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ABSTRACT

Information retrieval techniques have to face both the grow-
ing amount of data to be processed and the “natural” distribu-
tion of these data over the network. Hence, we introduce in
this paper a new architecture for image retrieval in distributed
image databases, based on multi-agent systems. Our system,
inspired by “ant-agents”, uses labels provided by the user for
learning both the searched category of images and the path to
the most relevant databases. We then show how effective can
be our architecture on a generalist image database network.

Index Terms— Image recognition, Information retrieval,
Image databases, Distributed database searching, Cooperative
systems

1. INTRODUCTION

The number of collections of images on the Internet, at home...
grows more and more since the proliferation of digital equip-
ments. In order to manage these large collections, power-
ful system assistants are required. Traditional techniques in
content-based image retrieval (CBIR) are limited by the se-
mantic gap between the low-level representations of images
based on color, texture and shape analysis, and the semantic
subsets of the database the users are looking for [1]. The in-
creasing database sizes and the diversity of search types con-
tribute to amplify the semantic gap.

Interactive learning approaches have been introduced in
CBIR context to improve the effectiveness of visual informa-
tion retrieval tasks [2, 3]. The largest improvement is defi-
nitely obtained by using active learning strategies optimizing
the selection of images to present to the user [4]. Recently,
we have introduced an active learning strategy [5] to carry out
an efficient relevance feedback working as well with SVM as
other classification methods.

In this article, the problem of interactive retrieval into
distributed databases context is considered. Although this
context is close to real applications (search engines1 or the
peer-to-peer networks2), it has been the focus of very few re-
searches ([6]).

1http://www.google.com
2http://www.bittorrent.com/introduction.html

To carry out the search, people usually consider central-
ized systems: images on remote databases are collected and
downloaded on a central database on which classical CBIR
techniques are applied.

We propose in this article a different approach no more
centralized. It is based on Multi-Agent Systems (MAS) of-
fering interesting properties in comparison with centralized
systems [7]:

• since the agents are distributed, several sub-tasks can be
processed in parallel, thus sparing both CPU and band-
width

• if a machine is down, machines still up can keep on
processing the search task

We introduce a new Multi-Agent System architecture ded-
icated to image retrieval on distributed databases. We recently
developed a MAS system based on ANT algorithms [8] for
text retrieval on the web [9, 10]. That allowed us to validate
the global properties of our MAS-based search system on dis-
tributed machines. We propose here a MAS architecture inte-
grating a new formulation for image retrieval agent and selec-
tion. In particular, we show that the classical active learning
strategies [4] cannot be efficiently used without adaptation to
the database-distributed search context. We then introduce an
active learning strategy dedicated to that context. Afterwards,
we present results comparing our active strategy to classical
strategies, and an evaluation of the global effectiveness of our
architecture.

2. ARCHITECTURE OF OUR SYSTEM

2.1. The context

We consider a network of computers where some of the ma-
chines host image databases and form the locations where im-
ages can be retrieved from (See figure 1). On each of these
machines (Image Servers - IS), a local static agent (Local
Image-Database Agent - LIDA) keeps up-to-date an index of
the local database.

Practically, we want the user to be able to easily and effi-
ciently search images among those databases. For that pur-
pose, he starts the search by giving a query image to the
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Fig. 1. Mobile agents explore the network, starting from s1,
while local agents on sN keep an index of the local image
database up-to-date.

human-machine interface program running on his computer
(s1). The system then distributes the queries to the machines
hosting the image databases and propose to the user a set of
images.

Active learning aims at optimizing the interaction between
the user and the system. The user is able to label any docu-
ment in the database but does not want to label a lot of docu-
ments. Active strategies attempt to significantly improve the
results with a small set of labelled documents.

We guess that, as the categories searched by the user could
be concentrated on specific local databases, the quality of the
answers could be improved by facilitating answers coming
from these machines. Besides, it should also improve the
quality of the active learning since the system classifying the
images should be restricted to only a subset of the concatena-
tion of all the image databases available on the network.

In the next section, we develop the principle of the MAS
we use to select the “best” databases according to the category
searched by the user. We then develop the active learning
strategy we have used.

2.2. The ant system

Practically, once the HMI has received the query image, it
launchesN mobile agents that move over the network in order
to find the local agents maintaining image databases. These
moving agents obey the following algorithm based on the re-
inforcement of “pheromone-like” markers (See Algo 1).

Algo 1: Mobile-agent behavior
INITIALIZATION: s1 → sc

Do
If sc = sN // A local agent is found!

Go back to the HMI
Else // Look forward

Go to site sj with probability
Phj(t)∑k

l=1 Phl(t)
with k = |succ(sc)|

End If
While sN not found or prof < θ

With sj being the computers in the network, sc the cur-
rent site explored by the agent and succ(sc) the sites directly
following sc. Phk(t) is the pheromone level on the site sk (t
is discrete and evolves only when the Ph are updated). θ is a
threshold corresponding to a maximum exploration depth.

When a mobile agent finds a local image-database agent,
it sends a request to this agent with the description of the
searched images. Thanks to a specific active learning strat-
egy (See Section 2.3), the local agent sends back a series of
image in accordance with the description given by the mo-
bile agent. Once the mobile agent gets the answers, it comes
back to the user’s computer and proposes them to the HMI.
Actually, the answers of all the mobile agents are collected
into a pool until a timeout is reached. Then, NI images are
selected from the pool and proposed to the user for labelling.
For each label, a reinforcement signal is sent back to all the
computer on the route to the corresponding image database in
order to update the pheromone level on the pathway taken by
the mobile agent who brought this image. Positive labelling
increases the pheromone level, whereas negative labeling de-
creases it, according to the following rules:

Increase : Phk(t + 1) = Phk(t) + β

Decrease : Phk(t + 1) = (1 − α) · Phk(t)

Such reinforcement rules are known to optimize the path
to the sites containing relevant information ([11, 8, 10]).

As soon as images are given, the mobile agents continue
their exploration of the network, searching for new examples
to be learned. Once a “sufficient” number of images has been
learned, mobile agents are launched a very last time in order
to return the most relevant images. Results are then ranked
and presented to the user.

2.3. Our active learning system

In this paper, we focus on the active learning scheme where
a pool of unlabeled examples is available. We suppose that
we have a set X = (x1, . . . ,xN ) of image descriptions, a set
of labels y = (y1, . . . , yN ) (1 relevant, −1 irrelevant, 0 un-
known), a relevance function fy : X → [−1, 1] trained with
y, and a teacher τ : X → {−1, 1} that labels documents as
−1 or 1 (the same labels as in 2.2). The aim of an active learn-
ing within this context is to choose the unlabeled document x
that will enhance the most the relevance function trained with
the label τ(x) added to the previous labelling y.

Uncertainty-based sampling is the active strategy the most
used in image retrieval. This strategy aims at selecting unla-
beled image that the learner of the relevance function is most
uncertain about. The first solution is to compute a probabilis-
tic output for each image, and select the unlabeled images
with the probabilities closest to 0.5 [12]. Similar strategies
have been also proposed with SVM classifier [13], with a the-
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oretical justification [14], or with nearest neighbor classifier
[15].

In all cases, a relevance function may be computed. This
function can be a distribution, a fellowship to a class (distance
to the hyperplane for SVM), or a utility function. Thus, with
some adaptation of each approach, a relevance function fy is
trained, where the most uncertain documents have an output
close to 0.

In our architecture, we choose a SVM classifier as rel-
evance function. This classifier is updated with the images
brought back by the mobile agents. When departing, mobiles
agents get a copy of the latest classifier (ie, trained on more
examples). The exploration made by mobile agents and the
learning procedure of the classifier are entirely asynchronous.

On the IS, the LIDA (see 2.1) computes the relevance of
each image in the local database D, and selects a answer set
of I images given an active strategy. As many agents arrive
with the same relevance function, the active strategy should
not answer in a deterministic way, otherwise all these mobile
agents will get the same set, and thus act as one single agent.

We adapted the SV Mactive strategy of Tong [4], in order
to take advantage of the MAS structure. All images x in the
database D are ranked (r(x)) given their distance to the clas-
sifier’s hyperplane. We associate a Gaussian probability P (x)
to each image based on this ranking :

P (x) ∝ e−
1
2 ( r(x)

σ
)2 (1)

To obtain the discrete probability,P (x) is normalized over
the local database D :

P (x) =
e−

1
2 ( r(x)

σ
)2

∑

xi∈D

e−
1
2 (

r(xi)

σ
)
2

(2)

I images are randomly drawn thanks to the propability
P (x) over the xi ∈ D. We compute σ so that the set of
the I nearest images from the hyperplan have a probability of
p :

p =

I∑

r(xi)=1

P (xi) (3)

p is the only parameter we tune, and represents the ex-
ploration in the local database D. This allows any image in
the database to be selected, even if the images are far from
the hyperplan. As I images are selected, if p = 1, the re-
turned images are exactly the I nearest images, which is the
SV Mactive strategy.

3. EXPERIMENTS

Our test database is an excerpt of the Corel database which
contains 6,000 images categorized in 50 concepts of 50 to
300 images. The signatures used for the images consists of

50 features : 25 colors and 25 textures, based on previous
work ([16]).

In order to validate our new active learning strategy, and
to tune the parameter p, we first consider experiments without
the MAS context. For each image in a concept, we made
a learning session which consisted of ten feedback rounds.
At each round, the active strategy selected ten images and
updated the classifier consequently. The experiment was run
for several values of p and we compute the Mean Average
Precision (MAP) to evaluate the learning quality. Results for
the categories dogs and mountains are shown in Fig. 3:

p 0.3 0.4 0.5 0.6
dogs 0.311 0.321 0.342 0.348
mountains 0.367 0.361 0.354 0.351

p 0.7 0.8 0.9 1
dogs 0.335 0.343 0.335 0.344
mountains 0.354 0.351 0.348 0.345

Fig. 2. MAP for different categories given the parameter p.
p = 1 stands for SV Mactive.

The parameter p seems to have little influence beyond 0.5,
as the MAP is quite similar to SV Mactive (p = 1). We deter-
mined p = 0.6 as a good compromise between exploration of
the feature space (low value of p) and determinism within the
returned training set (high value of p).

In order to see the influence of the repartition of the re-
searched category on our MAS system, we split the database
into two smaller databases hosted on two different machines
(A and B). This repartition c varies from 50% (the category
is equally distributed on A and B) to 100% (the category is
entirely on B). Eight mobile-agents were launched, each of
them carrying back two images. The classifier’s update and
the network exploration are asynchronous, as described in
Section 2. The graphic on Fig. 3 shows experiments without
the pheromone update (i.e., mobile-agents randomly explore
the network) and with the pheromones update. A processing
of the whole database is pending.

The learning scheme without the pheromones performs a
little better than the centralized implementation for a strong
dilution of the class among the databases (ie, equally dis-
tributed over A and B), showing that the active learning strat-
egy performs better on smaller databases. For high concentra-
tions of the class (ie, all images on A), the performances de-
creases. The learning scheme with the pheromones is as good
as other implementations for strong dilution of the searched
class : as relevant information can be retrieved both from A

and B, no path can be efficiently learned. For high concentra-
tion of the class on a specific database, this implementation
outperforms others. This shows how the path-learning strat-
egy combined to the active learning strategy really improve
the results.
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Fig. 3. MAP with (dashed line) and without (solid line)
pheromones, depending on the concentration of the categories
dogs, mountains on base A.

4. CONCLUSION

In this paper, we presented a new architecture for image re-
trieval in distributed databases. Based on MAS, this system
uses labels provided by the user for both training a classi-
fier on the researched category, and reinforcing the path lead-
ing to the relevant information. This led us to adapt an ef-
ficient active learning strategy to this context. Experiments
were made on a generalist database, split into two smaller
databases, in order to see the influence of the localization of
the researched category. We have shown that our system is
as good as centralized solutions in all cases, and strongly in-
creases the global efficiency of the retrieval in the case where
the researched category is concentrated on a specific database.
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