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ABSTRACT

In this work we introduced SnooperTrack, an algorithm for the auto-
matic detection and tracking of text objects — such as store names,
traffic signs, license plates, and advertisements — in videos of out-
door scenes. The purpose is to improve the performances of text
detection process in still images by taking advantage of the tem-
poral coherence in videos. We first propose an efficient tracking
algorithm using particle filtering framework with original region de-
scriptors. The second contribution is our strategy to merge tracked
regions and new detections. We also propose an improved version
of our previously published text detection algorithm in still images.
Tests indicate that SnooperTrack is fast, robust, enable false positive
suppression, and achieved great performances in complex videos of
outdoor scenes.

Index Terms— text detection, text tracking, particle filtering.

1. INTRODUCTION

Automatic information extraction is a topic of great interest to sys-
tems as Google Street View 1 and iTowns 2 that generates a huge
amount of images. Recently, a lot of advances in text detection al-
gorithms to outdoor images have been described [1, 2, 3]. However,
many data sources are digital videos, and in such case the texts tra-
jectories along the video can be more useful to decrease the number
of annotations (e.g. one text entry per trajectory instead one per
frame) and to be used as input in super-resolution OCRs.

The purpose of this work is to improve the performances of
still image text detection algorithms for videos. This problem has
many applications such as intelligent GPS-based navigation aids, au-
tomatic indexing of video libraries, etc.

For text detection in still images, two general approaches for text
detection have been proposed: bottom-up, consisting of a character
identification step followed by grouping of adjacent characters into
texts regions as Hinnerk Becker [2]; and top-down, consisting of a
search for regions with text-like appearance, followed by segmenta-
tion of those regions into characters as Chen et al [2]. Some recent
approaches [4, 5] try to combine the advantages of bottom-up and
top-down approaches as our method SnooperText [6].

For text tracking algorithms, a survey has been proposed by Junt
et al. [1]. However, most of these algorithms are designed to specific
purposes in well controlled environments, e.g. detecting and track-
ing text information artificially inserted as subtitles in news, clips
and movies. Gllavata et al. [7] and Qian et al. [8] described text
tracking algorithms that use the block motion information of MPEG
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video to match text regions detected in successive frames. In 2010,
Na and Wen [9] proposed a text tracking algorithm that uses SIFT
features to identify matching text regions. Their algorithm may be
considerably expensive since it allows Euclidean deformations (in-
cluding rotation, translation, and scaling).

In this work, we describe an algorithm called SnooperTrack, for
automatic detection and tracking of text objects in videos of outdoor
scenes. In such videos, many different text regions such as store and
street names, traffic signs, advertisements, etc, may be visible. Then,
the main challenge faced in this work is the definition of reliable
text trajectories to such text objects, considering that detection and
tracking algorithms are prone to several failures. Common failures
modes of text detection algorithms include: false negative (failure
to detect a text object that is legible in the frame); false positive
(mistaking a non-text region for a text one); splitting of a single text
region into several boxes; joining of distinct text regions into a single
box. Tracking algorithms often have drift and jitter (cumulative and
random errors in the size and position of the tracked bounding boxes)
and feature lost.

The novel approach combines detection and tracking strengths.
The main contributions of this paper are: (1) an algorithm to effi-
ciently determine the trajectories of text regions across successive
video frames by a particle filter (specifically designed for text track-
ing purposes); (2) a method to merge the detected text regions (found
by our SnooperText algorithm for text detection in still image) with
those previously tracked; (3) a improved text validation process of
SnooperText by using descriptors based on histogram of gradients.

Tests are reported on a dataset of outdoor videos (groundtruth
XML files publicly available) to validate the SnooperTrack strategy.

2. STATEMENT OF THE PROBLEM

A text object is any string of two or more letters printed or engraved
on a physical object that are easily recognizable and readable in the
video. We are primarily concerned with texts written horizontally in
the Roman alphabet or any of its variants, in plain print-style (rather
than cursive or ornate) fonts.

Fig. 1. The expected output of a text detection algorithm.

By text detection we mean identifying the approximate loca-
tion and extent of text regions, the visible projection of text objects,



in each video frame. In our algorithm, each text region is repre-
sented by a rectangular box rj

i enclosing the jth text image detected
in frame i. See figure 1. By text tracking we mean identifying
which detected text regions in successive frames are images of the
same physical text object. We represent this information as a list
π1, π2, . . . , πm where each πi is a relation between the text rectan-
gles detected in frame i − 1 and those detected in frame i. Specifi-
cally, a pair (rk

i−1,rj
i ) is in the relation πi iff the rectangles rk

i−1 and
rj

i are believed to belong to the same physical text object. These re-
lations partition the set of all detected text regions in all frames into
one or more connected subsets, that define the presumed trajectories
of physical text objects along the video.

3. SNOOPERTRACK

Our algorithm for text-detection and tracking, which we call Snoop-
erTrack, is outlined as Algorithm 1 below.

Algorithm 1 SNOOPERTRACK (n,V,K)

1. T0← TEXTDETECT (V0);
2. For each i ∈ {1, . . . , n− 1} do
3. E ← ∅; φ← ∅;
4. For each r ∈ Ti−1

5. v ← TRACK (r,Vi−1,Vi);
6. If v 6= ∅ then
7. E ← E ∪ {v};
8. φ← φ ∪ {(r, v)};
9.

10. If i ∈ K
11. D← TEXTDETECT (Vi);
12. (Ti, πi)← MERGE (D,E, φ,Vi);
13. else
14. (Ti, πi)← (E, φ);
15.
16. Return T, π.

The Algorithm 1 operates on a video V with n frames
V0,V1, . . . ,Vn−1. Since text detection algorithms are computa-
tionally expensive, we apply them (in steps 1 and 11) only to se-
lected subset of key frames of the input video, specified by a given
set K ⊆ {0, . . . , n − 1} of frame indices that includes 0. The de-
tection strategy chosen in this paper is detailed in section 3.1. In
addition, for every frame Vi except V0, we use a track procedure (in
step 5) (designed specifically to text) to generate tentative regions in
frame Vi for the text objects that were determined in frame Vi−1.
The way that text regions are tracked is detailled in section 3.2. In
step 12, the tracked regions and the regions found by the text de-
tector are merged and pruned to obtain the regions of frame Vi (see
section 3.3). As part of this merge, we compute the tracking relation
πi that associates regions in frame Vi−1 and Vi. The output of the
algorithm are the text regions rj

i , and the inferred tracking relations
πi with i = 1, . . . , n− 1.

3.1. Text Detection

The TEXTDETECT procedure used in steps 1 and 11 is based on
the SnooperText algorithm described in 2010 by Minetto et. al. [6].
SnooperText includes a bottom-up hypothesis generation phase that
uses an image segmentation step dedicated to identify candidate
character regions. These regions are then grouped into candidate
text regions using geometric criteria such as alignment and size sim-
ilarity. The algorithm is applied at multiple image scales in order
to deal with extreme situations encountered in urban context: huge
character size variations, background clutter, etc. This bottom-up

step is followed by a hypothesis validation phase that analyzes the
merged characters globally to verify that the formed text candidates
are indeed “text-like”.

Improvement of the text validation step

To characterize a text region r in a image I, we use a texture de-
scriptor based on the histogram of oriented gradients [10] denoted
by HOG(e, I), that captures the distribution of local intensity gra-
dients directions (or edge directions) in the region. Complex ob-
jects typically have different HOGs in different parts (e.g. humans
with different gradient orientation distributions in the head, torso and
leg regions). Therefore, in many applications, the candidate region
is partitioned into an array of N × M cells, and a HOG is com-
puted separately for each cell and normalized to unit sum. This stan-
dard HOG tiling has been directly applied in the original Snooper-
Text algorithm [6]. However, we propose here to adopt a different
tiling that is more adapted to text regions. As observed by Chen
and Yuille [11], the top, middle and bottom parts of Roman text re-
gions have distinctive distributions of edge directions. Therefore,
we choose here to split the text region into those three regions and
compute a separate 18-bin HOG for each one. The concatenation of
those three HOGs is taken to be the descriptor of the full region.

For text validation, we trained a SVM classifier with the HOG
descriptors extracted from negative and positive text samples. The
SVM classifier uses a Gaussian chi2 kernel, with cross-validation
to optimize its standard deviation parameter. This classifier, whose
output we will denote by C(r, I), is used in the text detection (hy-
pothesis validation) and in the procedure TRACK (see section 3.2).

3.2. Tracking

In the proposed approach, the goal of the tracking step is two-fold.
First, it is dedicated to improve the detection accuracy by taking

advantage of the temporal coherence. The TRACK routine takes a
text region r previously determined in a frame I, and estimates its
position v in the subsequent frame J. This procedure is achieved
using a particle filter (PF) approach [12, 13] that proves to be ef-
ficient and robust to background clutter. Thus, each text box rj

i is
represented by the following state vector (x, y, w, h), where x, y are
the coordinates of the top left corner in frame i, and w, h are its di-
mensions. We use a simple first order motion model to propagate the
random regions (‘particles’), that are further re-sampled by bayesian
bootstrap or Importance Sampling. Let us consider two regions e in
I and d in J, the observation model is defined by the Battacharyya’s
similarity coefficient of the respective histograms of oriented gradi-
ents descriptors:

dist(e, I, d, J) =

 
1−

nX
i=1

q
h(i) ĥ(i)

!1/2

(1)

where h = HOG(e, I), ĥ = HOG(d, J) and n is the number of
bins in the histogram.

Another requirement of the tracking procedure is the ability to
reject regions that have been wrongly identified as text by the de-
tection step. For that purpose, we propose to build and update a
spatiotemporal descriptor for each tracked region. Therefore, once
the most similar candidate v has been selected, its score s is set to
a measure of how “text like” it is. This measure is an affine combi-
nation of the score of r (previously computed) and the output of the
text classifier over v and is given by the formula

sv = (1− ρ)sr + ρC(v, J) (2)



where the text classification weight C is computed as described in
section 3.1. The parameter ρ was set as 0.4 to take into account the
confidence of the past iterations.

3.3. Merging

The Merge routine aims at combining detection and tracking outputs.
It looks for an optimal partial matching between two lists D,E of
text regions found by the text detector and track procedures and a
partial function φ that maps regions E−1 in the previous frames to
the corresponding regions inE. It outputs a subset T ofD∪E which
are presumed to be an optimal set of pairwise disjoint regions; and a
tracking relation π that pairs the regions of E−1 with the regions in
T . The strategy is detailed in Algorithm 2.

Algorithm 2 MERGE (D,E, φ, I)
1. T ← ∅; π ← ∅;
2. For each e ∈ E
3. For each d ∈ D
4. Pe,d ← prob(e, d, I);
5.
6. α← HUNGARIANALGORITHM (p);
7. For each e ∈ E
8. If there is pair (e, d) ∈ α
9. se ← 1;

10. If se > 0
11. T ← T ∪ {e}; π ← π ∪ {(φ−1(e), e)};
12. For each d ∈ D
13. If there is no pair (e, d) ∈ α
14. sd ← 1; T ← T ∪ {d};
15.
16.
17. Return T, π;

The decision of whether a region t in the set D ∪ E in
frame i comes from the same text object as the region d in
frame i − 1 should take into account the geometry of the two
regions and their contents. We assume that, if the regions be-
long to the same text object, the differences in position and size
have a two dimensional normal distributions with zero mean.

That is: ppos(e, d) = 1

2πσ2 exp(− (xe − xd)2 + (ye − yd)2

2σ2 )

and psize(e, d) = 1

2πζ2 exp(− (we − wd)2 + (he − hd)2

2ζ2 ). To

measure the appearance similarity we use the dissimilarity cri-
teria described in equation 1 and we assume that the squared
distance between two histograms has an exponential distribution:

papp(e, d, I) = exp(−dist(e, I, d, I)2

2ξ2
). The final probability

prob(e, d, I) (step 4) is the product of three probabilities:

prob(e, d, I) = ppos(e, d) · psize(e, d) · papp(e, d, I) (3)

The matching is performed by the Hungarian Algorithm, Step 6,
which takes a matrix Pe,d, which tells the probabilities that region e
is the same as region d; and returns the optimal assignment of row
elements (regions of E) to column elements (regions of D) as a list
of pairs α. Only the assignments with probabilities above a thresh-
old λ (λ > 0.05) are considered (this is to avoid situations where
candidates position and size could be similar but the appearance no
or vice-versa, e.g. video cuts).

In step 11 the procedure selects only those tracked text regions
that were matched or have a positive score (step 10). However, as
the text regions e and d may differ by some pixels, a fusion be-
tween their coordinates may be performed in step 11. Moreover, if

the set D has text joining, they should be broken into separate text
regions according to some heuristic, e.g. as the one described by
Epshtein [3]. The remaining tracked regions not matched (or not
text-like) are discarded. In steps 13–14 those detected text regions
(which do not match tracked regions) are added to T .

4. EXPERIMENTS

4.1. Videos, Evaluation and Settings

We evaluated SnooperTrack on 5 real videos with frame size of
640 × 480 pixels. Some videos have several text regions, some-
times affected by natural noise, distortion, blurring, hard illumina-
tion changes and occlusion. They are listed in table 1 and publicly
available, with XML groundtruth files, in our web site 3. To evaluate
the algorithms performances we used the well-known metrics preci-
sion p, recall r and f error defined according Lucas in [2]. The final
performances were obtained by averaging the precision, recall and
f error over all the frames. The parameters used in this work, fixed
to all videos, were: PF with 200 particles, with deviations σ = 16,
ζ = 1 and ξ = 20 (equations ppos, psize and papp); text detection
with a step of 20 frames.

4.2. Results and Discussion

In this section we compare the results of an approach based on
purely text detections performed by the SnooperText called here
SnooperText∗ (it can solve the same problem as SnooperTrack if we
match it outputs with the merge routine) against SnooperTrack.

Comparing tables 1 and 2 we can see that SnooperTrack with
HOG histogram is better than SnooperText∗ in 4 videos. The worst
result of SnooperTrack, in video v3, was due to the fast camera
changes which caused sudden text regions appearance and disap-
pearance (some get occluded even before they were detected).

Fig. 2. Top: output of the SnooperText detector to three different
frames, showing failures due to illumination changes; Bottom: out-
put of SnooperTrack on the same frames.

The poorly detection results of SnooperText∗ to the video v5
was due to the hard solar reflections. See figure 2 (top). On the other
hand, SnooperTrack successfully tracked the text in this extreme sit-
uation. See figure 2 (bottom). This is because our text validation
step, even in the absence of newly detections, was robust enough to
verify that the region being tracked was indeed text-like, and thus
kept it weight positive along the execution. This reflects the good
precision in table 2 (HOG histogram). Moreover, lots of detected
false positives, in all videos, were successfully eliminated by our
text validation step during the tracking. See figure 4. Thus, it was
essential to SnooperTrack be the best in recall to all videos.

We also compared our HOG descriptor against an HSV color
histogram (often used in particle filters) with 110 bins as used by
Okuma [14]. As shown in table 2, HSV histogram is not so good as
HOG descriptor to text tracking. The main sources of problems in

3Video dataset: www.liv.ic.unicamp.br/∼minetto/datasets/text/VIDEOS/



SnooperText
Video #XMLs #Text Objs. p r f

v1 800 2 0.58 0.73 0.62
v2 1089 2 0.59 0.69 0.62
v3 206 18 0.72 0.53 0.59
v4 400 3 0.61 0.51 0.54
v5 1250 1 0.37 0.42 0.38

Table 1. SnooperText [6] detection performance.

HSV histograms to text tracking (unlikely to occur with HOG) are:
tracking confusion, ease of nearby text regions have the same color
histogram; location instability, shifts inside the same text region may
lead to the same histogram causing tracking jitter. See figure 3.

Fig. 3. SnooperTrack results in a frame of video v4 using HSV his-
togram (left) and with HOG descriptor (right).

SnooperTrack
HSV histogram HOG histogram

Video p r f t(s) p r f t(s)
v1 0.62 0.52 0.53 0.11 0.55 0.80 0.63 0.19
v2 0.55 0.65 0.59 0.38 0.57 0.74 0.64 0.45
v3 0.52 0.37 0.43 0.65 0.60 0.53 0.56 0.88
v4 0.41 0.31 0.34 0.08 0.73 0.70 0.71 0.15
v5 0.31 0.32 0.31 0.12 0.60 0.70 0.63 0.55

Table 2. SnooperTrack performance and time execution on a ma-
chine Intel c© Quad Core 2.5GHz, 8GB of RAM, coded in JAVA c©

without optimizations.

Finally, the advantages of SnooperTrack can be summarized in:
time execution, (e.g. text detection is measured in seconds per frame
while the tracking time in milliseconds as listed in table 2); track-
ing consistency and false positives suppression which lead to an in-
creased precision and recall.

5. CONCLUSION

We described an algorithm called SnooperTrack, based on text de-
tection, text validation with histogram of oriented gradients to elimi-
nate false positives and tracking with a particle filter designed to text
tracking purposes, to recover the trajectory of text regions across
successive video frames. Tests indicate that SnooperTrack is faster
and more robust than an approach based on successive text detec-
tions performed by the state of the art SnooperText (a text detector
to static images published in 2010).
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