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ABSTRACT

Content-based image retrieval systems still have difficulties to
bridge the semantic gap between the low-level representation of
images and the high level concepts the user is looking for. Rele-
vance feedback methods deal with this problem using labels pro-
vided by users, but only during the current retrieval session. In this
paper, we introduce a semantic learning method to manage user la-
bels in CBIR applications. Our approach uses a kernel matrix to
represent semantic information in a statistical learning framework.
The kernel matrix is updated according to labels provided by users
after retrieval sessions. Experiments have been carried out on a
large generalist database in order to validate our approach.

1. INTRODUCTION

Traditional techniques in content-based image retrieval (CBIR) are
limited by the semantic gap between the low-level representations
of images and the semantic subsets of the database the users are
looking for [1, 2]. The user is looking for one image or an im-
age set with semantics, for instance a type of landscape, whereas
current processing deals with color or texture features. The in-
creasing database sizes and the diversity of search types contribute
to increase the semantic gap.

Recently, statistical learning approaches have been introduced
in CBIR context [3] and have been very successful to improve the
effectiveness of visual information retrieval tasks. Discrimination
methods approach the relevance feedback as a supervised learning
problem. A binary classifier is learned by using all relevant and
irrelevant labeled images as input training data [4]. The user inter-
actively provides labels, and the classification function is updated.
We have introduced an active learning strategy [5] to carry out an
efficient relevance feedback working as well with SVM as other
classification methods.

Most of the time, the labels provided during one retrieval ex-
periment are not re-used thereafter. In this paper, we introduce
a learning method to exploit the information accumulated during
past sessions. Our technique, called RETIN SL (Semantic Learn-
ing), is working on generalist image databases, and is designed to
model mixed categories. In order to learn any kind of semantic
links, we use a similarity matrix framework. To keep our general
framework easy to combine with other techniques (relevance feed-
back and active learning, clustering, ...), we use a kernel matrix as
a similarity matrix. We introduce some receivable algebraic trans-
formations in order to always keep the nice properties of the ker-
nel. The purpose is to reinforce similarity matrix values between
images identically labeled by the user. To handle huge databases,
we also propose an approximation technique with a complexity
linear to the size of the database.

In this scope, we first present in Section 2 the active learn-
ing strategy for relevance feedback. In Section 3, we describe the
RETIN SL method of semantic learning. In Section 4, experiments
combining RETIN SL and active on-line strategies are reported.

2. ACTIVE LEARNING

Performances of inductive classification depend on the training
data set. In interactive CBIR, all the images labeled during the re-
trieval session are added to the training set used for classification.
As a result, the choice of which labeled images to add will change
system performances. For instance, labelling an image which is
very close to one already labeled will not change the current clas-
sification.

Usual strategies in statistical learning propose to choose ele-
ments with the less classification accuracy. Some researchers as
Cohn [6], propose to train several classifiers with the same train-
ing data, and choose data where classifiers disagree at most. Tong
adapts SVM framework to active learning strategy in order to get
the SVMactive learning method [4]. SVMactive tries to focus the
user on images whose classification is difficult. It asks the user to
label m images closest to the SVM boundary (m = 20 in their
experiments [4]).

Let (xi)i∈[1,n], xi ∈ Rp be the feature vectors representing
images from the whole database, and x(i) the permuted vectors
after a sort according to a decision function f . At the feedback
iteration t, SVMactive proposes to label m images from rank st to
st +m− 1 so that x(st), ...,x(st+m−1) are the closest images to
the SVM boundary. SVMactive strategy rests on a strong theoretic
foundation and increases performances, but it works with an im-
portant assumption: a reliable estimation of the boundary between
classes.

We introduced a method with the same principle than
SVMactive but without using the SVM boundary to find the value
st [5]. Indeed, we notice that, even if the boundary may change a
lot during the first iterations, the ranking operation is quite stable.
Actually, we just suppose that the best st (corresponding to the
searched boundary) allows to present as many relevant images as
irrelevant ones. Thus, if and only if the set of the selected images
is well balanced (between relevant and irrelevant images), then st
is relevant. We exploit this property to adapt st during the feed-
back steps. Comparisons in [5] have shown the efficiency of the
method, especially with few training data.

3. SEMANTIC KERNEL LEARNING

Let us note semantics all the information (users’ annotations) ac-
cumulated from many retrieval sessions. Different strategies may



be used to learn information about the database from these seman-
tics:

- Some approaches deal with feature selection or competition
[7]. The Latent Semantic Index and its kernel version have also
been proposed to model the correlation between feature variables
[8].

- Other approaches compute and store a similarity matrix. A
lot of approaches are based on the Kernel Alignment [9]. The
idea is to adapt a kernel matrix (which is a particular similarity
matrix) considering user labelling. This problem can be solved
using semi-definite quadratic programming1 [10]. However, they
have been designed mostly for transduction and clustering, i.e.,
two class problems. For generalist database searches, there are
many concepts or categories, overlapping each other. Some meth-
ods, building and updating a similarity matrix, have been experi-
mented [11]. Usually, there is no assumption about the properties
of the similarity matrix. For instance, the updated matrix may lost
the induced metric properties. Moreover, these similarity matrix-
based approaches have also a high computational cost. The mem-
ory complexity is at least O(N2), where N is the number of pic-
tures in the database.

Our strategy is based on a kernel matrix adaptation, and is de-
signed to model mixed categories. We also manage the complex-
ity constraint using efficient eigenvalue matrix decomposition; the
method has a O(N) complexity and memory need, and so it is
applicable to large databases.

3.1. Adaptive approach

Let us note Kt the kernel matrix at the end of the retrieval session
t: (Kij)t = k((xi)t, (xj)t). When a kernel function k(., .) is
used, the matrix Kt is symmetric and semi-definite positive (sdp),
it is a Gram matrix. We propose algebraic transformations always
keeping the sdp property of the kernel matrix.

The labels provided at step t are stored in a vector yt of size
N , with 1 for relevant pictures, −1 for irrelevant pictures, and 0
for unlabeled pictures. If the system is used several times by users,
a set of labels becomes available:

y1 y2 y3 y4 y5 y6 y7 . . .
x1 1 1 0 0 −1 1 0 . . .
x2 1 1 1 1 −1 0 1 . . .
x3 1 0 1 −1 0 0 0 . . .
x4 0 −1 1 0 0 −1 0 . . .
x5 −1 0 0 1 1 −1 0 . . .
x6 0 0 −1 0 1 0 −1 . . .
...

...
...

...
...

...
...

...

Labels give a partial information about the category the user has in
mind, a large majority of pictures is unlabeled for a given yt.

After each retrieval process t, the current kernel matrix Kt is
updated using the following expression:

Kt+1 = (1− ρ)Kt + ρKyt (1)

where the weight ρ ∈ [0, 1] is tuned according to the confidence
we have in labels provided by user interaction, and Kyt a matrix
containing information from yt. This matrix must be sdp so that
Kt+1 keeps the sdp property.

1Semi-definite programming allows efficient algorithms.

3.2. Merging Kt and yt

Two types of operations are considered for Kyt . The first one is
the N ×N matrix Kut , defined as:

Kut = ut(ut)
′ with uti =

8
<
:

1 if yti > 0
−γ if yti < 0

0 otherwise

which increases the similarity between positive labeled images,
and decreases the similarity between negative and positive labeled
images. The γ ∈ [0, 1] parameter deals with the increasing of
similarity between negative labeled images2. Kut is a sdp matrix
because it is a rank one matrix with a positive eigenvalue (||ut||2).

The second one aims at averaging all the similarities between
the positive labeled images, with the operatorKT = TKtT

′,N×
N matrix T defined as:

T =

0
BBBBBBBBB@

1
q+

. . . 1
q+

...
...

1
q+

. . . 1
q+

1
. . .

1

1
CCCCCCCCCA

To simplify the notations, we suppose that the q+ first values of yt
are positives, and the q− next values of yt are negatives)

It is also easy to prove the sdp property of KT , as soon as Kt

is sdp, using the definition: M is sdp ⇐⇒ ∀x ∈ RN , x′Mx ≥
0.

We then propose to merge knowledge in Kt and yt using the
following operator:

Kyt = a× (TKtT
′ + bKut) (2)

with b ∈ R+ such as diagonals of TKtT
′ + bKut are 1, and

a ∈ R+ such as
P
ij(Kij)t+1 =

P
ij(Kij)t.

From eq. (1) and (2), the final expression of the kernel updat-
ing is the following one:

Kt+1 = (1− ρ)Kt + ρa(TKtT
′ + bKut) (3)

3.3. Semantic kernel computation

We use a low-rank approximation of the matrix Kt, in order to
have a storage linear to the size of the database. As the kernel
matrix is real and symmetric, we are able to compute its eigende-
composition. The approximation consists in keeping the m largest
eigenvalues. Thus, assuming that m � N , the storage of Kt is
O(N).

We use a factorization technique for the computation of the
eigenspectrum ofKt+1. The factorization is followed by a QR de-
composition and the computation of the eigenspectrum of a very
small matrix (in comparison toN ). This method has aO(N) com-
plexity.

2In a multiple category context, negative labeled images are usually not
is the same category. Thus in this case a small value (0.1) of γ is preferable.



4. EXPERIMENTS

4.1. Protocol and parameters

Tests are carried out on the generalist COREL photo database,
which contains more than 50, 000 pictures. To get tractable com-
putation for the statistical evaluation, we randomly selected 77 of
the COREL folders, to obtain a database of 6, 000 images. To per-
form interesting evaluation, we built from this database 11 cate-
gories 3 of different sizes and complexities like birds (219), castles
(191), doors (199), Europe (627) , food (315), mountains (265) ...

The CBIR system performances are measured using preci-
sion(P), recall(R) and statistics computed on P and R for each cate-
gory. We use the mean average precision (MAP) which represents
the value of the P/R integral function. This metric is used in the
TREC VIDEO conference4, and gives a global evaluation of the
system (over all the (P,R) values).

The semantic kernel matrix is initialized with the L∗a∗b∗ and
Gabor features: Kt=0 = X ′X , with X = (xi)i∈[1,N ] the p ×N
distribution matrix, for which each column xi is a vector represen-
tation of the ith picture of the database.

In experiments, we consider 3 active learning strategies: a ba-
sic active learner Basic AL, which chooses the best ranked unla-
beled pictures, RETIN AL [5], and SVMactive [4]. For each active
learner, 5,000 retrieval sessions are simulated: one category is ran-
domly selected, the search starts with one random picture from
this category, 5 pictures selected by the active learner are auto-
matically labeled, and this process is repeated during 10 feedback
steps. At the end of such a retrieval session, the semantic kernel
is updated using the semantic learning method with the 50 labels.
Every 1,000 retrieval sessions, the semantic kernel Kt is stored.

In simulation, we have 6 kernels for each active learning
method: K0, K1000, ..., K5000. For each kernel, system perfor-
mances are evaluated with the mean average precision for each
category. Finally, mean, minimum and maximum MAP for all cat-
egories are computed. Results are displayed in Fig. 2, 3 and 4.
The ρ parameter. The method has been evaluated with ρ values
0.01, 0.05, 0.1, 0.5 and 1. As a rule, when ρ increases, the system
learns faster. However, over 0.5 the learning becomes unstable:
the MAP may increase a lot for some categories, whereas it de-
creases for other ones.
The γ parameter. The method has been evaluated with γ values
0.01, 0.05, 0.1, 0.5 and 1. The system has the best learning perfor-
mances when γ = 0.1. Below this value, the system learns slowly,
and above learning is inefficient: with a value of 1, the MAP is
decreased.
The number m of non-zero eigenvalues. The method has been
evaluated with m values 10, 25, 50, 100 and 200. Globally, the
higher it is, the best performances are. However, starting from a
given value (here 50), performances do not increase a lot. Fur-
thermore, it seems that the number of eigenvalues is mainly linked
to the number of categories users are looking for, not the number
of images in database. We experimented the system with 5 cate-
gories, and in this case 25 eigenvalues were enough.

In the following experiments, ρ = 0.1, γ = 0.1, and m = 50.

3A description of this database and the 11 categories can be found at:
http://www-etis.ensea.fr/∼cord/data/mcorel.tar.gz. This archive contains
lists of image file names for all the categories.

4http://www-nlpir.nist.gov/projects/trecvid/

4.2. Results

First, one can notice that the initial system performances are very
category dependent. At t = 0, before any semantic learning, the
minimum performances are from 5% to 13% (cf. Fig. 2), while
the maximum performances are from 52% to 64% (cf. Fig. 4).
This can be explained by the capabilities of the low-level features
to represent well the categories. For instance, birds images have
very few common colors and textures, while doors images have
many common features (horizontal and vertical textures). Let us
also note that the performance scores we obtain are rather good
when the MAP statistic is used.

For all active learners, mean performances increase (cf.
Fig. 3), but in very different way. This is explained by the be-
havior of the active learner. As kernel is updated according to the
labels at the end of a retrieval process, and these labels depend on
the active learner, then the kernel updating also depends on the ac-
tive learner. For the basic active learner, the curve increases much
more after the first sessions than after the last ones. This is cer-
tainly because this active method always gives labels in a small
part of the space. This allows local semantic clustering, but never
gather sparse categories. In the case of the SVMactive learner,
which chooses unlabeled pictures closest to the SVM margin, the
improvement is small. This can be explain by the fact that these
active method provide a lot of negative labeled pictures during the
first relevance feedback steps, and the semantic learning method
is not efficient in such a case. In the case of RETIN AL method,
which chooses unlabeled pictures such as training set is balanced,
the improvement is significant. Configurations with approximately
the same number of positive and negative labels are particularly ef-
ficient for the proposed semantic learner.

These results show that the active learning method has a great
importance in a semantic learning context. At the end of these
experiments (t = 5000), the difference between the best and the
worst mean performance is 44% (cf. Fig. 3). More than improving
performances during a single retrieval session, the choice of the
active learner has a great influence on the overall results after the
semantic learning.

5. CONCLUSION

In this paper, we introduced a semantic learning method RETIN
SL to manage the labels provided by users during CBIR experi-
ments. Our approach is based on a kernel matrix in a statistical
learning framework. The kernel matrix is updated according to
labels provided by users at the end of their retrieval sessions. We
introduced two types of receivable algebraic transformations to en-
sure that the matrix keeps the nice kernel properties. Our technique
is designed to model mixed categories and to learn any kind of se-
mantic links.

To handle huge databases, we also proposed a low-rank ap-
proximation of the full matrix using a specific factorization and
QR decomposition scheme; that enables us to get a complexity
linear to the size of the database.

Experiments on a large generalist database show the efficiency
of the RETIN SL method with three different active learners. Per-
formances are always improved. These experiments also show the
importance of the active learner in the semantic learning context.

We are currently focusing on the building of a complete learn-
ing scheme for image retrieval, including local (active learning)
and global (semantic learning) aspects.
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Fig. 1. Precision/Recall curve for the ’savana’ category, after 5,000
retrieval sessions.
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Fig. 2. Min performance for each active learner.
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Fig. 3. Mean performance for each active learner.
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Fig. 4. Max performance for each active learner.


