

future evolution of plant populations.

The process of species-specific functional parameter estimation is very tedious as mentioned

in [41]. Therefore, it is very difficult to get a priori a large data-base of species for an automatic

reconstruction of a city for example, in which gardeners have usually endeavored to find the

most original species of trees. It is easier to reconstruct tree plantations or even natural forests of

temperate regions (in which the diversity of species is usually quite limited). It is also true that

the functional reconstruction (that is to say with the proper biophysical parameters of trees) is

more crucial for forestry applications, in order to predict wood production or to optimize forest

management than for the 3D reconstruction of cities.

As spatial resolution of remotely sensed data increases, the methodology used for aerial data

analysis could be applied on other types of sensors, such as satellite [42] or LIght Detection

and Ranging (LIDAR) [43] data. Experimental results reported in this paper were applied on

a urban environment test-case but the methodology can be extended to other types of natural

environments, such as forest [44] landscapes.
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(a)

(b)

Fig. 8. Top: RGB image of tree crown areas from the city of Marseille used in the species classification step. Down: Results of

the tree species classification step for the best combination of feature vectors and color spaces. Training samples are indicated

by a lighter tone of colour than test ones, except for the Celtis australis L. species for which train samples are indicated by

a dark green colour and test ones are marked in yellow. The species of each tree crown unit is marked by a coloured mask

over-imposed on the tree crown contour which represents the classifier output.February 10, 2013 DRAFT
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Fig. 9. Simulation of tree growth in heterogeneous conditions: view from above and detailed architectures of individuals.

(a) shows a tree surrounded by four neighbours in a clump severely suffering from competition; in (b) is shown a tree

on the edge of the clump; in (c), a tree growing in open-field like conditions reiterates (a fork appears).

(a) (b)

Fig. 10. 3D city model including functional vegetation models. (a) Trees are represented by billboards obtained from screenshots

of the functional tree models exploiting tree height and crown areas estimated for each tree crown. (b) 3D city model presenting

the time evolution of the vegetation cover including 5 years older vegetation models for the reconstructed area.

February 10, 2013 DRAFT

Page 28 of 28Transactions on Geoscience and Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


