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Abstract
We propose a new strategy to estimate surface normal information from highly noisy sparse data. Our approach
is based on a tensor field morphologically adapted to infer normals. It acts as a three-dimensional structuring
element of smooth surfaces. Robust orientation inference for all input elements is performed by morphological
operations using the tensor field. A general normal estimator is defined by combining the inferred normals, their
confidences and the tensor field. This estimator can be used to directly reconstruct the surface or give input normals
to other reconstruction methods. We present qualitative and quantitative results to show the behavior of the original
methods and ours. A comparative discussion of these results shows the efficiency of our propositions.
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1. Introduction

Surface reconstruction concerns the problem of retrieving
three-dimensional shapes which, in general, represent a phys-
ical object. In most cases, only points distributed over the
object are known. Obtaining precise three-dimensional (3D)
models of real objects has applications in reverse engineer-
ing, shape analysis, computer graphics and computer vision,
among others.

The most important works on surface reconstruction clas-
sify a sparse cloud of points as an unorganized point set
[1,2]. In Gopi and Krishman [3], a set of points is classified
organized if it has additional information about the original
surface.

In the context of surface reconstruction, any sparse set of
points is at least assumed to be implicitly organized since
the points, or subsets of them, are structured by an ar-
bitrary object. Outliers and additive noise can be present
in real applications. In our work, organized points are

those that, within their neighborhood, are structured over a
surface.

This notion of spatial organization may be seen as the low-
est level in an organization scale that increases as the infor-
mation about the underlying object becomes available. Ge-
ometric and topological information, for example, increase
the organization level of independent point subsets.

From this point of view, reconstruction is the process of
inferring more information about the underlying object. This
is equivalent to reach higher levels in the organization scale
for point sets. Performing high-level reconstruction is harder
when information about the points organization is limited or
missing. Precise normals associated to points, for example,
make the surface reconstruction task easier.

Thus, estimating the surface’s normal on input points is it-
self a reconstruction process that gives a higher level of orga-
nization to the data set. Resulting normals can further be used
to reconstruct other types of information such as piecewise
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surface approximation (an even higher organization level).
Normal inference is the first surface reconstruction level.

This work focuses on the problem of robust normal esti-
mation from a sparse and noisy set of points. Given a sparse
data set, the first question is ‘what is the normal of the un-
derlying surface in an arbitrary point P?,’ where P is not
restricted to the input points. The second question is “how
good is this normal estimation?’ Points that do not belong
to a surface are supposed to have poor estimation rates. The
paper is organized as follows:

� Section 2 gives the introduction of related work and our
contributions;

� Section 3 gives the description of the morphological op-
erations for robust normal filtering and estimation;

� Section 4 gives the definition of a general normal esti-
mator and surface reconstruction;

� Section 5 gives the comparative discussion based on qual-
itative and quantitative results.

This work is based on ‘Reconstruction Using Surface Ded-
icated Fensorial Fields’ which appeared in XVI Brazilian
Symposium on Computer Graphics and Image Processing,
c© IEEE 2003.

2. Related Works

In Gideon Guy’s paradigm [4,5], surface reconstruction is
performed by accumulating the orientation contributions of
input elements using tensor fields. Guy essentially provides
two functions n(D, Q) → P

2 and s(D, Q) → R
+, where D

is a sparse data set, Q ∈ R
3 is an arbitrary point and P

2 is
the space of unoriented directions (projective two-sphere), in
such a way that

� n(D, Q) is the estimation of a normal in Q representing a
surface that presumably structures Q in conjunction with
its neighborhood in D;

� s(D, Q) is the pertinence, or relevance degree of the nor-
mal estimate in comparison with the original object rep-
resented by D.

Set D may have points, with associated normal (surfels)
and with associated tangent (curvels). Based on continuity
constraints, Guy defined a 3D tensor field for each input class.

Using these fields, the structural contributions of each el-
ement are accumulated to infer normals n(D, P) and perti-
nences s(D, P) for every P ∈ D. Next, the field for surfels is
aligned with the inferred normal in every input point and the
contributions are accumulated in the subspace containing D.
Resulting tensors representing the subspace are decomposed
and the surface and curves formed by the input points are
retrieved by a local maxima extraction algorithm.

Lee and Medioni [6] extended Guy’s method using ori-
entation tensors [7]. The main difference is that fields and

accumulation processes are based on tensor spectral decom-
position rather than input classes. Curves formed by input
points are retrieved using surface uncertainty obtained in ten-
sors. This new approach gives better results than the origi-
nal method but uncertainty propagation interferes negatively
with surface reconstruction.

Note that the pertinence function does not provide any dis-
tance from the surface. Actually, it represents the likelihood
of the inferred normal to be in fact over the surface. Extend-
ing or adapting the normal inference functions to use with
state-of-art reconstruction algorithms is not only possible but
promising.

For methods using radial basis functions, for example, our
normal inference functions can, filter initial data and seed the
algorithm with highly structured surfels, be part of the signed
distance function and be used as simplification criteria for fast
convergence [8,9].

2.1. Motivation

Guy’s method and its extensions are defined from a percep-
tual point of view. All propositions are based on the principles
of computer vision. For example, they use circular connec-
tions to build their fields. The goal is to minimize the total
curvature of the reconstructed surface, or curve, just like hu-
man’s perceptual system does.

Another important feature of previous works is that they
explore the maximum of information that a tensor can repre-
sent. The methods are constructed in such a way that surfaces,
curves and surface intersections can be extracted in a single-
or a two-step accumulation process. However, the secondary
information coded or resulted from tensor additions is better
interpreted as uncertainty [7]. The interested reader will find
valuable details in [5].

In our work, this reconstruction paradigm is perceived from
a morphological point of view. We observed that the mathe-
matical notions (fields and tensors) are explicitly combined to
infer structural shapes. Thus, the tensor fields act as structur-
ing elements in a morphological accumulation process. We
propose general guidelines to reconstruct a specific structure
considering this new perspective:

� tensor information should be coded and interpreted for
the expected structure: sums of tensors have a limited
but well-known behavior. A single tensor is an isolated
structuring element and should code only the main struc-
ture’s information. Uncertainties of resulting tensors can
be directly related to uncertainties about the structure’s
localization;

� the tensor fields should be designed to be structuring ele-
ments of the expected structure: a tensor field can be de-
fined from a vectorial field and a scalar field. The vectors
define trajectories and the scalars define the confidence
of the vector element. We emphasize that the trajectory
of the scalar field gradient is very relevant;
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� the morphological features of tensor fields should be ex-
ploited in the reconstruction process: different operators
can be designed to obtain reliable information of a spe-
cific structure.

2.2. Contributions

Aiming the problem of normal estimation and its confidence
from a sparse set of points, which is the essence of this re-
construction paradigm, our main contributions are:

� a tensor field morphologically adapted to infer normals:
we combine a vectorial and a scalar field to form tensors
that code only normal information. Both fields have ellip-
tical trajectories (gradient of the scalar field) that can be
adjusted to infer surface patches with varying curvatures;

� a morphological process that uses our tensor field to in-
fer and enhance normal estimations: the tensor field is
a structuring element of elliptical surfaces. Precise nor-
mals can be estimated when this field is properly aligned
with input elements and then integrated in space.

The normal vectors and pertinences inferred by our method
in conjunction with the normal tensor field form new func-
tions n(D, Q) and s(D, Q) that give better first level organi-
zation estimations from highly noisy set D.

3. Robust Normal Estimation

We assume that an input set can have points and surfels. An
isotropic tensor field to infer primary normals from points is
needed. This initial inference can be then enhanced by our
morphological method using the normal tensor field. Points
with tangents can be treated as well [10]. The topics of this
section are:

� orientation tensor codification and analysis;
� normal tensor field construction from elliptic vector and

scalar fields;
� isotropic tensor field for primary inference;
� morphological normal estimation.

3.1. Orientation tensor

A symmetric second-order orientation tensor [7] is defined
as

T = λ1e1eT
1 + λ2e2eT

2 + λ3e3eT
3 , (1)

where orientations are coded in the eigenvectors e1 ⊥ e2 ⊥
e3 with their respective eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0 repre-
senting pertinences. It is used in three different ways in our
method: coding, addition and interpretation.

All tensors in normal field have the desired normal coded
in the eigenvector e1, pertinence coded in λ1 and λ2 = λ3 =
0. It means that no uncertainty is coded. The tensors of the
isotropic field have planar uncertainty;

Normal inference is achieved by simply adding tensors.
After aligning tensor fields with input points, the contribu-
tion of all elements are summed. Given two tensors A and B
coding normal information, the addition T = A + B can be
decomposed in three tensors [11]:

� normal information (λ1 − λ2)e1eT
1 represents the

collinearity of normals coded in A and B;
� planar uncertainty (λ2 −λ3)(e1eT

1 + e2eT
2 ) gives the plane

where the resulting normal is likely to be in;
� isotropic uncertaintyλ3(e1 eT

1 + e2 eT
2 + e3 eT

3 ) represents
the inability of finding a preferred normal direction, i.e.
maximum uncertainty.

3.2. Normal tensor field

Aligned with an input element, a tensor field defines con-
tributions in space. To derive a field that is morphologically
adapted to infer normals forming smooth surfaces and bal-
anced pertinences, we argue that:

� curvature adjustment augments the flexibility for general
surface reconstruction: we use half ellipsoids but other
structuring surfaces can be used as well;

� the orthogonal trajectory of the scalar field gradient
should match the trajectory defined by the vector field:
in our case, elliptic surfaces are imposed by both fields
resulting in smoother normals.

The surface curvature may be controlled by using ellipses
centered in the y-axis and tangent to the x-axis:

x2

t2
x k2

+
(

− ty + y
k

)2

t2
y

= 1, (2)

where tx and ty are constants and k defines the ellipse having
axis parallel to x and y with sizes 2ktx and 2kty, respectively.
The ellipse shape defines the desired connections and can be
easily controlled by the ratio of the axis sizes:

d = 2kty

2ktx
= ty

tx
, (3)

which is constant for all ellipses of a family. Figure 1 shows
some ellipse families with different values of d. The circular
trajectory is obtained with d = 1.

Given a point P ∈ R
2 with polar coordinates (ρ, θ ), the

inclination of the line tangent to the ellipse passing by P is

tan β = 2d2 tan θ

d2 − tan2 θ
, cos θ �= 0, d �= |tan θ | (4)
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Figure 1: Ellipses with different shapes.

with β being the angle between this line and x-axis (Figure 1).
When |tan θ | = d, the tangent line is perpendicular to the
x-axis (β = 90◦), invalidating equation (4). No point can
be connected to the origin beyond these ellipse extremities.
They form the maximal connection angle αelip (Figure 1) that
defines the ellipse family by assigning

d = tan αelip. (5)

Consider a surfel (P, k) ∈ R
3 × S

2 and the unit vectors
i ⊥ j, all arbitrary but perpendicular to k. The point P and
the orthonormal base {i, j, k} form a coordinate system in
R

3 (Figure 2). The spherical coordinates (ρ, φ, θ ) of a point
Q ∈ R

3 are:

ρ = |PQ| , tan φ = k√
i2 + j2

, tan θ = j

i
,

where i = i · PQ, j = j · PQ and k = k · PQ are the cartesian
coordinates of Q in the system (Figure 2). Equation (4) can
be used to compute the angle β between the plane ij and the
tangent plane to the ellipsoid passing by Q:

tan β = 2d2 tan φ

d2 − tan2 φ
,

cos φ �= 0, d = tan αelip, d �= |tan φ|
where αelip is the maximal connection angle. The 3D vectorial
field for normals is defined by

v N ((P, k), Q) = (i cos θ + j sin θ ) cos

(
β + π

2

)

k sin

(
β + π

2

)
, (6)
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Figure 2: Spherical coordinates of a point Q in the coordi-
nate system of a surfel (P, k).

where the addition of π/2 to β defines vectors normal to the
ellipsoids.

The scalar gradient field representing the force, or induc-
tion capacity, of the tensors should define the same trajectory
of the vectorial field. Thus, the equipotential surfaces of force
must be orthogonal trajectories to the ellipsoids. We use the
farthest distance from the origin of the orthogonal trajectory
passing by Q:

f ((P, k), Q) = ρ cos φ

(
1 +

(
2 − 1

d2

)
tan2 φ

) d2

2d2−1

as a norm for the ellipsoid passing by Q. Combined with a
Gaussian, it forms the attenuated scalar field:

fN ((P, k), Q) = e
− f ((P,k),Q)2

σ2
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whose gradient vectors define the same trajectories of the
vectorial field (equation (6)). The normal tensor field defining
elliptical connections for a surfel (P, k) in 3D is

C N ((P, k), Q) =
{

rvvT, if φ ≤ αmax,

0, if φ > αmax,

αmax ≤ αelip, r = fN ((P, k), Q), v = v N ((P, k), Q),

where αelip defines the maximal angle and the curvature. The
αmax parameter can be used to define fields with smaller in-
fluence than αelip.

If αelip > 45◦, more direct connections are allowed result-
ing in smoother surfaces. Reconstructions with αelip < 45◦

tend to preserve details but are more subject to noise. The best
compromise between smoothness and detail preservation is
obtained with spherical connections αelip = 45◦.

3.3. Isotropic Tensor Field

A point with no associated orientation P ∈ R
3 has insufficient

information to induce normals directly on another point Q.
Guy showed that any plane passing by the straight line PQ is
valid. The vectorial field defining this line

v I (P, Q) = PQ

|PQ|
is then used to code this planar uncertainty for normals. The
force field should be radial and stronger for points near P:

f I (P, Q) = e
−|P Q|2

σ2 , (7)

with attenuation factor σ . The isotropic tensor field in 3D is

C I (P, Q) = r (I − vvT ), r = f I (P, Q), v = v I (P, Q),

where I is the identity matrix. The plane containing the nor-
mal is defined by e1e2 with e3 = v I (P , Q) (equation (1)).
The force is coded in λ1 = λ2 = fI(P , Q) with λ3 = 0.

3.4. Primary orientation inference

The primary inference is performed by the accumulation of
the influence of all input points. Consider an input set D
composed of i points and j surfels. To infer their orientations,
every input point

Qm ∈ {P1 . . . , Pi } ∪ {N1, . . . , N j }, 0 < m ≤ i + j, (8)

is associated to an orientation tensor T m ∈ {T 1, . . . , T n},
n = i + j , representing the total influence of the sparse
data D

Tm = ∑
i C I (Pi , Qm) +

∑
j

C N ((N j , n j ), Qm).

Every tensor Tm contains the inferred orientation for its cor-
responding point Qm from every input element of D.

The resulting vectors and pertinences coded in Tm do not
necessarily define smooth surfaces. Besides, noisy elements
have the same weight of more precise elements.

3.5. Morphological normal estimation

The primary normal information contained in Tm is highly
subject to noise. As a result, these tensors are not suitable for
surface reconstruction. This observation is a key difference
between previous works and ours.

Considering that the normal tensor field is a surface struc-
turing element, one may use it to improve normals at input
elements. The normal information of an orientation tensor
A = λ1e1eT

1 + λ2 e2eT
2 + λ3 e3eT

3 is given by functions

vn(A) = e1, s(A) = λ1 − λ2,

where vn is the normal vector and s is its pertinence.

A new tensor set U m ∈ {U 1, . . . , U n} is associated to the
set of input points Q and defined by the propagation of the
normal information contained in Tm:

U m =
n∑

l=1

s(T l )
γ C N ((Ql , vn(T l )), Qm), (9)

where (Ql, vn(T l)) is the tuple composed by n input points
and their estimated normals.

The factor γ is used for pertinence regularization. If γ ≥
1, the difference among them is amplified. Elements with
low pertinence tends to have lower influence, favoring noise
filtering. This may generate holes in regions with low point
density. If γ < 1, the difference between highest and lowest
pertinences is reduced at exponential rate. In presence of
noise, this may disturb reconstruction processes.

For general applications, we suggest to propagate the nor-
mal information twice (Figure 3). At first time, we estimate
Um with γ ≥ 1 to filter the primary orientations (equation (9)).
Associating the tensor set V m ∈ {V 1, . . . , V n} to the set of
input points Q, the second normal propagation is given by

Vm =
n∑

l=1

s(U l )
ωC N ((Ql , vn(U l )), Qm), (10)

where ω < 1 is the regularization factor. This second accumu-
lation reduces the difference among the pertinences obtained
in Um, also reducing the filtering effect in regions with low
point density.

Two accumulations were effective to enhance the normal
estimation but the process may be extended. Experiments
show that γ = 1 and ω = 1/2 provide good results in general
applications.

High responses of normal estimation uncertainty may in-
dicate noise presence. Thus, this information is discarded
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Figure 3: Morphological operator for robust normal estimation: normal tensor field as a surface structuring element.

within the morphological operator. We argue that uncertain-
ties can be better analyzed from final tensors Vm.

Ideally, the sparse accumulation should assign maximal
pertinence to the structured points and minimal to the unor-
ganized ones. The more precise pertinence values provided
by our functions tend to give greater pertinences to the orga-
nized points. This bimodal aspect of pertinence distribution
enables the use of a threshold for segmenting both sets. In
[2], we propose a method for sparse data filtering suitable
for preprocessing purposes. In [3], we show the use of this
filtering method in altimetry data to find vegetation regions.

4. Normal Inference Functions and Reconstruction

Using the normal tensor field and the orientation information
obtained for all input elements, we define the general normal
estimator for any point P ∈ R

3

I(D, P) =
n∑

l=1

s(V l )C N ((Ql , vn(V l )), P), (11)

where Ql is the lth input point (equation (8)) and V l is
its orientation tensor obtained by morphological inference
(equation (10)).

The decomposition of I(D, P) provides the general normal
inference functions n : D × R

3 → P
2 and s : D × R

3 →
R

+

n(D, P) = e1 and s(D, P) = λ1 − λ2.

Function I(D, P) defines a continuum of tensors in R
3. It can

be used in several ways. For example, it could be attached to
other types of reconstruction methods. Direct reconstruction
can be performed by finding the extremal surface defined by

n(D, P) · ∇s(D, P) = 0, (12)

which is formed by the sites where the pertinence s is a local
maxima in direction of the estimated normal vector n.

The extremal surface notion has been revisited in [14] for
reconstruction: they define the moving least square surface
as an extremal surface.

4.1. Discrete case

Guy defined a variation of the marching cubes algorithm to
extract extremal surfaces in a discrete grid. In this case, nor-
mals are inferred for every point P ∈ S of a subspace S ⊂ R

3

containing the input set D.

Subspace S is represented by a discrete grid of tensors
Gi,j,k with dimensions r × t × u with i, j, k, r , t, u ∈ Z

+.
The evaluation of normals from subset D can be defined by
applying I(D, P) directly (equation 11)

G i, j,k = I(D, H(i, j, k)), i ≤ r , j ≤ t, k ≤ u,

(13)

where function H : Z
+3 → R

3 is the transformation of dis-
crete coordinates (i, j, k), representing the center of the
grid cell, into real coordinates corresponding to subspace
S. A point H(i, j, k) is over a surface if its pertinence s is
a local maxima in direction of estimated normal vector n
(equation [12]).

In this work, the tensor grid Gi,j,k is computed as defined
above. However, this definition assumes that the grid has
sufficient resolution to avoid or minimize structural aliasing.

In fact, our normal tensor field was designed for continu-
ous normal reconstruction. It does not provide good results
in the discrete pipeline of previous works. Thus, a discrete
version taking into account the aliasing problem is needed.
Discrete versions of normal inference functions must be de-
fined carefully and is a subject for future works.

A probabilistic approach is to define a discrete normal
tensor field where each element is the average of a random
tensors inside its cell support. As a result, sites where normals
are more aligned (plane ij in Figure 2) would have higher final
pertinence than those with varying curvature. This situation
is empirically approximated by the force field defined by Lee
and Medioni.

Note that applying the discrete field above is equivalent to
take the average contribution of a points randomly chosen
inside the grid cell with center (i, j, k).
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5. Experimental Results

We present qualitative and quantitative experiments to show
the differences between the original methods and ours. Qual-
itative results allow the evaluation of reconstruction quality
in challenging situations: insufficient grid resolution, high
presence of outliers and complex surface intersections.

Obviously, the input data sets used for qualitative eval-
uation are single instances in an infinity of possible point
distributions, each conducting to different results. The analy-
sis of several reconstructions are needed to show the average
behavior of the methods. In this way, a quantitative experi-
ment comparatively shows the error evolution of all methods
reconstructing ellipsoids.

The fixed parameters of each method were adjusted by
comparison of several results in terms of reconstruction qual-
ity. We chose values that give best results for each one.

5.1. Qualitative results

For our method, we used γ = 1 (equation (9)) and ω = 1/2
(equation (10)). Reconstructions with circular (αelip = 45◦)
and elliptic (αelip = 60◦) continuities are given. Both with
maximal angle αmax = 45◦ (equation (7)) to reduce cross-
talking between misaligned points.

For Guy’s method, we set a = 3 and b = 1 to define a
normalized force field between −1 ≤ x ≤ 1. Lee and Medioni
method is applied with c = 0.02. See [5] for a complete
description of these methods.

Fields should have finite support for performance pur-
poses. The force may be considered null beyond a distance
dmax from field’s central point. To have coherent results, the
force field parameters of all methods are adjusted in such a
way that

f (P, Q) ≤ k ∀Q ∈ R
3 | |P Q| ≥ dmax, (14)

where P is the field’s central point. Every point at distance
dmax can have k as maximum force. The most aligned points
have force k in anisotropic fields (like normal tensor field).
We set k = 0.001 in this work.

A highly dense set of 10 000 points forming a knot model
is given in Figure 4. The grid used for reconstruction is too
restrictive due to the point’s density and the object’s complex
topology. Several approaches would fail in reconstructing it.

The knot was reconstructed with dmax = 0.06 for our
method and dmax = 0.07 for Lee and Guy methods. Our
method with αelip = 45◦ and Lee and Guy methods were not
able to extract the knot model correctly, resulting in several
artifacts (Figure 4). However, almost all surface was correctly
reconstructed with αelip = 60◦.

Figure 4: Complex data example: reconstruction of a knot’s
model in a restrictive grid of dimensions 130 × 130 × 65.

Figure 5 shows 250 points forming a Cassini’s oval with
1500 outliers uniformly distributed in the cube of side 15%
greater than the cube containing the oval. This is an extremal
case of outlier presence.

We used dmax = 0.22 for ours and Guy methods and
dmax = 0.21 for Lee’s. All methods extracted the object
but only our method was able to reconstruct it entirely as a
smooth surface (Figure 5). Similarly to the knot reconstruc-
tion, a smoother surface was obtained with αelip = 60◦ due
to the elliptic curvature.

The cut views of Cassini’s oval grid show that our method
provides better results with noisy data (Figure 6). It reduces
considerably the pertinences of unstructured points. This is
due to our normal tensor field and the enhancement of the pri-
mary normal inference. Note that Lee and Medioni method
is the most sensible to noise. Our method also gives more
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Figure 5: Noisy data example: reconstruction of Cassini’s
oval in a grid of dimensions 50 × 50 × 50.

balanced pertinence distributions over the surfaces. It is
showed in the cut views of the knot model.

The model in Figure 7 is composed by 1330 points. We
used dmax = 0.21 for all methods. The central region of this
model is very difficult to reconstruct using the accumulation
paradigm presented here. In this region, the ambiguity in
normal estimation process results in low pertinence values
in contrast with the whole model. All methods incorrectly
obtained a hole as a result. In fact, they will fail wherever
complex intersections of planes exist.

5.2. Quantitative results

The evaluation of the efficiency or precision of reconstruction
methods is a hard task. In some cases it is not even possible
because of the difficulty in establishing viable criteria.

In our case, all methods are under the same paradigm and
their parameters have the same meanings. It simplifies the

development of a protocol to evaluate the reconstruction of
specific surface models.

A reconstructed surface S is composed by k distinct ver-
tices {P1, . . . , Pk} forming triangles. One may estimate the
general quality by the mean squared error mse:

mse(S, U) = 1

k

k∑
i=1

ε2, ε = d(Pi , U), (15)

where d is the smallest euclidean distance between the vertex
Pi and the original surface U.

For precise error evaluation, it is necessary a great number
n of samples Di obtained in the same conditions and repre-
senting independent objects Mi of the same class. Expected
error average for this class is computed by averaging the in-
dividual errors of the reconstructions Si of Di:

E(mse) = 1

n

n∑
i=1

mse(Si , Mi ). (16)

Objects Mi may have different orientations and shapes but
must represent the same structure. Samples should have the
same spatial features such as density and distribution.

Mean squared error estimates (equation (15)) are only valid
for good approximations of the original object. Note that the
closest point of Pi is not necessarily its homologue in the
original surface. Besides, Sj can be a partial reconstruction
of Mj and also have low average error.

We observed that the number of triangles of invalid recon-
structions diverges from the average of all reconstructions.
These rare surfaces must be excluded from the expected er-
ror calculation (equation (16)). We use the average t and
standard-deviation σ t of number of triangles obtained from
n samples

t = 1

n

n∑
i=1

ti , σt =
√

1

n

n∑
i=1

t2
i − t, (17)

to indicate the range t ± bσt defining valid reconstructions.
A surface Sj is rejected if t j < t − bσt or t j > t + bσt . The
adaptive threshold with b = 2 proved to be efficient to exclude
invalid reconstructions.

5.3. Evaluating ellipsoid reconstruction

Evaluation is made by reconstructing ellipsoids with several
shapes and orientations. The goal is to show methods behav-
ior with surfaces having variable curvature. Thus, the slope
variation of error curves are much more important than com-
paring directly the error values (Figure 8).

Every sample is generated by the application of a linear
operator on 250 points uniformly distributed over the unit
sphere. These linear operators are symmetric positive ma-
trices. Eigenvalues indicate the size of ellipsoid axis. The
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Figure 6: Cut view of the discrete grids illustrating the normalizzed pertinence of normal inferance. Darker points have greater
pertinences.

Figure 7: Flaw case example: reconstruction of a complex
junction of surfaces in a grid of dimensions 60 × 60 × 60.

greatest eigenvalue is chosen randomly in the range [1, 1.4]
and the smallest between [0.6, 1]. We fix the intermediary
eigenvalue in 1. Eigenvectors define the axis orientation and
are also determined randomly.

The change of points density caused by the transformation
does not affect the reconstructions. We use a discrete grid of
dimensions 40 × 40 × 40.

Figure 8(a) shows the evolution of error in function of
dmax. High values of dmax can generate bad surfaces because
the increase of cross-talking between distant points. For ellip-
soid reconstruction, the high curvature regions at extremities
get smoother, which explains the error augmentation. Based
on these results, we fixed dmax = 0.33 for all methods in
Figure 8(b,c) since it provides good reconstructions and low
cross-talking.

Our method with αelip = 45◦ provides a better approxi-
mation of the high curvature regions obtaining smaller error
estimates. For dmax > 0.03, the Guy, Lee and αelip = 60◦

methods have the same behavior. Note that Lee’s method
does not provide good results with low values of dmax.

Error evolution with number of outliers varying between
250 and 1000 is showed in Figure 8(b). Our method provided
better results due to the morphological normal inference. Guy
and Lee methods have the same behavior until 150% of out-
liers. Beyond this limit, the results of Lee’s method are bet-
ter. With high noise rates, the tangent propagation of Lee’s
method enforces the location of surfaces.

Figure 8(c) shows the error evolution in function of additive
noise with normal distribution. The evolution of Guy and Lee
curves indicates that their methods have similar behavior. The
displacement of Lee’s curve does not mean lower sensibility
to noise. Our method presents a smaller evolution of error
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Figure 8: Error curves for ellipsoid reconstruction. (a) Varying the maximum distance dmax. Average of 150 samples for each
dmax. (b) Varying the number of outliers. Average of 122 samples for each noise level. (c) Varying the standard deviation of
additive noise. Average of 236 samples for each standard deviation.

average. The method with αelip = 60◦ gives slightly better
results than with αelip = 45◦.

6. Conclusions

We have presented a method for robust normal inference
based on a specific interpretation of the orientation tensor,
an appropriated construction of a tensor field for being a sur-
face structuring element, and a new morphological normal
inference process.

Our results show that it is less sensible to noise and to
parameters variation, giving more balanced pertinence dis-
tributions. The resulting normal estimator functions for the
sparse input set can be used for direct surface reconstruction.
However, we believe that the combination of this normal esti-
mator with other surface reconstruction methods is promising
for future works.

Analyzing the qualitative results, we conclude that our
method provides smoother and more stable surfaces. In some
cases, it was the unique method able to correctly reconstruct
the models (Figure 5). In Figure 4, a correct reconstruction
was only possible using elliptic curvature αelip = 60◦.

The Cassini’s oval reconstruction and the error evolution
varying the number of outliers (Figure 8(b)) demonstrate the
positive effects of our morphological operator. It reduces the
pertinence of nonstructured points, which explains the good
performance of our method with noisy samples. Balanced
pertinence estimates are responsible for the lower sensibility
of the method to dmax variations (Figure 8(a)).

Elliptic trajectories are proposed to adjust the method to
different surface curvatures. The reconstruction of samples
with additive noise (Figure 8(b)) shows that smaller curva-
ture implies smoother results (αelip >45◦). In general, circular
connections have the best compromise between smoothness
and detail preservation (αelip = 45◦). A more powerful ap-

proach is to adaptively match the normal tensor field curva-
ture with each local patch curvature.

Our results were obtained without using a discrete normal
tensor field in the reconstruction step. The probabilistic ap-
proach described in Section 4.1 to reduce structural aliasing
is a subject for future works.

A method for curve reconstruction can be defined by the
same ideas of this work. Also, better results may be obtained
by developing new structuring tensor fields, iterative opera-
tors and heuristics for organization inference.
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2002.

14. N. Amenta and Y. J. Kil. Defining point-set surfaces. In
SIGGRAPH, pp. 264–270, 2004.

c© IEEE 2003


