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ABSTRACT
This paper deals with content-based image indexing and category
retrieval in general databases. Statistical learning approaches have
been recently introduced in CBIR. Labelled images are considered
as training data in learning strategy based on classification process.
We introduce an active learning strategy to select the most difficult
images to classify with only few training data. Experimentations
are carried out on the COREL database. We compare seven clas-
sification strategies to evaluate the active learning contribution in
CBIR.

1. INTRODUCTION
Content-Based Image Retrieval (CBIR) has attracted a lot of re-

search interest in recent years. This paper addresses the problem of
category search, which aims at retrieving all images belonging to a
given category from an image database.

Traditional techniques in CBIR are limited by the semantic gap,
which separates the low-level information extracted from images
and the semantic user request [20, 9]: the user is looking for one
image or an image set with semantics, for instance a type of land-
scape, whereas current processing deals with color or texture fea-
tures. The increasing database sizes and the diversity of search
types contribute to increase the semantic gap. Various strategies
have been used to reduce the semantic gap.

Some off-line methods focus on the feature extraction or on the
similarity function definition. In computer vision community, some
works deal with local descriptor extraction [1, 24] and are con-
cerned with creating indexes invariant to geometric transformations
and robust to illumination changes. An image description may be
built from local rotational invariant features and spatial constraints
[22]. These models try to efficiently catch the visual structures
of object categories. Thanks to psycho-visual experiments, Mo-
jsilovic and Rogowitz [16] propose to identify image features and
similarity functions which are directly connected to semantic cat-
egories. Experiments have also been carried out with user inter-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CVDB ’04 Paris, France
Copyright 2004 ACM 1-58113-917-9/04/06 ...$5.00.

action to integrate a user model in a Bayesian similarity function
[8]. The aim is to define a similarity between images as close as
possible to the human similarity interpretation.

Other strategies focus on the on-line retrieval step to reduce the
semantic gap. Interactive systems ask the user to conduct search
within the database. Starting with a coarse query, the interactive
process allows the user to refine that query as much as neces-
sary. Most of the times, user provides binary annotations indicating
whether or not the image belongs to the desired category. The sys-
tem integrates these annotations through relevance feedback. Inter-
active retrieval techniques are mainly of two types: statistical and
geometrical [26, 18]. The geometrical methods refer to search-by-
similarity systems [13, 19]. The objective of the statistical methods
is to update a relevance function [2, 8] or a binary classification
of images using the user annotations. Recently, statistical learning
approaches have been introduced in CBIR context and have been
very successful [26, 4]. Discrimination methods (from statistical
learning) may significantly improve the effectiveness of visual in-
formation retrieval tasks. This approach treats the relevance feed-
back problem as a supervised learning problem. A binary classifier
is learn by using all relevant and irrelevant labelled images as input
training data [5].

CBIR has a very specific classification context. There are very
few training data during the retrieval process, the input space di-
mension is usually very high, unlabeled data are available, etc.
Thus classical learning schemes have to be adapted. We ana-
lyze these specificities and propose some classification methods for
comparison. We defend that active learning [7] may be helpful to
carry out an efficient relevance feedback strategy. Active learning
strategies offer a natural framework for interactive image retrieval
and very efficient strategies, based on a SVM classification, have
been proposed [23]. We introduce in this article an alternative to
Tong’s method, working as well with SVM classification as other
classification methods. Our method, RETIN AL (RETIN Active
Learning) is a new version of a previous search-by-similarity sys-
tem, RETIN, working with both query and similarity updating [11].
Intensive experimentations are carried out on the COREL database.
We compare seven classification strategies to evaluate the active
learning contribution in CBIR.

2. CLASSIFICATION METHODS
The estimation of the searched category can be seen as a binary

classification problem between relevant a class (1) and an irrele-
vant class (-1). In this section, three generative and discriminative
learning methods, Bayes, kNN and SVM, are presented. They have



been selected for their known classification performances in pattern
recognition and CBIR context. To deal with non linearity of input
data, all methods are kernelized. We denote Kernel functions by
k(., .).
Notations: Let (xi)i∈[1,N], xi ∈ R

p be the feature vectors rep-
resenting labelled images, and (yi)i∈[1,N], yi ∈ {−1, 1} be their
respective annotations (1 = relevant, −1 = irrelevant). We denote
the relevance function, which returns the fellowship to the relevant
class for any feature vector x, by f(x).

2.1 Bayes Classifiers
Bayes classifiers is used in text retrieval systems. Since ten years,

CBIR community is transposing them to image retrieval [25, 26].
Bayes binary classifiers use the class-conditional likelihood as-

sociated with class c P (x|c) to compute the mapping function g(x)
of an input vector x:

g(x) = argmax
c∈{−1,1}

P (x|c)P (c) (1)

Because we have no prior assumption on the size of a class, we
assume that P (1) = P (−1) = 1

2
. Once g(x) is computed, the

relevance function f(x) may be expressed as follows:

f(x) = P (x|c = g(x)) (2)

To estimate the probability density function, we use a kernelized
version of Parzen windows:

P (x|c) =
1

|{i|yi = c}|

X

i∈{i|yi=c}

K(x,xi) (3)

where K(., .) is a kernel function.

2.2 k-Nearest Neighbors
This classification method has been used successfully in image

processing and pattern recognition. For instance, in competition
with neural networks, linear discriminant analysis (and others), k-
Nearest Neighbors performed best results on pixel classification
tasks (STATLOG project [15]).

k-Nearest Neighbors classifiers attempt to directly estimate f(x)
using only the k nearest neighbors of x: f(x) = Ave(yi|xi ∈
nnk(x)) where Ave denotes the average and nnk(x) the set of
the k points nearest to x in squared distance. We use a kernelized
version of these classifiers to better deal with non-linearity [12]:

f(x) =

X

i∈nnk(x)

yiK(x,xi)

X

i∈nnk(x)

K(x,xi)
(4)

2.3 Support Vector Machines
Support Vector Machines have shown their capacities in pattern

recognition, and today know an increasing interest in CBIR [23, 5,
6, 4].

The aim of SVM classification method is to find the best hyper-
plane separating relevant and irrelevant vectors maximizing the size
of the margin (between both classes). Initial method assumes that
relevant and irrelevant vectors are linearly separable. To overcome
this problem, kernels k(., .) have been introduced. It allows to deal
with non-linear spaces. Moreover, a soft margin may be used, in
order to tolerate noisy configuration. It consists in a very simple
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Figure 1: Little data artifact with SVM boundary.

adaptation by introducing a bound C in the initial equations [27].
The resulting optimization problem may be expressed as follows:

α
? = argmax

α

NX

i=1

αi −
1

2

NX

i,j=1

αiαjyiyjK(xi,xj)

with

8

><

>:

NX

i=1

αiyi = 0

∀i ∈ [1, N ] 0 ≤ αi ≤ C

(5)

Thanks to the optimal α
? value, the distance between a vector x

and the separating hyperplane is used to evaluate how relevant is x:

f(x) =

NX

i=1

yiα
?
i K(x,xi) + b (6)

where b is computed using the KKT Conditions [3].

3. TRANSDUCTIVE METHODS
In CBIR, systems have to classify image databases with very

few training data. Meanwhile, all unlabeled images are available.
If data are structured, unlabeled data should be useful for classifi-
cation.

When very few labels are available, inductive SVM classifica-
tion may have unexpected results. Fig. 1 shows such a case. Us-
ing only labelled data, the computed boundary is misplaced (full
line). Many irrelevant data are misclassified. Such a configuration
may happen when learning samples do not represent accurately the
structure of data.

LeSaux[21] proposes to adapt the SVM scheme using unlabelled
data. Only one parameter (threshold b in Eq. 6) is modified for
all the data. In the case of Fig. 1, this method provides a better
classification (dotted line), but in the more complex case of Fig. 2,
the boundary does not change.

Joachims proposes a method to deal with case of Fig. 2: Trans-
ductive SVM [14]. In this particular case, TSVM provides a good
classification (dash dotted line). We adapt this approach, proposed
in a text retrieval context. This method computes labels for un-
labelled data such as hyperplane separates data with maximum
margin. We used for experiments the SV Mlight implementation
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Figure 2: Transductive SVM.

proposed by Joachims. Unfortunately, no trend becomes apparent
with the TSVM use. Actually, we noticed that the transductive
approach sometimes improves results, sometimes not. It is very
data-dependent, and, of course, time consuming [4].

4. ACTIVE LEARNING
Performances of inductive classification depend on the training

data set. In interactive CBIR, all the images labelled during the re-
trieval session are added to the training set used for classification.
As a result, the choice of this labelled images to add will change
system performances. For instance, labelling an image which is
very close to one already labelled will not change the current clas-
sification.

Usual strategies in statistical learning propose to choose ele-
ments with the less classification accuracy. Some researchers as
Cohn [7], propose to train several classifiers with the same train-
ing data, and choose data where classifiers disagree at most. Other
ones as Zhu [28], propose to minimize a cost function (the risk) to
determine images with the less classification accuracy.

Here, we propose to use two active learning methods. Firstly,
we present the well known Tong’s SVMactive [23], which uses the
SVM boundary. Secondly we present our method, which is based
on Tong’s one, but reduces problems encounted by SVMactive dur-
ing the first iterations. Our method also deals with the sparseness
of the training data.
Notations: Let (xi)i∈[1,n], xi ∈ R

p be the feature vectors rep-
resenting images from the whole database, and x(i) the permuted
vectors after a sort according to the function f (Eq. 6, which may
be seen as a distance to boundary).

4.1 Tong’s SVMactive

The SVMactive learning method tries to focus the user on im-
ages whose classification is difficult. It asks user to label m images
closest to the SVM boundary (m = 20 in their experiments [23]).
At the feedback iteration j, SVMactive proposes to label m images
from rank sj to sj+m−1:

x(1),j
| {z }

most relevant

,x(2),j , ..., x(sj),j , ..., x(sj+m−1),j
| {z }

images to label

, ..., x(n),j
| {z }

less relevant
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Figure 3: Values of sj during feedback steps

In SVMactive strategy, sj is selected so that
x(sj),j , ..., x(sj+m−1),j are the closest images to the SVM
boundary. The closer to the margin an image is, the less reliable its
classification is.

4.2 RETIN Active Learning Strategy
SVMactive strategy rests on a strong theoretic foundation and in-

creases performances, but it works with an important assumption:
a reliable estimation of the boundary between classes. In classifi-
cation framework, the training data set approximatively represents
50% of the whole data set. In CBIR, the training set stays very
small (even after interaction) in comparison to the database size. In
such a context, a reliable estimation of the boundary is not obvious.

We introduce a method with the same principle than SVMactive

but without using the SVM boundary to find the value s. Indeed,
we notice that, even if the boundary may change a lot during the
first iterations, the ranking operation is quite stable. Actually, we
just suppose that the best s (corresponding to the searched bound-
ary) allows to present as many relevant images as irrelevant ones.
Thus, if and only if the set of the selected images is well balanced
(between relevant and irrelevant images), then sj is relevant. We
exploit this property to adapt s during the feedback steps.

At the jth feedback step, the user gives new annotations for im-
ages x(sj),j , ...x(sj+m−1),j . Let us note rrel(j) and rirr(j) the
numbers of relevant and irrelevant annotations. To obtain balanced
training sets, s has to be increased if rrel(j) > rirr(j), and de-
creased otherwise. We adopt the following upgrade rule for sj :
sj+1 = sj + λ × (rrel(j) − rirr(j)) For now, we have used this
relation with λ = 2 in all our experiments.

Figure 3 shows values of sj for the 40th first feedback steps of a
retrieval session on a test category (starting with one relevant image
and one irrelevant image, 5 annotations per feedback). Both meth-
ods have the same behavior after 20 iterations, but the SVMactive

estimation is very unstable in the first iterations.
Once sj+1 is computed, the system should propose to the user

the m images from x(sj+1),j+1 to x(sj+1+m−1),j+1. Actually, we
also want to increase the sparseness of the training data. Indeed,
nothing prevents the system to select for labelling an image close
to another already selected. To overcome this problem, we con-
sider exactly the same strategy but working no more on images



but on clusters of images: we compute m clusters of images from
x(sj),j to x(sj+M−1),j (where M = 10×m for instance), using an
enhanced version of LBG algorithm [17]. Next, the system selects
for labelling the most relevant image in each cluster. Thus, images
close to each other in the feature space will not be selected together
for labelling.

5. RETIN AL SYSTEM FRAMEWORK
RETIN AL (Active Learning) is a new version of the CBIR sys-

tem developed in ETIS laboratory [11].
User interface is compound of two windows (Fig. 4). On top

window, images in decreasing order of relevance are displayed, ac-
cording the current classifier. On bottom window, images proposed
for labelling are displayed, according to current active learner. The
user is invited to follow advises in bottom window (best labelling
according to current active learner), but he can choose to bypass
these advises, and do some labelling of his own in the top window.

The user begins a new search with some images of his/her own.
System updates the display in both windows. Next, user labels
some pictures, and system updates the display, etc., until he/she is
satisfied.

During experiment processes, the robot starts with some random
pictures in the target category. During feedback, it acts as an user
which always clicks in the bottom window.

6. EXPERIMENTS

6.1 Feature Distributions
Color and texture information are exploited. L∗a∗b∗ space is

used for color, and Gabor filters, in twelve different scales and ori-
entations, are used for texture analysis. Both spaces are clustered
using an enhanced version of LBG algorithm [17]. We take the
same class number for both spaces. Tests have shown that c = 25
classes is a good choice for all our feature spaces [10]. Image sig-
nature is composed of one vector representing the image color and
texture distributions. The input size p is then 50 in our experiments.

6.2 Database and evaluation protocol
Tests are carried out on the generalist COREL photo database,

which contains more than 50, 000 pictures. To get tractable com-
putation for the statistical evaluation, we randomly selected 77 of
the COREL folders, to obtain a database of 6, 000 images. To per-
form interesting evaluation, we built from this database 11 cate-
gories1 (cf. Table 1) of different sizes and complexities. The size of
these categories varies from 111 to 627 pictures, and the complex-
ity varies from monomodal (low semantics) to highly multimodal
(high semantics) classes, relatively to feature vectors. Some of the
categories have common images (for instance, castles and moun-
tains of Europe, birds in savannah). For any category search, there
is no trivial way to perform a classification between relevant and
irrelevant pictures.

The CBIR system performances are measured using preci-
sion(P), recall(R) and statistics computed on P and R for each cat-
egory. Let us note A the set of images belonging to the category,
and B the set of images returned to the user, then: P = |A∩B|

|B|
and

R = |A∩B|
|A|

. Usually, the cardinality of B varies from 1 to database
size, providing many points (P,R).

1A description of this database and the 11 categories can be found
at: http://www-etis.ensea.fr/∼cord/data/mcorel.tar.gz. This archive
contains lists of image file names for all the categories.

category size description
birds 219 birds from all around the world

castles 191 modern and middle ages castles
caverns 121 inside caverns

dogs 111 dogs of any species
doors 199 doors of Paris and San Francisco

Europe 627 European cities and countryside
flowers 506 flowers from all around the world

food 315 dishes and fruits
mountains 265 mountains

objects 116 single objects on an uniform background
savannah 408 animals in African savannah

Table 1: COREL categories for evaluation

We use the average precision Pa which represents the value of
the P/R integral function. This metric is used in the TREC VIDEO
conference2 , and gives a global evaluation of the system (over all
the (P,R) values).

6.3 Comparative methods
We evaluate seven methods:
• Three systems using the presented classification methods

(Bayes, kNN and SVM) with a ”basic” active learning algorithm:
system presents to user to m most relevant unlabelled images.

• Three systems using the presented classification method with
the RETIN AL active learning algorithm.

• One system using SVM classification with Tong’s active learn-
ing algorithm.

The kernel function used for SVM, kNN or Parzen estimation is
a Gaussian kernel:

K(x, y) = exp
− 1

2σ
d(x,y)2 (7)

Moreover, the distance in Gaussian kernel may be chosen ac-
cording to the feature vector type. We use a χ2 distance which is
well suited for vectors representing distributions. As data is nor-
malized, σ is tuned to 1.

When only one kind of labels is provided by user, binary classi-
fications can not be computed. In this case, we use an estimation
of the density of the labelled images to rank database, using a one-
class SVM method [6].

6.4 Memory needs and computational com-
plexity

The main memory need is the storage of feature vectors (np dou-
bles) and kernel cache lines (nc doubles), where n is the number of
images in database, p feature vector dimension, and c the number
of lines to cache. Other requirements are negligible against n. In
the following experiments, about 3 Mo are used by features vectors,
and 10 Mo for kernel cache (as many cache lines as the maximum
of labels). With a one million image database, a similar configu-
ration should require 400 Mo for feature vectors, and 1.6 Go for
kernel cache.

The main computational needs is the O(n) computation of fel-
lowship to the relevant class (function f(.) in section 2) on the
whole database. Other requirements are negligible against n. In
the following experiments, with a 10 Mo kernel cache, all methods
need at most 2-3 seconds to compute with a Pentium 3 GHz. With a

2http://www-nlpir.nist.gov/projects/trecvid/



Figure 4: RETIN AL user interface

one million image database, a similar configuration should require
about 10 minutes to compute.

6.5 Experiments
Experiments on COREL are very interesting because the

database is quite large, with many kinds of categories. In this con-
text, comparison between systems to retrieve large and complex
sets of images is meaningful.

We experiment the seven active learners with 3 different con-
texts:

• 1 relevant image at the beginning of the retrieval process,
m = 5 annotations per feedback, 40 feedback steps (Table 2);

• 1 relevant image at the beginning, m = 20 annotations per
feedback, 10 feedback steps (Table 3);

• 11 relevant images and 10 irrelevant images at the beginning,
m = 20 annotations per feedback, 9 feedback steps (Table 4).

In all cases, the training set contains 201 images at the end of
the interactive learning process. The classification performances
are then provided for systems trained with only 3% of the whole
database. Performances on mountains category are also presented
in Figure 5 for the 10h first feedback steps.

First, one can notice that the system performances are category
dependent. Best results on birds category remains very low in com-
parison to lowest performances on doors category. This can be ex-

plained by the capabilities of the low-level features to well repre-
sent the semantic categories. For instance, birds images have very
few common colors and textures, while doors images have many
common features (horizontal and vertical textures). Thus, absolute
quality assessment is not relevant, only relative performances are
meaningful.

As far as the number m of annotations per feedback is con-
cerned, results with m = 5 (cf. Table 2) are somewhat better than
those with m = 20 (cf. Table 3). It seems that one can get some
improvements using less annotations per feedback, with the same
number of training data at the end of the learning process.

Considering only classifiers, SVM is the most adapted to this
learning context. The two others ones (Bayes and kNN), always
provide lower results. The performance difference between SVM
and the two others classifiers varies from 2 to 26 percents.

Focusing on active learners, SVM/RETIN gives the best per-
formances for all categories, followed by SVM/Tong which share
those performances for half of the categories. On some categories,
none of the active learners improve performance. It seems that
those categories are very badly represented by feature vectors, and
active learners do not have enough information to act. The good
point is that they do not reduce the performance in those cases,
where some too optimistic active learners could. On other cate-
gories, performances rise, and sometimes up to 7 percents.



category Bayes/Basic kNN/Basic SVM/Basic Bayes/RETIN kNN/RETIN SVM/RETIN SVM/Tong
birds 19 29 31 20 29 31 31

castles 15 17 38 17 18 38 38
caverns 72 75 77 73 75 78 75

dogs 22 28 58 21 32 58 58
doors 86 88 89 91 90 93 83

Europe 26 30 33 26 30 35 35
flowers 56 59 60 64 63 67 57

food 58 62 66 64 66 71 59
mountains 30 42 54 39 39 54 54

objects 60 69 75 67 67 78 76
savannah 56 58 62 60 59 68 56

Table 2: Performances: initialization with 1 relevant image, 5 annotations per feedback, 40 feedback steps.

category Bayes/Basic kNN/Basic SVM/Basic Bayes/RETIN kNN/RETIN SVM/RETIN SVM/Tong
birds 16 27 29 17 27 29 29

castles 14 15 36 17 15 36 36
caverns 70 74 77 72 74 78 75

dogs 22 28 58 21 32 58 58
doors 86 88 89 91 90 93 83

Europe 26 30 33 26 30 35 35
flowers 56 59 60 64 63 67 57

food 58 62 66 64 66 71 59
mountains 30 42 53 38 39 53 53

objects 60 69 75 67 67 78 76
savannah 56 58 61 59 59 67 55

Table 3: Performances: initialization with 1 relevant image, 20 annotations per feedback, 10 feedback steps.

category Bayes/Basic kNN/Basic SVM/Basic Bayes/RETIN kNN/RETIN SVM/RETIN SVM/Tong
birds 24 33 36 24 33 38 34

castles 15 25 40 16 27 41 41
caverns 75 76 80 76 76 81 78

dogs 39 50 64 42 50 64 64
doors 85 89 90 91 90 93 83

Europe 29 33 35 31 33 36 36
flowers 59 62 65 66 66 69 59

food 59 63 69 66 67 72 60
mountains 49 46 55 50 47 55 55

objects 71 74 83 75 74 83 83
savannah 56 60 63 61 61 68 54

Table 4: Performances: initialization with 11 relevant and 10 irrelevant images, 20 annotations per feedback, 9 feedback steps.

COREL evaluation: system performances estimated with the Pa metric (%), at the end of the interactive learning process. In all
experiments, final training data sets exactly contain 201 images.
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Figure 5: Pa curves according to feedback steps.

Starting with only one relevant image is difficult for the
SVM/Tong strategy, because of the inaccuracy of SVM margin with
very few training data (cf. Table 3). We run experiments with more
labelled data at the beginning (cf. Table 4), but it is not enough to
boost the SVM/Tong strategy.

Finally, whatever the experimental context is, the SVM/RETIN
strategy has always at least the best performances.

7. CONCLUSION
In this article, an efficient active learning method (RETIN AL)

for interactive content-based image retrieval is introduced. Our al-
gorithm selects the most difficult images to classify, without using
explicit boundary between relevant and irrelevant images.

We experimentally compare three well-known classification
methods (Bayes, kNN and SVM) adapted to CBIR context, com-
bined with active strategies. SVM gives the best results on COREL
database. Experiments also show that active learning is improving
performances of image retrieval process. RETIN AL strategy is
more efficient than the SVMactive strategy proposed by Tong et al.
Unlike SVMactive , it deals with few training data, and moreover,
it may work with any classification method.

Our currently works deal with the evaluation of the scalability of
theses techniques in terms of modeling when very large databases
are considered. The high accuracy of classifier does not necessary
fit with very large databases, where most of the pictures are often
out of a given request. We are convinced that, for category search
in very large databases, efficient exploration process before classi-
fication process will become crucial.

The RETIN system is currently applied to the picture database of
the Museum Research and Restoration Center of France (C2RMF),
in addition to the European Research Open System (EROS).
C2RMF is building a very large database of paintings from France
museums, in order to propose an easy access high detailed images
of artwork. Common uses of the final retrieval system will be clas-
sification (iconographers), semantics (artists, theologists) and dat-
ing (restorers).
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