
3-WAY-TREES: A SIMILARITY SEARCH METHOD FOR HIGH-DIMENSIONAL
DESCRIPTOR MATCHING

Eduardo Valle1, Matthieu Cord2, Sylvie Philipp-Foliguet1

Équipes Traitement des Images et du Signal — ETIS UMR CNRS 80511

Laboratoire d’Informatique de Paris 6 — Université Pierre et Marie Curie2

valle@ensea.fr, matthieu.cord@lip6.fr, philipp@ensea.fr

ABSTRACT

In this paper we look into the problem of high-dimensional
local descriptor matching for image identification on cultural
databases, presenting an important improvement over a
classic method, the KD-Tree. Our method, the 3-Way Tree,
uses redundant, overlapping subtrees, in order to avoid the
boundary effects that disrupt the KD-Tree in higher
dimensionalities, achieving more precision for the same
querying times.

Index Terms — local descriptors, image identification,
nearest neighbor search, kd-tree, descriptor matching

1. INTRODUCTION

Institutions possessing large image databases, such as
museums, archives, and news agencies, often face the
separation of an image from its metadata: the title, authors,
description and other information are missing. This arises
when source references are absent or irregular. Since the
meaning of a document depends on its context, the lack of
metadata reduces its usefulness. The institutions are asked to
retrieve all information about a document, relying only on
visual information.

A related problem is the detection of copyright
infringements. In this context, the users believe that a
database contain images of their possession. They want to
confront this suspicious dataset against their own image set
and find all intersections.

Both problems are further complicated because the query
images may have been distorted from the originals by
translations, rotations, scale changes, changes in brightness
and contrast, occlusions, etc.

Some image retrieval methods are also adequate for
image identification. Local descriptors-based methods, in
special, have been shown to be of great value, due to their
strong robustness to occlusions, cropping and geometric
distortions. [3][6][8] Instead of creating a single descriptor
per image, those methods will identify a large number of
PoI (Points of Interest), and compute a local descriptor
around each one of those points.

In order to perform the identification, first, in an offline
phase, which is done only once, the image set is prepared:
each image has its PoI detected and described, and the
descriptors are indexed in a large database in order to
facilitate the matching. Then, in the online phase, the PoI of
the query image are detected and described, and each
descriptor is matched with the descriptors in the database.
Each matched descriptor votes to the image to which it
belongs.

This method is robust, because the descriptors are many.
Even if some descriptors are matched incorrectly, giving
votes for the wrong images, only a correctly identified
image will receive a significant amount of votes.

Unfortunately, the multiplicity of descriptors brings also
a performance penalty, since hundreds, even thousands of
matches must be found in order to identify a single image.
The matter is made worse by the high dimensionality of the
descriptors, which makes each match operation very
expensive.

In this paper we will devise a method that will allow us
to match the descriptors efficiently, in order to benefit from
the local descriptors advantages, without the performance
drawbacks. In section 2 we will explain how the descriptor
matching is performed, and why the dimensionality of the
descriptors disrupts the process. In section 3 we will briefly
explain the importance of reducing the number of random
accesses to the disk. In section 4 we will introduce our
method, the 3-Way Tree and explain how the overlapping
subtrees minimize the damaging effects of the growing
dimensionality. In section 5 we explain how we set up the
experiments to compare our method to the classic KD-Tree,
and in sections 6 and 7 we present our results and
conclusions.

2. THE KD-TREE AND THE KNN SEARCH

The matching of the descriptors is performed by an
operation known as k nearest neighbors search or kNN
search, which consists in finding the k elements which are
the most similar to a given query descriptor.

An obvious solution is the sequential search, where each
element of the base is compared to the query, and the k
most similar are kept. However, this brute-force solution is
acceptable only for small bases, being unfeasible in our

context. A better solution is to prearrange the data in an
index, in order to accelerate the search.

The K D - T r e e is a classic data structure for
multidimensional indexing. Basically, it is a binary search
tree where each node of the tree splits the search space along
a given dimension. The subtrees are thus implicitly
associated to regions of the descriptors space. The leaves of
the tree are called buckets, and contain a certain number of
descriptors, which is decided a priori.

For reasons of space, we can not give an account of this
structure. Fortunately, the literature is overabundant on this
subject. The reader is invited to refer to the original article
on [4], and the excellent tutorial on [1], which is available
on the World Wide Web.

Unfortunately, the KD-Tree, like most kNN search
methods, fails on high dimensional spaces. While the search
time can be made to grow only logarithmically to the size of
the base, it will grow exponentially to the dimensionality of
the elements. For small dimensionality (between 2 and 12),
it will perform efficiently enough to allow an exact or near-
exact solution in reasonable time.

For higher dimensionalities, the KD-Tree can be adapted
to give approximate results using a technique named Best-
Bin-First [5] or Priority KD-Tree Search [7], but for very
high dimensionalities (more than 30) the trade-off between
precision and efficiency will become progressively more
severe.

One of the worst problems for KD-Trees on higher
dimensions is the aggravation of boundary effects. The
probability that the query will fall near to at least one edge
of the region associated to the leaf approaches 1 as the
dimensionality increases, forcing the KD-Tree to explore
many regions in order to find a good set of approximate
neighbors.

3. INDEXES AND DISK ACCESS

Practical implementations of the naïve algorithm are
surprisingly difficult to beat, mainly because of its
sequentiality. Once the database becomes too big to fit the
primary memory, one faces the limitations of disk access,
where sequential access is up to 10 times more efficient than
random access, because of the high costs involved in
relocating the read/write magnetic heads.

Every time the KD-Tree accesses a bucket (which are
stored in the disk), it must make a random access. Because
the order in which the buckets are accessed is essentially
unpredictable, there is no way to optimize the disk access.
Because of the boundary effects, many buckets may need to
be visited, resulting in severe disk access costs.

4. THE 3-WAY TREES

In order to avoid boundary effects, it would be desirable to
choose a region where the query would be the most
centralized possible. However, because the regions are built
in the offline phase, for some queries it will be impossible

to find a region where the query will be centralized. In fact,
because of the aggravation of boundary effects on higher
dimensionalities, it is almost certain that the query will fall
near to the boundaries of at least one of the dimensions of
the region.

Customizing the partitioning for each query would be the
ideal solution, but of course, its cost prevents it from being
of practical consideration. The next best solution is
providing some redundancy in the partitioning scheme, in
the form of overlapping regions. In that way, the most
adequate region can be selected, accordingly to the current
query. This is the idea behind the 3-Way Trees.

The 3-Way Trees are, essentially, ternary trees, where the
left and right subtrees are equivalent to the ones of a KD-
Tree. The middle subtree, however, is overlapping. It adds
redundancy to the tree, containing the same points as half
each other subtrees. [Figure 1]

To build a 3-Way Tree, the following algorithm is used:
1. The dimension with maximum interquartile range

is determined. This dimension is chosen as the
splitting dimension;

2. The median element is chosen as the pivot for the
partitioning, left and right subtrees are thus
balanced;

3. All elements smaller or equal than the pivot on the
splitting dimension are put in the left subtree;

4. All elements greater than the pivot on the splitting
dimension are put in the right subtree;

5 . All elements greater than the first quartile and
smaller or equal than the third quartile are put in the
middle subtree;

6. The three subtrees are built recursively from the step
1;

7. The recursion stops once the number of elements is
small enough to fit in a bucket. A leaf is then created
with all remaining elements.

Root

Left Middle RightLeft Middle Right

Mid.Top Mid.Center Mid.Bottom(a, b,
c, d,
e, f,
g, h) c, d,

e, i
c, e,
g, k

g, k,
m, n

b

a
c

d

e

f g

h

k

l

m

n

o

i j

(i, j,
k, l,

m, n,
o, p)

... ...

p

Figure 1. A 3-Way Tree and its associated space.
For clarity, only the middle branch is developed.

Using the interquartile range as the criterion of spread in
the 3-Way Trees is very important, since the sensitivity to
outliers of other criterions (like the range, which simply
takes the maximum and minimum values) may spoil the
results. In fact, as we are going to see, even the simple KD-
Tree show benefits from using the interquartile range.

The redundancy added by the 3-Way Trees is exploited in
the search operation in the following manner:

1. The subtree to explore is determined, by choosing
the associated region where the query falls the most
centralized;

2. If the chosen node is not a bucket, recurse to step 1;
3. Otherwise, explore sequentially all the points on the

bucket, choosing the k nearest neighbors.
The greatest advantage of the 3-way Tree is that it keeps

the query roughly centralized all the way down the search
tree, avoiding the problems brought by boundary effects. In
that way, only one leaf must be explored. Even for huge
databases, all non-leaf nodes may be made to fit on primary
memory. Therefore, only one random access must be made
to the disk, resulting in savings in performance.

The 3-way Tree exchanges the disk space occupied by the
overlapping nodes for the increased performance. The offline
processing time is proportional to the redundancy, due to
the need of propagating the elements from level to level in
the tree.

 The amount of disk space needed to store the leaves of
the 3-way Trees is proportional to:

() 1
2
3 −HN Eq. 1.

where N is the number of descriptors in the database and
H is the height of the tree.

5. EXPERIMENTAL SETUP

5.1. Database: images and descriptors

To compare the methods, we used a database consisting of
15 transformations over 100 original images, summing up
to 1,500 images. Each image had its PoI detected and
described using SIFT, a very robust method, but one which
uses descriptors of 128 dimensions — a very high
dimensionality [2]. The final base contained almost two
million nine hundred thousand descriptors. The database
contained photos from the XIX and early XX centuries.
The transformations were three rotations, four scale changes,
two shearings, four changes in the gamma curve and two
smoothings (3_3 and 5_5 grids). [Figure 3]

We’ve chosen those transformations because they distort
to some extent the value of the descriptors, making the
descriptor matching meaningful. Croppings and occlusions,
even if they are very important, make some points disappear
altogether, while letting others pass with their exact values
unchanged. Likewise, brightness and contrast changes are
invariant under SIFT, so we opted for gamma changes
instead.

5.2. Compared methods

We compared the 3-Way Trees with two versions of the KD-
Tree, using different criterions of spread of the data: the
range and the interquartile range. We wanted to isolate
which gains were due to the use of the interquartile range
and which were due to the redundant segments.

In all methods, just the first bucket was explored. This
was in order to put all methods in the same restriction that

only one random access to the disk was allowed, and keep
execution times the same.

We set the maximum bucket sizes to 1024, 2048, 4096,
8192 and 16384 descriptors. The actual bucket size varies,
and was indicated in the horizontal axis of the graphs.

For the sake of comparison, we also run the KD-Tree in a
more conventional scenario, allowing it to make 16 random
accesses to the disk, using buckets of 1024 descriptors. This
would take more than 10 times the execution time than the
other methods, but it is instructive about how much one
would gain in precision.

Original: Rotation: Shearing:

Scale: Smoothing: Gamma:

Figure 2. Original image and some transformations.

5.3. Measurements and ground truth

Each one of the 100 original images had its descriptors
computed, resulting in 263,968 query descriptors. The
experiment consisted in finding the 20 nearest neighbors of
each one of those descriptors using each method.

The answers were compared with a ground truth which
was computed using the sequential search. Two
measurements were taken:

♣ The percentage of queries were the f irst nearest
neighbor was correct;

♣ The average number of nearest neighbors among the
20 that were correct.

6. RESULTS

We compiled the results of the experiments in the three
graphs of [Figure 3]Erreur ! Source du renvoi introuvable..
An important parameter in both methods is the maximum
allowed bucket size. The actual size of the buckets may
vary, and is indicated in the horizontal axis. The size of the
bucket corresponds to the number of descriptors examined.

Correct first neighbour found

99,2% 99,6%

86,0%

91,2%

78,8%

85,6%

70%

80%

90%

100%

0 2000 4000 6000 8000 10000 12000

Size of bucket = Comparisons made

P
e

rc
e

n
ta

g
e

3-Way

KD Interquartile

KD Range

Average number of correct neighbors found (of 20)

9,8

12,7

5,1

7,2

6,5

9,6

0

2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000 12000

Size of bucket = Comparisons made

N
u

m
b

er
 o

f
co

rr
ec

t
n

ei
g

h
b

o
rs

3-Way

KD Range

KD Interquartile

Figure 3. The results of the experiments.

The worst case of the 3-Way Tree performed better than
the best case of the KD-Tree. The performance of all
methods grows with the size of the bucket, which is not
surprising, since more descriptors get to be examined.

Besides the results we show on the graphs, we executed a
run of the KD-Tree examining 16 buckets of a maximum of
1024 descriptors (actual size of 701 descriptors). It gave
99.8% correct first neighbors found and an average of 14.3
correct neighbors found. Being more than 10 times slower,
the gains brought by a KD-Tree in a conventional scenario
do not compensate the drawbacks.

7. CONCLUSIONS

We have added redundancy to the KD-Tree in order to boost
its efficiency on disk storage while keeping a very good
precision. Using redundant regions, we avoided the
boundary effects that plague the KD-Tree, keeping the
queries roughly centralized all the way down the tree. We
trade off the storage space of the overlapping regions for the
gains in precision.

Using our scheme, one can benefit from the precision
brought by the use of local descriptors, while minimizing
its performance drawbacks.

The use of the 3-Way Trees allows us to do image
identification in large cultural databases, using local
descriptors, providing, at the same time, precision and
timeliness.

8. ACKNOWLEDGEMENTS

Eduardo Valle is sponsored by a CAPES scholarship
through the CAPES/COFECUB program. The photography
database was kindly provided by the Arquivo Público
Mineiro, the state archive of Minas Gerais, Brazil.

9. REFERENCES

[1] A. W. Moore. “An introductory tutorial on kd-trees,” extract
from Efficient Memory-based Learning for Robot Control,
Technical Report No. 209. Computer Laboratory,
University of Cambridge, 1991.

[2] D. Lowe, “Distinctive Image Features from Scale-Invariant
Keypoints,” in International Journal of Computer Vision,
Vol. 60, N. 2, pp. 91–110, 2004.

[3] E. Valle, M. Cord and S. Phillip-Foliguet, “Content-Based
Retrieval of Images for Cultural Institutions Using Local
Descriptors,” in Geometric Modeling and Imaging — New
Trends (GMAI'06), 2006.

[4] J. H. Friedman, J. L. Bentley and R. A. Finkel, “An
Algorithm for Finding Best Matches in Logarithmic
Expected Time,” in ACM Transactions on Mathematical
Software, Vol. 3, N. 3, pp. 209–226, 1977.

[5] J. S. Beis and D. Lowe, “Shape Indexing Using Approximate
Nearest-Neighbour Search in High-Dimensional Spaces,” in
Proceedings of the 1997 Conference on Computer Vision
and Pattern Recognition (CVPR '97), p.1000, June, 1997.

[6] L. Amsaleg , P. Gros , S-A. Berrani, “Robust Object
Recognition,” in Images and the Related Database
Problems, Multimedia Tools and Applications, v. 23 n. 3, p.
221–235, August 2004

[7] S. Arya. “Nearest neighbor searching and applications,”
Technical Report CAR-TR-777, Center for Automation
Research, University of Maryland, June 1995.

[8] Y. Maret, S. Nikolopoulos, F. Dufaux, et al. “A Novel
Replica Detection System Using Binary Classifiers, R-
Trees, and PCA,” in International Conference on Image
Processing, Parallel Computing in Electrical Engineering.
IEEE, 2006.

