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Abstract

This paper presents a search engine architecture, RETIN, aiming at retrieving complex categories in large image databases. For index-
ing, a scheme based on a two-step quantization process is presented to compute visual codebooks. The similarity between images is rep-
resented in a kernel framework. Such a similarity is combined with online learning strategies motivated by recent machine-learning
developments such as active learning. Additionally, an offline supervised learning is embedded in the kernel framework, offering a real
opportunity to learn semantic categories. Experiments with real scenario carried out from the Corel Photo database demonstrate the
efficiency and the relevance of the RETIN strategy and its outstanding performances in comparison to up-to-date strategies.
� 2007 Elsevier Inc. All rights reserved.
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E1. Introduction

Large collections of digital images are being created in
different fields and many applicative contexts. Some of
these collections are the product of digitizing existing col-
lections of analogue photographs, paintings, etc., and oth-
ers result from digital acquisitions. Potential applications
include web searching, cultural heritage, geographic infor-
mation systems, biomedicine, surveillance systems, etc.

The traditional way of searching these collections is by
keyword indexing, or simply by browsing. Digital image
databases however, open the way to content-based search-
ing. Content-Based Image Retrieval (CBIR) has attracted a
lot of research interest in recent years. A common scheme
to search the database is to automatically extract different
types of features (usually color, texture, etc.) structured
into descriptors (indexes). These indexes are then used in
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a search engine strategy to compare, classify, rank, etc.,
the images.

Major sources of difficulties in CBIR are the variable
imaging conditions, the complex and hard-to-describe
image content, and the gap between arrays of numbers rep-
resenting images and conceptual information perceived by
humans. In CBIR field, the semantic gap usually refers to
this separation between the low-level information extracted
from images and the semantics [1,2]: the user is looking for
one image or an image set representing a concept, for
instance, a type of landscape, whereas current processing
strategies deal with color or texture features!

Learning is definitively considered as the most interest-
ing issue to reduce the semantic gap. Different learning
strategies, such as offline supervised learning, online active
learning, semi-supervised, etc., may be considered to
improve the efficiency of retrieval systems. Some offline
learning methods focus on the feature extraction or on
the similarity function improvement. Using experiments,
a similarity function may be trained in order to better rep-
resent the distance between semantic categories [3]. Thanks
to local primitives and descriptors, such as salient points or
isual dictionary, kernel-based similarity ..., Comput. Vis. Image
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regions, supervised learning may be introduced to learn
object or region categories [4,5]. The classification function
is next used to retrieve images from the learned category in
large databases. Other strategies focus on the online learn-
ing to reduce the semantic gap [6,7]. Interactive systems ask
the user to conduct search within the database. The infor-
mation provided by the user is exploited by the system in a
relevance feedback loop to improve the system effective-
ness. Online retrieval techniques are mainly of two types:
geometrical and statistical. The geometrical methods refer
to search-by-similarity or query-by-example (QBE) sys-
tems, based on calculation of a similarity between a query
and the images of the database [8,9]. Recently, machine-
learning approaches have been introduced in computer
vision and CBIR context and have been very successful
[10,11]. Discrimination methods (from statistical learning)
may significantly improve the effectiveness of visual infor-
mation retrieval tasks [12].

In this paper, we introduce our general strategy RETIN
to manage indexing and category retrieval by content in
large image databases. Some modules concern the indexing
step and other ones learning strategies based on offline or
online supervising. A first version of our system has been
already published [13]. We propose here a new generation
of RETIN. In the manner of Fayyad description of the
challenges of data mining and knowledge discovery [14],
our whole context of visual data mining is summarized
on Fig. 1. Starting from raw data, the first challenge is to
extract visual descriptors and to structure them into
indexes, i.e., visual signatures. The indexing step is com-
posed by a new scheme to get visual signatures from
images. Let us say that this is the low level of analysis.
The comparison between the indexes is carried out using
kernel framework. Searching with user interaction allows
to extract subsets of relevant images from the database.
A machine-learning-oriented scheme is proposed to embed
all the modules of the search in a coherent and efficient
framework. This is the intermediate level of abstraction
and data mining. To go further towards the knowledge
U
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Visual descriptors

Indexes
Feature vec

in an Hilbert 

Visual Extraction

Activ

Kernel Functions

Indexing

Fig. 1. An overview of the steps that compose the RETIN process. Working o
signatures. Consolidated level focus on similarity and online learning of ima
exploits users’ feedbacks to reduce the semantic gap.

Please cite this article in press as: P.H. Gosselin et al., Combining v
Understand. (2008), doi:10.1016/j.cviu.2007.09.018
E
D

P
R

O
O

F

extraction and database structuring, a semantic learning
scheme is also proposed (Fig. 1). All the former user inter-
actions are used to progressively learn data clusters in the
database. This is our high level or semantic level of data
analysis.

We emphasize in this article the global efficiency and
consistency of our search engine architecture to deal with
complex category retrieval in large databases. Some specific
contributions are also proposed in each part. For indexing,
the computing of visual codebooks is a real challenge, we
propose an original two-step vectorization scheme in Sec-
tion 2. The similarity between images is the core of the
search, we propose a kernel framework to manage this
aspect in Section 3. It allows us to propose a powerful
online learning strategy motivated by recent machine-
learning developments such as active or transductive learn-
ing, presented in Section 4. Offline supervised learning is
also embedded in our kernel framework, our innovative
long-term learning strategy is presented in Section 5.

2. Visual codebook-based quantization

Building a visual codebook is an effective way of extract-
ing the relevant visual content of an image database, which
is used by most of the retrieval systems.

A first approach is to perform a static clustering, like
[15] where 166 regular colors are a priori defined. These
techniques directly provide an index and a similarity for
comparing images, but the visual codebook is far from
being optimal, except in very specific applications.

A second approach is to perform a dynamic clustering,
using a clustering algorithm, such as k-means. In this case,
the visual codebook is adapted to the image database.
When using color features, this strategy extracts the domi-
nant colors in the database [16]. Using a k-means algorithm
leads to a sub-optimal codebook, where codewords are
under- or over-representing the visual content. An usual
way to find a good visual codebook is to train several times
the clustering algorithm and to merge the codebooks or to
tors
space

Active Learning

Semantic clusters

Knowledge

Users

Semantic Learning

e Learning

n the raw data, low-level processes consist in extracting visual features and
ge categories using user interaction. High level semantic analysis deeply
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keep the best one. However, because of the large number of
vectors to be clustered, this strategy has a very high cost in
computational time.

In this section, we first study new alternatives to the
standard k-means algorithm, and select the most efficient
in terms of efficiency and time cost. Next, we address the
problem of the quantization of a very large number of vec-
tors, where standard clustering algorithm cannot be
directly applied, since the whole vector set cannot be stored
in memory. In this last subsection, we propose a clustering
algorithm which leads to a near to optimal codebook with
only one training pass.
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C
2.1. Low-level feature extraction

In order to build the visual codebook, we first need a
large set V ¼ fv1; . . . ; vmg of feature vectors extracted from
the images of the database. In this paper, we use two visual
features:

� Color from CIELHaHbH space. Each pixel of coordinates
ðx; yÞ is converted to a LHaHbH vector of dimension 3,
i.e., pixelðx; yÞ7!ðLHðx; yÞaHðx; yÞ bHðx; yÞÞT.
� Texture from complex Gabor filters. We process each

image of the database with 12 complex Gabor filters,
in three scales and four orientations. The output of these
12 filters provide 12 images F 1; . . . ; F 12. For each pixel of
coordinates ðx; yÞ, we consider the vector of 12 dimen-
sions whose values correspond to the 12 filter outputs
at the same coordinates ðx; yÞ. That is to say
pixelðx; yÞ7!ðF 1ðx; yÞ . . . F 12ðx; yÞÞT.
214
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Fig. 2. Performances and computational time of the quantization
methods.
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E2.2. Dynamic quantization

Vector quantization aims at finding the optimal set
W H ¼ fw1; . . . ;wjg of codewords able to represent a set
V ¼ fv1; . . . ; vmg of vectors. This issue is solved by splitting
the set V into clusters. Each vector will then be represented
by the closest vector of W, qW ðvÞ ¼ argmin

w2W
dðv;wÞ, for a

given distance d (usually the Euclidean distance). The prob-
lem can be addressed as an optimization problem which
aims at minimizing the distortion of each cluster:

W H ¼ argmin
W

DW ðV Þ ð1Þ

where the distortion of a set V for a codebook W is defined
by:

DW ðV Þ ¼
X
v2V

dðv; qW ðvÞÞ
2 ð2Þ

The distortion measures the average squared distance
between a vector v and its corresponding codeword
qW ðvÞ. Minimizing this criterion aims at getting compact
and equidistributed clusters.

The optimization problem addressed by vector quanti-
zation is not convex – this means that the algorithm must
Please cite this article in press as: P.H. Gosselin et al., Combining v
Understand. (2008), doi:10.1016/j.cviu.2007.09.018
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find the global minimum between multiple local minima.
The success of convergence is mainly determined by the ini-
tial codebook. The standard k-means algorithm uses a ran-
dom initial codebook, and thus converges to a local
minimum. Improvements about the initialization have been
proposed, like the k-means splitting or LBG [17]. The algo-
rithm starts with only one codeword, and step after step,
splits the clusters into two sub-clusters. Patanè proposes
ELBG, an enhanced LBG algorithm, that introduces a
heuristic in order to jump from a local minimum to a better
one [18]. This heuristic swaps codewords so that their
respective distortions are as much equal as possible.

We implemented and compared the three methods for
the quantization of the RGB vectors of the images of the
ANN database (see Appendix). Fig. 2 shows the results
in terms of average PSNR (log value of the distortion),
and the average computation time for the quantization in
256 colors of one image. PSNR values are of the same
order, slightly better for ELBG than for LBG and standard
k-means, but ELBG is much faster than LBG (4 times) and
faster than standard k-means. For those reasons we have
adopted the ELBG algorithm in our large quantization
process.
E
D2.3. Quantization of large datasets

The second problem is the large amount of samples to
classify. As it is impossible to put all pixels in memory at
the same time, the method has to be progressive, that is
to say able to manage data part by part.

Adaptive k-means processes samples one by one. This
method imposes that samples are processed in the most
possible random way. But this condition is hard to obtain
in image indexing, since for time constraints, pixels cannot
be processed completely randomly. At least for run-time
and practical reasons, it is better to process each image
as a whole.

Fournier [19] performs an adaptive k-means by sub-
sampling each image: only a tenth of the pixels of each
image randomly chosen are processed. To compensate this
sub-sampling, images are processed 10 times.

We propose an adaptive quantization by k-means in two
stages, both performing ELBG method:

� The first stage quantizes each image.
� The second stage quantizes the whole database from the

dictionaries obtained at the first stage.
isual dictionary, kernel-based similarity ..., Comput. Vis. Image
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The advantage is that each image is independently pro-
cessed in the first stage and even in a parallel way. The
number of codewords in that stage can be of a rather large
size (at least greater than any desired codebook for now
and the future). The set of feature vectors V i of image i

are computed and quantized using ELBG in j codewords.
The codebook for image i is denoted W i ¼ fwj

i ; j ¼ 1;
. . . ; jg. In the second stage, the set fW i; i ¼ 1; . . . ; ng is
clustered into the expected number of codewords with
ELBG classifier. To take into account the fact that images
can be of various sizes, the distortion of any class C, repre-
sented by wC is modified in Eq. (2) by adjunction of a
weighting coefficient equal to the cardinality of the class.
So after the first stage, we have for each image i the set
of codewords fwj

i ; j ¼ 1; . . . ; jg and the set of correspond-
ing weights fzj

i ; j ¼ 1; . . . ; jg, where zj
i is the cardinal of

class j in image i.
So the formula for distortion of eX ¼ fðwj

i ; z
j
iÞg becomes:

eDðeX Þ ¼X
j

X
i

zj
i � dðwj

i ; qðwj
iÞÞ

2 ð3Þ

and the computation of codewords becomes:

wCj ¼
P

i2Cj
zj

i � wj
iP

i2Cj
z

j
i
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2.4. Image signature computation

Once a codebook W has been generated, unique for the
whole database, the histogram H i of image i is computed
for each visual feature. We replace each feature vector
vðx; yÞ corresponding to pixel ðx; yÞ with the closest code-
word qW ðvðx; yÞÞ in the codebook. Next, we count the num-
ber of times each codeword is present in the image to build
the histogram. The histogram is finally normalized to get a
distribution vector di ¼ H i=kH ikL1

. The image signature xi

is then the concatenation ðdfeature1
i dfeature2

i l . . . ÞT of distri-
butions for all visual features (in this paper, color and
textures).

The final step is the tuning of the size of the visual code-
books, that we study in the next section.

2.5. Experiments

The adaptive classification of Fournier [19] and our two-
stage method are compared in Figs. 3 and 4 on the Corel
Photo database (see Appendix for details).

Although we have used the distortion and the time cost
criteria to select the quantization method in the first stage
of our algorithm, we use here the Mean Average Precision
(see Appendix for definition) in order to evaluate the per-
formances of a codebook in the CBIR context. Indeed, this
statistic is used a lot in information retrieval framework.

For Fournier’s method, the complete quantization must
be done again for each codebook size. For our method,
ELBG is first computed to get a quantization of each image
Please cite this article in press as: P.H. Gosselin et al., Combining v
Understand. (2008), doi:10.1016/j.cviu.2007.09.018
into 256 image-dependent codewords. The codewords and
their weights are then clustered by the second stage with
ELBG.

Concerning color codebooks, both methods are close,
with a small advantage for our method. Both methods have
a maximal MAP for 50 codewords. Concerning texture
quantization, the proposed method clearly outperforms
Fournier’s one. The global maximum is also obtained for
50 codewords. Another interest is the time saving with
our method, which is much faster than Fournier’s one,
since the first stage can be achieved in parallel on several
machines. As the quantization in 25 codewords almost
reaches the same performances as the quantization in 50
codewords, for signatures twice smaller and a time saving,
we have opted for a quantization into 25 codewords for
color and 25 codewords for texture.
isual dictionary, kernel-based similarity ..., Comput. Vis. Image
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These experiments also show the interest of our method
for tuning the size of the visual codebook. Assuming that
we have a priori knowledge about the categories likely to
be searched, several visual codebooks of various sizes can
be easily computed and evaluated since only the second
step of the algorithm is necessary.

Furthermore, the two stages allow a fast adding/
removal of images in the database. When adding new
images, only the computation of their visual descriptors
and the second stage of the method are required to com-
pute the new codebook.
T
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3. Similarity using kernel functions

Once signatures are computed, a metric or a similarity
function has to be defined to compare images.

Basically, the Euclidean distance is used to compute the
similarity between histograms, or more generally a Min-
kowski distance. However, these metrics are not necessary
relevant for histograms. Alternatives have been proposed,
such as histogram intersections [20], entropy [21,22], or v2

distance [23]. These metrics independently compare each
value of the histograms, and do not address the problem
of correlation between axes. More robust metrics have
been proposed to solve this, like in [24], Earth Mover’s Dis-
tance [25], or generalized quadratic distances

(dðxi; xiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞTAðxi � xjÞ

q
).

Whenever these metrics are efficient for histograms, they
all lead to a non-linear problem, and, most of the time, par-
ticular learning techniques must be developed to use them.
In order to use powerful learning techniques that have been
recently introduced [26], we have chosen to use kernel
functions.
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Photo database.
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The approach consists in finding a mapping U from
input space X (here our histogram space) to a Hilbert space
H. Thus, once found this mapping, all the addressed learn-
ing problems become linear. Furthermore, we do not
directly work on the mapped vectors, but on their dot
products kðxi; xjÞ ¼ hUðxiÞ;UðxjÞi.

In our case, since we are working on histograms, an
interesting kernel function is the Gaussian one

kðxi; xjÞ ¼ e�
dðxi ;xjÞ2

2r2 . This function depends on a distance
dðxi; xjÞ, which allows us to pickup one of the distances

for histograms. For instance, we can use the v2 distance

dðxi; xjÞ ¼
Pp

r¼1
ðxri�xrjÞ2

xriþxrj
. Note that we could use more

robust distances, such as the Earth Mover’s Distance
[25], but this leads to a too high computational cost for
the processing of huge databases.

In order to evaluate the interest of this kernel against the
standard ones, we have compared their performances for a
SVM classifier (see Appendix for details). Results are
Please cite this article in press as: P.H. Gosselin et al., Combining v
Understand. (2008), doi:10.1016/j.cviu.2007.09.018
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shown on Fig. 5. The linear kernel, which can be seen as
the ‘‘no kernel” strategy, gives the worst performances. It
is followed by the polynomial kernel (of degree 3), which
was originally tuned for the tracking of high-level correla-
tions of data. Close to this one is the Gaussian kernel, with
an Euclidean distance, and next is the triangle kernel,
which is invariant to scale variation. Finally, the Gaussian
kernel with a v2 distance gives the best performances,
results which are consistent with the use of histograms as
index. Thus, in the following experiments, we will use a
Gaussian kernel with a v2 distance.

Note that, although the Gaussian distance v2 is the most
interesting for our indexes, it will be no longer true on non-
histograms ones. However, assuming that one can find a
kernel function relevant for one’s indexes, all the results
about the learning techniques we present in the next sec-
tions are still valid, since they are made to work in a Hilbert
space induced by a kernel function.

3.2. Similarity matrix

In any cases, we assume that we are working in a Hilbert
space. Then, several standard operators may be expressed
using k, as for instance, the Euclidean distance dðUðxiÞ;
UðxjÞÞ2 ¼ kðxi; xiÞ þ kðxj; xjÞ � 2kðxi; xjÞ [27]. Similarity s

may also be defined as the dot product in the induced space
sðxi; xjÞ ¼ kðxi; xjÞ. But other measures, as for instance, the
angle between two vectors, may be used, for instance,

sðxi; xjÞ ¼ jkðxi;xjÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðxi;xiÞkðxj;xjÞ
p .

We use kernel function k as the similarity function, and
kernel matrix K defined by Kij ¼ kðxi; xjÞ as the similarity
matrix. As k is a kernel function, matrix K is symmetric
and semi-definite positive (sdp), that is to say a Gram
matrix. This matrix embeds the index information
X ¼ fx1; . . . ; xng and the similarity function k related to
isual dictionary, kernel-based similarity ..., Comput. Vis. Image
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the whole database. All the data mining processes, classifi-
cation ranking, and so on, are only based on this Gram
matrix data. The advantage of this framework is then to
well separate the learning problem from the similarity
definition.

We propose in the next section online learning algo-
rithms before introducing an extended kernel framework
merging the low-level similarity matrix K with high-level
information obtained from user interaction.

4. Active classification for interactive retrieval

Indexes and similarity function allow to compare any
pair of images. In CBIR, the retrieval may be initialized
using a query as an example. The top rank similar images
are then presented to the user. Next, the interactive process
allows the user to refine his request as much as necessary.
Many kinds of interaction between the user and the system
have been proposed [28], but most of the time, user infor-
mation consists of binary annotations (labels) indicating
whether or not the image belongs to the desired category.
The positive labels indicate relevant images for the searched
category, and the negative labels irrelevant images.

In document retrieval framework, a strategy is to con-
sider the query concept. The aim of this strategy is to refine
the query according to the user labeling. A simple
approach, called query modification, computes a new query
by averaging the feature vectors of relevant images [1].
Another approach, the query reweighting, consists in com-
puting a new similarity function between the query and a
picture in the database. A usual heuristic is to weight the
axes of the feature space [29]. In order to perform a better
refinement of the similarity function, optimization-based
techniques can be used. They are based on a mathematical
criterion for computing the reweighting, for instance, Bayes
error [30], or average quadratic error [31,32]. Although
these techniques are efficient for target search and mono-
modal category retrieval, they have difficulties to track
complex image categories.

Performing an estimation of the query concept can be
seen as a statistical learning problem, and more precisely
as a binary classification task between the relevant and
irrelevant classes [12]. In image retrieval, many techniques
based on statistical learning have been proposed, for
instance, Bayes classification [33], k-Nearest Neighbors
[34], Support Vector Machines [28,12,11,35], Gaussian
Mixtures [36], or Gaussian random fields [37].

4.1. Statistical learning approach

We have chosen a statistical learning approach for the
RETIN system because of its capacity to retrieve complex
categories. This capacity is in part due to the possibility to
work with kernel functions, with all the advantages we
described in the previous sections.

However, a lot of strategies consider CBIR as a pure
classification problem, and thus are not fully adapted to
Please cite this article in press as: P.H. Gosselin et al., Combining v
Understand. (2008), doi:10.1016/j.cviu.2007.09.018
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the special characteristics of this context. For instance,
we have shown in a previous paper [38] that the few train-
ing data and the imbalance of the classes lead to a noisy
boundary.

We summarize here the characteristics of our context:

(1) High dimension. Feature vectors are usually large
(from 100 to 1000), which leads to the problem
named as the curse of dimensionality.

(2) Complex classes. As image categories are unknown
beforehand, it is difficult to make high assumptions
about the distribution of the data. For instance, an
usual Gaussian distribution assumption is rarely
true. As a result, images of a given category can
be dispatched in several small clusters.

(3) Imbalance of data. The size of the relevant class is
very small against the size of the database (gener-
ally 100 times smaller). Thus, the context is fairly
different from classification problems where both
classes have a close size.

(4) Few training data. At the beginning of a retrieval
session, the system must return results with very
few labels. Furthermore, users will not give more
than some hundreds of labels. As a result, the size
of the training set is usually at most 1% of the data-
base size.

(5) Interactive learning. The training set is built step by
step, and each result depends on the previous ones.

(6) Ranking vs error of classification. System perfor-
mances depend on the users satisfaction, which
can be modeled by the Mean Average Precision.
Thus, we aim at optimizing the ranking of images,
instead of the usual classification error.

(7) Computation time and scalability. Our aim is to
propose a system which can be used for real appli-
cations. Thus, we need fast methods, as we cannot
ask a non-expert user to wait for several minutes
between each feedback step. A common way to
define a fast and scalable method is to bound its
computational complexity to OðnÞ, where n is the
size of the database.

4.2. A comparison of classification methods for CBIR

The following methods have been evaluated:

� Similarity refinement [32].
� Bayes classification [33].
� k-Nearest Neighbors [34].
� Support Vector Machines [12].
� Transductive Support Vector Machines [39].
� Kernel Fisher Discriminant [40].

The results in terms of Mean Average Precision are
shown on Fig. 6, except for the TSVM and KFD which
give results very close to inductive SVMs. One can see that
isual dictionary, kernel-based similarity ..., Comput. Vis. Image
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Fig. 6. Mean Average Precision (%) according to the size of the training set.
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the statistical methods give the best results, showing their
interest towards geometric methods, like the similarity
refinement. This also shows the interest of kernel-based
methods in order to deal with the high dimensions (1)
and the complex classes (2), since each of these methods
(except the geometric one) are able to build efficient classi-
fiers. In the sequel, we will use the SVM as the best method
in this context, and because of its simple mathematical
framework (hyperplan classifiers).
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4.3. RETIN active learning method

In order to deal with the imbalance of classes (3), the few
training data (4) and the interaction with a user (5), we
have opted for an active learning strategy. This strategy,
which is already used in text [41] and image [42] retrieval,
addresses the problem of the selection of the most interest-
ing images the user should label. In the first retrieval sys-
tems, a common strategy was to label the most relevant
images. However, it has been shown that a different selec-
tion can lead to significantly better results [43].

We propose an active learning scheme to interact with a
user searching for an image concept in the database. The
process selects at each feedback step a set IH of q images,
displayed to the user for labeling.

Let X ¼ fx1; . . . ; xng be the image signatures, and
y ¼ fy1; . . . ; yng the user labels (yi ¼ 1 if relevant, yi ¼ �1
if irrelevant, yi ¼ 0 if unlabeled). The examples are the
images i 2 I with a non-zero label, i.e., couples ðxi; yiÞ
where yi 6¼ 0.
562

563

564

565

566
4.3.1. Initialization

A retrieval session is initialized from one image given by the
user. The top similar pictures are then displayed to the user.
567

568

569

570
4.3.2. Classification
A binary classifier is trained with the examples the user

has given. We use a SVM with a Gaussian v2 kernel (cf.
Please cite this article in press as: P.H. Gosselin et al., Combining v
Understand. (2008), doi:10.1016/j.cviu.2007.09.018
Section 3). The result is a function fyðxÞ which returns
the relevance of each image x, after a training with exam-
ples ðxi; yiÞ, i 2 I .
F

4.3.3. Correction

We have shown in a previous paper that the classifier
boundary is usually noisy during the first feedback step,
because of scarcity of training samples (4) and the imbal-
ance of classes (5) [38]. We propose to add an active correc-
tion of the boundary, which aims at translating the
classifier boundary to an area of the feature space where
the labels are the most uncertain. Details about this
method can be found in [38].
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4.3.4. Selection

When the user is not satisfied with the current classifica-
tion, the system selects a set of images the user should label.
The selection will be such as the labeling of those images
will give the best performances. We divide the selection into
three steps.

The first step aims at reducing the computational time
(7), by pre-selecting some hundreds of pictures which
may be in the optimal selection set. We propose to pre-
select a set indexed by J of the closest pictures to the (cor-
rected) boundary. This process is computed very fast, and
the uncertainty-based selection method has proved its
interest in CBIR context.

The second step is the computation of the selection cri-
terion. In active classification, the criterion is the minimiza-
tion of the error of classification (or risk). In these cases,
the risk is computed for each classification function
fy;tðxiÞ, which is trained with the label tðxiÞ of an unlabeled
image i 62 I added to current training set y. Finally, the
selected image iH is the one which minimizes the risk:

iH ¼ argmin
i62I

riskðfy;tðxiÞÞ

The main difficulty of this task is the fact that the label
tðxiÞ is unknown, and an estimation is required. This esti-
mation is replaced by a cost function denoted gyðxiÞ, and
including the pre-selection, the problem can be written as:

iH ¼ argmin
i2J

gyðxiÞ

Pure active classification techniques aim at minimizing
the classification error. However, in our context, our aim
is to optimize the image ranking, which can be modeled
by the Mean Average Precision. Although decreasing clas-
sification error also increases the MAP, we have shown
that the direct maximization of the MAP is more efficient
[44]. Thus, we propose a precision-oriented cost function,
which selects the images around the boundary that will
increase the most this criterion. Details about this method
can be found in [44].

The third step of active selection computes the batch
selection. As we focus on real-time applications, we use a
fast method close to the angle diversity [45]. The method
isual dictionary, kernel-based similarity ..., Comput. Vis. Image
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selects q images using the previously computed cost gyðxiÞ,
and returns the set IH of image indexes proposed for
labeling:

IH ¼ fg
for l 2 1; . . . ; q

iH ¼ argmin
i2J�IH

ðgyðxiÞ þ max
j2I[IH

sðUðxiÞ;UðxjÞÞÞ

IH ¼ IH [ fiHg
endfor

where sðUðxiÞ;UðxjÞÞ is the similarity between images xi

and xj.

4.3.5. Feedback
The user labels the selected images, and a new classifica-

tion and correction are performed.
The process is repeated as many times as necessary.

4.4. Experiments

An example of retrieval session is presented on Fig. 7.
The interface is compound of three sub-parts. The main
one at the top left displays the current ranking of the data-
base. For instance, on Fig. 7, we can see the closest pictures
to the one brought by the user (top left, with a small green
square). The sub-part at the bottom displays the current
selection of the active learner. The user can give new labels
by clicking the left or right mouse button. Once new labels
are given, the user can ask for an update, and the new rank-
ing is displayed in the main part. The right sub-part dis-
plays information about one image.

We show on Fig. 8 the 50 most relevant pictures after
three and five iterations of 5 labels for the concept ‘‘roses”,
starting with the query of Fig. 7. One can see that the sys-
tem is able to retrieve the images of the concept, while dis-
criminating pictures with close visual characteristics. For
instance, several non-rose pictures with very close colors
and textures returned at the beginning of the search (cf.
Fig. 7) are no more high-ranked five iterations later, while
the relevant ones are still present (cf. Fig. 8).
U
N

C
O

Fig. 7. RETIN User Interface. Main part: ranked retrieved images; right part:
by active learning.
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4.5. Statistical evaluation

The RETIN active method introduced in this paper is
compared to uncertainty-based methods: Tong SVMactive

[42], and Roy and McCallum method that aims at minimiz-
ing the error of generalization [41]. A non-active method,
which randomly selects the images, is also considered for
comparison.

The performances are evaluated by simulating the use of
the system. For each simulation, an image category is ran-
domly chosen and 100 images of the category are selected
using one of the learning methods. After each SVM classi-
fication of the database, the Mean Average Precision is
computed. These simulations are repeated many times in
order to compute the mean and the standard deviation of
the MAP (see Appendix for details). The results of the
experiments are shown in Fig. 9.

First, one can see the benefit of active learning in our
context. In these experiments, the gain goes from 11% to
15%. The method which aims at minimizing the error of
generalization is the less efficient active learning method.
The most efficient method is RETIN active learning
method, especially in the first iterations, where the number
of samples is the smallest. About computational time per
feedback, the SVMactive method needs at most 22 ms, the
method of Roy and McCallum several minutes, and the
RETIN method at most 45 ms.

We ran simulations with the same protocol that in the
previous section, but changed the number of labels per
feedback. In order to get comparable results, we ensure
that the size of the training set at the end of a retrieval ses-
sion is always the same:

� 30 feedbacks of 4 labels;
� 15 feedbacks of 8 labels;
� 8 feedbacks of 15 labels;
� 4 feedbacks of 30 labels.

We compute the precision/recall curves for all the con-
cepts of the database. Results for the ‘‘savanna” concept
are shown in Fig. 10; let us note that all concepts gave
miscellaneous information about one image; bottom part: images selected

isual dictionary, kernel-based similarity ..., Comput. Vis. Image
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Fig. 8. The 75 most relevant pictures for the concept ‘‘roses”. A small green square indicates an image labeled as relevant, and a red one an image labeled
as irrelevant. (a) Top rank after three iterations of 5 labels. (b) Top rank after five iterations of 5 labels. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this paper.)
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similar results modulo a scaling factor. As one can see on
this figure, the more there is feedback steps, the more per-
formances are increased. Increasing feedback steps leads to
Please cite this article in press as: P.H. Gosselin et al., Combining v
Understand. (2008), doi:10.1016/j.cviu.2007.09.018
more classification updates, which allows a better correc-
tion and selection.
isual dictionary, kernel-based similarity ..., Comput. Vis. Image
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5. Semantic kernel learning

Relevance feedback and active learning increase the sys-
tem performances, but only during the current retrieval ses-
sion. Once the session is over, labels are discarded. The
purpose of this section is to present how the RETIN learn-
ing system uses all the labels accumulated during previous
interactive sessions to improve the feature representation of
the images. With such an optimized representation, we
attempt to get a better match with semantic concepts.
The labels are sampled from a hidden concept that the user
has in mind during his retrieval session. Thus, if a large
number of labels are available thanks to several retrieval
sessions, their combinations should make the hidden con-
cepts stand out.

Let us note semantics the whole information (users’
annotations) accumulated during many retrieval sessions.
Different strategies may be used to learn information about
the database from this semantics:

– Some approaches deal with feature selection or compe-
tition [46]. The Latent Semantic Index and its kernel ver-
sion have been proposed to model the correlation
between feature variables [47].

– Other approaches compute and store a similarity matrix.
A lot of approaches are based on the Kernel Alignment
[48]. The idea is to adapt a kernel matrix (which is a par-
ticular similarity matrix) considering user labeling. This
problem can be solved using semi-definite programming1

[49]. However, it has been designed mostly for transduc-
tion and clustering, i.e., two-class problems. For general
database searches, there are many concepts or categories,
overlapping each other. Some methods, building and
updating a similarity matrix, have been experimented
[50]. Usually, there is no assumption about the properties
of the similarity matrix. For instance, the updated matrix
may lost the induced metric properties. Moreover, these
similarity matrix-based approaches have also a high com-
putational cost. The memory complexity is at least Oðn2Þ,
where n is the number of images in the database.

Our semantic learning RETIN strategy is based on a
kernel matrix adaptation, and is designed to model mixed
categories. We also manage the complexity constraint
using efficient eigenvalue matrix decomposition; the
method has a OðnÞ complexity and memory need, and so
it is applicable to large databases.

5.1. Adaptive approach

Let us note Kt the kernel matrix after t � 1 retrieval ses-
sions. Matrix Kt is symmetric and semi-definite positive sdp
(cf. 3.2). We propose algebraic transformations always
keeping the sdp property of the kernel matrix.
1 Semi-definite programming allows efficient algorithms.

Please cite this article in press as: P.H. Gosselin et al., Combining v
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The labels provided at session t are stored in vector yt of
size n, with 1 for relevant images, �1 for irrelevant images,
and 0 for unlabeled images. After several uses of the sys-
tem, the label sets can be gathered in a matrix such as
the following one where each column represents a retrieval
session:

Labels give partial information about the category the
user has in mind, a large majority of images is unlabeled
for a given yt.

After retrieval process t, the current kernel matrix Kt is
updated using the following expression:

Ktþ1 ¼ ð1� qÞKt þ q�mergeðKt; ytÞ ð4Þ
where q 2 ½0; 1� is the system attentiveness, and
mergeðKt; ytÞ is an operator that returns a matrix contain-
ing the semantics from the previous sessions (Kt) and the
current session yt. This matrix must be sdp so that Ktþ1

keeps the sdp property.

5.2. Merging semantics of the previous and current sessions

Our first aim is both to increase the similarity between
positive labeled images, and to decrease the similarity
between negative and positive labeled images. For this,
we add the following kernel to the current one:

Kut ¼ utðutÞT with uti ¼
1 if yti > 0

�c if yti < 0

0 otherwise

8><
>:

Parameter c 2 ½0; 1� handles the increasing of similarity
between negative labeled images.2 Kut is a sdp matrix
because of rank 1 with one positive eigenvalue (kutk2).

Our second aim is to average the similarities between all
the positive labeled images. For that, we add the matrix
TKtT

T to the current kernel matrix, with Tt a n� n matrix.
To simplify the notation, let us consider that the qþ first val-
ues of yt are the positive ones. The matrix Tt is expressed as:
2 In a multiple category context, negative labeled images are usually not
in the same category. Thus in this case a small value (0.1) of c is preferable.

isual dictionary, kernel-based similarity ..., Comput. Vis. Image
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Fig. 11. Mean Average Precision (%) using an optimized kernel matrix,
from 0 to 500 retrieval sessions, each retrieval session is initialized with 1
relevant image, a user performs 10 feedback step, and labels 10 images per
feedback steps. Every 100 retrieval sessions, the 100 last label sets are
injected into the semantic learner to optimize the kernel matrix.
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Fig. 12. Mean Average Precision (%) using an optimized kernel matrix,
from 0 to 500 label sets. This protocol assumes that a partial knowledge
(for instance, keywords) has been used to generate the label sets. Each
label sets has 50 positive labels and 50 negative labels.
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It is also easy to prove the sdp property of TtKtT
T
t , if Kt

is sdp, using the following property: M is sdp ()
8x 2 Rn; xTMx P 0.

As a result, the merging operator is:

mergeðKt; ytÞ ¼ TtKtT
T
t þ bKut ð5Þ

with b 2 Rþ so that diagonal terms of TtKtT
T
t þ bKut equal 1.

5.3. Final operator

From Eqs. (4) and (5), the RETIN matrix kernel updat-
ing the semantic learning is:

Ktþ1 ¼ ð1� qÞKt þ qaðTtKtT
T
t þ bKutÞ ð6Þ

Parameters a and b control the matrix progression dur-
ing iterations.

5.4. Semantic kernel computation

We use a low-rank approximation matrix bKt, in order to
have a storage linear to the size of the database. As the kernel
matrix is real and symmetric, we are able to compute its eig-
endecomposition. The approximation consists in keeping
the p largest eigenvalues. Thus, assuming that p � n, the
storage of Kt is OðnÞ. Note that using this approximation,
the kernel matrix can be seen as a linear kernel on the vectors
ofX ¼ V

ffiffiffiffi
K
p

,whereK ¼ VKVT is theeigendecompositionofK.
The direct computation of Ktþ1 is Oðn2Þ. We use a fac-

torization technique for the computation of the eigenspec-
trum of Ktþ1. The factorization is followed by a QR
decomposition and the computation of the eigenspectrum
of a very small matrix (compared to n). This method has
a OðnÞ complexity.

5.5. Experiments

We compared the method proposed in this paper to a
distance learning method [51] on the Corel Photo database
(see Appendix for details).

The semantic kernel matrix is initialized using the color
and Gabor signatures previously introduced:

Kt¼0 ¼ XTX

with X ¼ ðxiÞi2½1;n� the p � n distribution matrix, for which
each column xi is a vector representation of the ith image
of the database.

In the following simulations, and for each semantic
learning method, we optimize the kernel matrix using from
Please cite this article in press as: P.H. Gosselin et al., Combining v
Understand. (2008), doi:10.1016/j.cviu.2007.09.018
F

100 to 500 label sets of 100 non-zeros values. For each ker-
nel, system performances are evaluated with the Mean
Average Precision (cf. Appendix). Note that here we used
a Gaussian L2 instead of the v2, since the resulting new fea-
ture vectors have negative values.

Parameter q. The method has been evaluated with q val-
ues 0.01, 0.05, 0.1, 0.5 and 1. As a rule, when q increases,
the system learns faster. However, over 0.5 the learning
becomes unstable: the MAP may increase a lot for some
categories, whereas it decreases for other ones.

Parameter c. The method has been evaluated with c val-
ues 0.01, 0.05, 0.1, 0.5 and 1. The system has the best learn-
ing performances when c ¼ 0:1. Below this value, the
isual dictionary, kernel-based similarity ..., Comput. Vis. Image
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Fig. 13. Top rank before semantic learning. The most relevant pictures for the concept ‘‘mountains”.
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system learns slowly, and above, the learning is inefficient:
with a value of 1, the MAP decreases.

Number m of non-zero eigenvalues. The method has been
evaluated with m values 10, 25, 50, 100 and 200. Globally,
the higher will result in the better the performances. How-
ever, starting from a given value (here 50), performances do
not increase much. Furthermore, it seems that the number
of eigenvalues is mainly linked to the number of categories
users are looking for, not to the number of images in the
database. We experimented the system with five categories
covering the whole database, and in this case 25 eigen-
values were enough.

In the following experiments, the default values are
q ¼ 0:1, c ¼ 0:1, and m ¼ 50. Two scenarios are presented.

5.5.1. Online optimization
We first evaluate the kernel matrix optimization during

the use of the retrieval system. The retrieval system is nor-
mally used during 100 sessions, and labels are stored. Then,
we inject these 100 label sets into the semantic learning
method, and get a new kernel matrix and/or feature vec-
tors. The new feature vectors are then immediately used
in next retrieval sessions. This process is then repeated
every 100 retrieval sessions. Using this protocol for our
method and the Xing distance learning method [51], the
system has been evaluated every 100 retrieval sessions.

The results are shown in Fig. 11. The performances
increase with our method, but not for the distance learning
method of Xing. This is certainly because a distance learn-
ing method cannot make high changes in the similarities
between images. Furthermore, the categories in these
experiments are mixed,3 contrary to Xing experiments [51].
851

852

853

854
3 Mixed categories means that one image belongs to more than one

category.
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P5.5.2. Offline optimization

We have also experimented the method when a partial
knowledge on the database is available. For instance, one
can have some keywords on sub-parts of the database. In
order to simulate this partial knowledge, we randomly built
500 label sets of 50 positive and 50 negative values. Then
we injected from 100 to 500 of these label sets in the seman-
tic learner. The performances were evaluated for each size.

Fig. 12 shows the results. One can see that, with such
semantic training sets, the performances of our method
widely increase with the training set size.

5.5.3. Other experiments

We have also compared our method with the distance
learning method of Schultz and Joachim [52], that uses
label sets with exclusively 2 positives and 1 negative values.
Our method is still efficient with such a training set, but the
distance learning does not improve the results, certainly for
the same reason than for the Xing one.

Finally, an example of retrieval is reported on Fig. 13
(before semantic learning) and on Fig. 14 (after semantic
learning). In both cases, the user is looking for mountains,
and the query is composed of two positive examples (the
images with a small green square in figures). Before optimi-
zation, there are irrelevant pictures amongst pictures the
closest to the query. After optimization, since users have
labeled mountains as being in the same concept during
the previous sessions, the closest images all are mountains.

6. Conclusion

In this paper, a complete data mining system dedicated
to image retrieval in large databases has been presented. It
includes new solutions to the image indexing and to the
database mining, both parts being improved throughout
system use sessions.
isual dictionary, kernel-based similarity ..., Comput. Vis. Image
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Concerning image representation, we have opted for
a dynamic quantization of the feature space and have
proposed an adaptive quantization in two stages, which
is both fast and efficient. The resulting color and tex-
Please cite this article in press as: P.H. Gosselin et al., Combining v
Understand. (2008), doi:10.1016/j.cviu.2007.09.018
ture-based codebooks perfectly match the content of
the database. A nice trade-off between compactness
and exhaustiveness of the image signatures is thus
performed.
isual dictionary, kernel-based similarity ..., Comput. Vis. Image
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The core of the retrieval system is the similarity measure.
We used kernel functions to represent similarity. This
framework allows us to well separate the image coding
from the latter processing such as classification, ranking,
learning. We have compared various kernel functions and
various classifiers. In our context of semantic category
retrieval in large databases of general photographs, with
very few training data, a SVM with a Gaussian kernel is
the best choice.

Another contribution of the paper is our active learning
scheme, that exploits the Mean Average Precision statistic
in the generalization error criterion to boost the retrieval
process. Adding to a specific SVM boundary correction,
the RETIN active learning strategy outperforms the
state-of-the-art methods proposed by Tong and Chang,
Roy and McCallum.

Finally, we have also proposed a method to keep the
semantic categories build by the various users over the ses-
sions, even if categories are mixed. The kernel matrix
framework is extended to learn new similarity matrices as
soon as additional user information is available. It is an
efficient way to improve the retrieval quality within large
databases, since the MAP is multiplied by two after 500
retrieval sessions compared to a single session. This perfor-
mance can be much more improved by injecting prior
knowledge such as a partial classification of the database.

A perspective of this work is to translate this active
learning scheme to primitives extracted from the images
such as regions or points of interest in order to be able to
answer other requests such as partial queries.
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Appendix A

CBIR tests are carried out on the generalist Corel Photo
database, which contains more than 50,000 pictures. To get
tractable computation for the statistical evaluation, we ran-
domly selected 77 of the Corel folders, to obtain a database
of 6000 images. To perform interesting evaluation, we built
from this database 50 categories of different sizes and com-
plexities like birds (219), castles (191), doors (199), Europe
(627), food (315), mountains (265) . . .

The CBIR system performances are measured using pre-
cision(P), recall(R) and statistics computed on P and R for
each category. We use the mean average precision (MAP)
which represents the value of the P/R integral function.
This metric is used in the TREC VIDEO conference,4

and gives a global evaluation of the system (over all the
(P,R) values).

The performances are evaluated by simulating the use of
the system. For each simulation, an image category is ran-
domly chosen and 100 images of the category, drawn at
random or with active learning, constitute the learning
set for the SVM. After each classification of the database,
the Mean Average Precision (MAP) is computed. These
977
978
9794 http://www-nlpir.nist.gov/projects/trecvid/.
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simulations are repeated 1000 times, and all values of
MAP are averaged. Next, we repeat ten times these simula-
tions to get the mean and the standard deviation of the
MAP.
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apprentissage: application à la navigation dans les bases d’images,
Ph.D. thesis, INRIA, 2003.

[36] N. Najjar, J. Cocquerez, C. Ambroise, Feature selection for semi
supervised learning applied to image retrievalIEEE ICIP, vol. 2,
Barcelena, Spain, 2003, pp. 559–562.

[37] X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning using
gaussian fields and harmonic functions, in: International Conference
on Machine Learning, 2003.
U
N

C
O 1076

Please cite this article in press as: P.H. Gosselin et al., Combining v
Understand. (2008), doi:10.1016/j.cviu.2007.09.018
E
D

P
R

O
O

F

[38] P. Gosselin, M. Cord, RETIN AL: an active learning strategy for
image category retrieval, in: IEEE International Conference on Image
Processing, vol. 4, Singapore, 2004, pp. 2219–2222.

[39] T. Joachims, Transductive inference for text classification using
support vector machines, in: Proceedings of the 16th International
Conference on Machine Learning, Morgan Kaufmann, San Fran-
cisco, CA, 1999, pp. 200–209.
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