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Preface

Machine Learning (ML) techniques are used in situations where data is available in electronic format
and ML algorithms can ’add value’ by analysing this data. This is the situation with the processing of
multimedia content. The ’added value’ from ML can take a number of forms:

• by providing insight into the domain from which the data is drawn,

• by improving the performance of another process that is manipulating the data,

• by organising the data in some way or

• by helping to interpret multimedia content to make it more understandable.

This potential for ML to add value in processing of multimedia content has made this one of the most
popular application areas for ML research. Multimedia content has some characteristics that place spe-
cific demands on ML. The data is typically of very high dimension and dimension reduction is often
required. The normal distinction between supervised and unsupervised techniques doesn’t always ap-
ply; it is often the case that only some of the data is labeled or the user may assist in labeling the data
during processing. Typically the ML process is preceded by a feature extraction stage and the success
of the ML stage will often depend on the feature extraction.

This workshop on Machine Learning Techniques for Processing Multimedia Content has been or-
ganized because of these special issues that arise with multimedia data. We have papers describing
applications in image processing, video analysis and music classification. The research described in
these papers has drawn on a wide range of ML techniques. It is hoped that this workshop will help iden-
tify important research directions for Machine Learning that will help in the processing of multimedia
content.

We would like to express our thanks to the Programme Committee for their help in selecting the
papers for presentation at this workshop. Finally, we thank Hendrik Blokeel for his overall organization
of the 2005 ICML workshop series.

June 2005

Matthieu Cord
Pádraig Cunningham

Rozenn Dahyot
Tamás Szirányi
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Abstract

In this paper temporal local tangent space align-
ment is proposed to deal with time-dependent
data, such as video and motion capture data. It
is an extension of local tangent space alignment,
for short, LTSA, from spacial to temporal learn-
ing. LTSA is a nonlinear dimension reduction
method based on Euclidean distance. Temporal
LTSA, however, is dependent on the continuity of
time of input data. Another algorithmic improve-
ment is made upon LTSA for mapping new data
between the low- and high-dimensional spaces,
which makes LTSA suitable in a changing, dy-
namic environment. When temporal LTSA is ap-
plied to time-dependent data, motion of objects
underlying in such data can be carefully analyzed
in a low-dimensional space. Motion decomposi-
tion and synthesis can be further made for real
applications.

1. Introduction

Time-dependent data are those data containing information
about time continuity such as video and motion capture
data. The variation of such data is related with time. The
raw time-dependent data taken with cameras or other cap-
turing devices are in general of very high dimensionality.
In nature, however, only a few degrees of freedom play
an important role in the process of real human or animal
motion. For example, one of most prominent features of

Appearing inProceedings of the workshop Machine Learning
Techniques for Processing Multimedia Content, Bonn, Germany,
2005.

human walking is the periodicity. For the convenience of
studying the periodicity, human motion can be described
using one degree of freedom which cyclically varies with
time. Thus dimension reduction is necessary.

Dimension reduction is a preprocessing step for analysis of
high-dimensional time-dependent data and acts as an im-
portant role to synthesize smoother and more continuous
movement. Traditional methods to perform dimension re-
duction are mainly linear, including principal component
analysis and multidimensional scaling (Duda et al., 2001).

Recently, a conceptually simple yet powerful method
for nonlinear dimension reduction has been proposed in
(Zhang & Zha, 2004): local tangent space alignment
(LTSA). Its basic idea is that the global structure of a
nonlinear manifold can be obtained from the interaction
of overlapping local tangent spaces. LTSA is superior to
another popular nonlinear mapping method, locally linear
embedding (LLE) (Roweis & Saul, 2000) since the LTSA
method is able to discover more useful degrees of freedom
than the LLE method (Li et al., 2005).

Although the authors demonstrate their algorithm on a
number of artificial and realistic data sets, there have as
yet been few reports of application of LTSA. LTSA does
not derive an explicit mapping function between the high-
and low-dimensional spaces, therefore when new data ar-
rive, we have to put all data together and compute again,
i.e., LTSA is stationary with respect to data and lacks gen-
eralization to new data. In this paper, this problem will
be addressed. We propose a simple technique to map new
data in the high- or low-dimensional space to another space,
which makes LTSA suitable in a changing, dynamic envi-
ronment. Besides, temporal LTSA (TLTSA) is specially
proposed for dealing with time-dependent data where the
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Motion Analysis and Synthesis of Time-dependent Data

measure of neighborhood selection is not Euclidean dis-
tance, but time interval.

The remainder of the paper is divided into the following
parts. In section 2 LTSA is briefly introduced and extended
to adapt itself to a dynamic environment. Section 3 presents
the temporal variation of LTSA. Some experimental results
are presented in section 4. Finally, section 5 ends with
some conclusions.

2. Local Tangent Space Alignment

Time-dependant data can be essentially considered as a se-
quence of vectors. For example, a fraction of video is com-
posed of many frames of images considered as points with
coordinate vectors in a high-dimensional image space.

Let us consider a set of input points with coordinate vec-
tors X = {xi}n

i=1 in Rm. Our aim is to obtain a set
of output vectorsY = {yi}n

i=1 in a d-dimensional space
whered < m. In this paper, we use local tangent space
alignment (LTSA) to achieve this goal. It assumes that all
data lie on or close to a nonlinear manifold and the global
geometrical structure of this manifold can be learned by
analyzing its overlapping local geometrical structure. It
treats local tangent space of each point as such geometry
and aligns those tangent spaces between the high- and low-
dimensional spaces. The corresponding low-dimensional
coordinatesY are discovered in the process of alignment.

2.1. Summary of LTSA

In this paper we will not discuss the derivation and proof for
LTSA (For details, please refer to (Zhang & Zha, 2004)).

Next we briefly describe how to extract low-dimensional
coordinatesY from a set of high-dimensional dataX with
LTSA.

1. Findk nearest neighborsXi = {xj
i}, j = 1, . . . , k for

each pointxi, i = 1, . . . , n.

2. Extract the local geometrical information by calculat-
ing thed largest eigenvectorsg1, . . . , gd of the corre-
lation matrix(Xi− x̄ie

T )T (Xi− x̄ie
T ). e is a column

vector whose entries are all ones.x̄i represents the av-
erage of the neighborhood ofxi, x̄i = 1

k

∑
j xj

i . Set

Gi = [e/
√

k, g1, . . . , gd].

3. Construct the alignment matrixB by locally summing
as follows:

B(Ii, Ii) ← B(Ii, Ii) + I − GiG
T
i , i = 1, . . . , n

with initial B = 0. I is a k × k identity matrix,Ii

denotes the set of indices for thek nearest neighbors
of xi.

4. Compute thed+1 smallest eigenvectors of B and pick
up the eigenvector matrix[u2, . . . , ud+1] correspond-
ing to the 2nd tod+1st smallest eigenvalues. Set the
global coordinates

Y = [y1, . . . , yn] = [u2, . . . , ud+1]
T .

Note neighborhood selection (the first step of LTSA) to es-
timate the local tangent space is very crucial to the success
of this algorithm. In the simplest formulation of the algo-
rithm, one identifies a fixed number of nearest neighbors,
k, per data point, as measured by Euclidean distance. Fig.1
shows the selection of neighbors in a 3-D space. All data
points discretely distribute on the surface of a ball. Yel-
low squares surrounded with a black loop are15 nearest
neighbors ofxi. They together withxi compose a local
neighborhood ofxi. Two of tangent vectors atxi, T1 and
T2, approximately span the tangent space ofxi.

Figure 1.The selection of nearest neighbors in the 3-D Euclidean
space. Yellow squares surrounded with a black loop are15 nearest
neighbors ofxi.

Other criteria, however, can also be used to choose neigh-
bors. For example, one can identify neighbors by choosing
all points within a ball of fixed radius. One can also use
locally derived distance metrics based on a priori knowl-
edge such as class membership or time order, which deviate
significantly from a globally Euclidean norm. In general,
neighborhood selection in LTSA presents an opportunity
to incorporate a priori knowledge.

2.2. Dynamic LTSA

The original LTSA is stationary with respect to the data,
that is, it requires a whole set of points as an input in order
to map them into the embedding space. When new data
points arrive, the only way to map them is to pool both
old and new points and return LTSA again for this pool.
Therefore, the original LTSA lacks generalization to new
data, it is not suitable in a changing, dynamic environment.

Our attempt is to adapt LTSA to a changing situation where
the data come incrementally point by point, and avoid
an expensive eigenvector calculation for each new query,

8



Motion Analysis and Synthesis of Time-dependent Data

Figure 2.Successful recovery of a manifold of known structure
using LTSA.

which is inspired from (Saul & Roweis, 2002; Kouroteva
et al., 2002). Let a set of pointsX = {xi}, i = 1, . . . , n,
as an original input to LTSA. After dimension reduction
with LTSA, the projection ofX to the embedding space
can be discovered,Y = {yi}, i = 1, . . . , n. In particular,
to compute the outputyn+1 for a new arriving pointxn+1,
we can do the following. First look for the pointxj closest
to xn+1 amongX. Let yj be the projection ofxj to the em-
beddding space. The derivation of LTSA reveals that the
following equation is approximately true:

xj − x̄j ≈ Jf (yj − ȳj) = T (yj − ȳj),

whereT is a transformation matrix of sizem × d, x̄j and
ȳj are respectively the mean ofk nearest neighbors ofxj

andyj . The matrixT can be straightforwardly determined
as

T = (xj − x̄j)(yj − ȳj)
+. (1)

where(·)+ represents the Moore-Penrose generalized in-
verse of a matrix. Assumexj andxn+1 lie close enough to
each other (Note that input dataX must be dense enough to
sufficiently cover the whole surface of the embedded man-
ifold, or else our method of generalization can not perform
well), so the transformation matrixT of xj is applicable to
xn+1. yn+1 can be obtained

yn+1 = ȳj + T+(xn+1 − x̄j). (2)

A mapping from the embedding space to the input space
can also be derived in the same manner.
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Figure 3.Mapping new arriving test images to the 2-D feature
space learned from training images.

Let us consider 841 grayscale images of a single face trans-
lated across a two-dimensional background shown in the
top panel of Fig.2. Such images lie on an intrinsically two-
dimensional nonlinear manifold in bottom panel, but have
an extrinsic dimensionality equal to the number of pixels in
each image (m=2576).

We divide the 841 images into two sets, which are alter-
nately selected from left to right along the horizontal direc-
tion. One set including 435 images is considered as original
input data to learn a manifold, the other including 406 im-
ages as new arriving data to test dynamic LTSA. Similar to
the one using LTSA, the result using dynamic LTSA shown
in Fig.3 successfully maps the images with corner faces to
the corners of its two dimensional embedding and does re-
flect the character of face movement. But dynamic LTSA
only spends about 32.5 seconds on computation, which im-
proves the efficiency by40% in comparison with 53.9 sec-
onds that LTSA needs. Note the advantage of our method
is not obvious when the test data set is too small, but when
such set becomes very large, the computation efficiency
will be greatly improved if using our method of general-
ization .

3. Temporal LTSA

As stated in section 2.1, the criterion of neighborhood se-
lection is supposed to the crucial feature of data sets. For
time-dependent data, time order is more important than Eu-
clidean distance, so in the process of neighborhood selec-
tion, we can employ time order to decide the nearest neigh-
bors of each point. This improved method is called tem-
poral LTSA (TLTSA). For example, in Fig.5, if we take
k = 5, the nearest neighbors of thei-th data along the time
axis are those points betweeni − 5-th andi + 5-th.

9
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(a) Extrapolation (b) Adding-zero (c) Overlapping (d) Truncation

Figure 4.Four feasible methods for dealing with margin points. a: the extrapolation method, b: the adding-zero method, c: the overlap-
ping method, d: the truncation method.

Figure 5.The selection of nearest neighbors for time-dependent
data.

For some points at the beginning and end of the sequence,
their neighborhood is out of the sequence, thus the near-
est neighbors can be chosen in some special ways. If not
adding new data to the sequence, we can directly select
some points near by them which may lead to the same
neighborhood for some margin points. Or, we increase new
data in order at the beginning and end of the sequence. New
data can be same or not, for instance, they can be all-zero
vectors; or extrapolate in terms of margin points to obtain
new points. Another method is to give up those margin
points to consider. In nature, all these methods have the
similar effects.

Fig.4 presents four feasible methods for dealing with mar-
gin points. This set of data taken with motion capture de-
vices represent the walking motion of a human and will be
in detail introduced in section 4.2. Since the walking mo-
tion is approximately periodical, such data should essen-
tially contain a significant degree of freedom which varies
approximately periodically with time. The original data
are of 54 dimensions, now we map them to a 1-D space
with temporal LTSA. Four different methods are used for
neighborhood selection of margin points. The extrapola-
tion method first generates new data according to the origi-
nal data and then inserts them on both sides of the sequence
in order. The adding-zero method adds all-zero vectors on
the outside of the sequence. The overlapping method does
not introduce new data, it only admits margin points of a
sequence to use the common neighborhood. The trunca-
tion method directly gives up those margin points and only
considered those points with applicable neighborhood.

We have to again stress that the goal of the temporal LTSA
algorithm is to obtain the global geometrical feature of a

set of data by the analysis of its local tangent space con-
structed in terms of time order. Experimental results show
that the algorithm is not sensitive for local discontinuityof
data, i.e., adding/deleting some data to estimate local tan-
gent spaces will not actually damage the character of the
global geometry. In our following experiments, we will
mainly use the overlapping method.

Besides, we have found that if the number of nearest neigh-
bors k is set too small, the mapping will not reflect any
global properties of data; if it is too high, the mapping
will lose its nonlinear character and behave like traditional
PCA, as the entire data set is seen as local neighborhood.
The algorithm is stable over a wide range of values but do
break down ask becomes too small or large.

4. TLTSA for Motion Analysis and Synthesis

In general, time-dependent data only can be shown by some
special softwares or player. We can not directly take a com-
plete view of their global continuity and smoothness. For
better analyzing motion contained in time-dependent data,
the TLTSA algorithm can be used to map these data to a
lower-dimensional space (exactly 1-, 2- or 3-dimensional).
Next we will respectively discuss two classes of time-
dependent data, video and motion capture data, and present
some experimental results.

4.1. Video Data

Video is composed of a sequence of images. If each im-
age is represented by a vector, a section of video can be
considered as a set of vector data with time order. Such
data are high-dimensional, which is not beneficial for our
direct analysis. When moving objects exist in a video,
the vector data necessarily contain related motion infor-
mation. Since most realistic movements such as walking,
running and jumping are of low degrees of freedom, the
high-dimensional vector data to represent this section of
video contain a lot of redundant or insignificant informa-
tion. Eliminating them can make it easy to study the mov-
ing feature of such data. Here we apply the TLTSA algo-
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rithm into 35 face images (Fig.6) composing a section of
discontinuous video about face rotation. A 2-D embedding
was discovered by TLTSA and shown in Fig.7 where blue
stars correspond to input training face images. Linear inter-
polation is made between each pair of sequential points in
the low-dimensional space and the results are represented
by red points of Fig.7. By mapping those newly inserted
points from the low- to high-dimensional spaces, one can
obtain some new face images in the high-dimensional im-
age space. Insert these new images back to the original
image sequence, a section of new smooth video about face
rotation can be generated.

Figure 6.4 of 35 face images taken from different view angles –
from side to frontal.

4.2. Motion Capture Data

Motion capture data belong to another class of time-
dependent data, which are widely applied in the field of
character animation. Such data are not contaminated by the
variation of background, therefore they can better embody
the feature of motion than video data. Here we use a set of
data with 54 dimensions representing walking of virtual hu-
man (Fig.8) to analyze basic properties of human walking.
Since human walking is or close to periodical, there should
exist a degree of freedom describing such periodicity. Map
such 109 continuous data to a 1-D space with TLTSA and
show their variational regularity with time in Fig.9. Each
red point corresponds to a walking state of virtual human
and some key states corresponding to blue stars have be
shown around the chart. Fig.9 reveals that the whole pro-
cess of human walking can be approximately divided into
three stages: the beginning (from Time 1 to Time 23), the
circular advancement (from Time 24 to Time 99) and the
ending (from Time 100 to Time 109). The advancement
stage is composed of four primitive cycles. Extraction of
the primitive motion from this stage allows us to arbitrar-
ily copy such primitive and synthesize similar motion se-
quences. That is, one can randomly assign the number of
cycle and let virtual human smoothly walk in terms of the
assigned number.

5. Conclusions

In this paper, we propose a simple technique to map new
data in the high- or low-dimensional space to another space,

Figure 8.The walking process of virtual human which is used to
capture motion data.

which makes LTSA suitable in a changing, dynamic envi-
ronment. Besides, temporal LTSA is specially proposed
for dealing with time-dependent data where the measure
of neighborhood selection is not Euclidean distance, but
time interval. Experiments show that the TLTSA algorithm
can efficiently extract key degrees of freedom from time-
dependent data, which is very beneficial for motion analy-
sis and synthesis.
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Abstract

In this paper, we compare five tree-based
machine learning methods within our recent
generic image-classification framework based
on random extraction and classification of
subwindows. We evaluate them on three
publicly available object-recognition datasets
(COIL-100, ETH-80, and ZuBuD). Our com-
parison shows that this general and concep-
tually simple framework yields good results
when combined with ensembles of decision
trees, especially when using Tree Boosting
or Extra-Trees. The latter is particularly at-
tractive in terms of computational efficiency.

1. Introduction

Object recognition is an important problem within im-
age classification, which appears in many application
domains. In the object recognition literature, local
approaches generally perform better than global ap-
proaches. They are more robust to varying conditions
because these variations can locally be modelled by
simple transformations (Matas & Obdrz̆álek, 2004).
These methods are also more robust to partial occlu-
sions and cluttered backgrounds. Indeed, the correct
classification of all local features is not required to cor-
rectly classify one image. These methods are generally
based on region detectors (Mikolajczyk et al., 2005)
and local descriptors (Mikolajczyk & Schmid, 2005)
combined with nearest-neighbor matching.

In this paper, we compare five tree-based machine
learning methods within the generic image classifi-
cation framework that we proposed in earlier work
(Marée et al., 2005). It is based on random extraction

Appearing in Proceedings of the workshop Machine Learn-
ing Techniques for Processing Multimedia Content, Bonn,
Germany, 2005.

of subwindows (square patches) and their classification
by decision trees.

2. Framework

In this section, we briefly describe the framework pro-
posed by (Marée et al., 2005). During the training
phase, subwindows are randomly extracted from train-
ing images (2.1), and a model is constructed by ma-
chine learning (2.2) based on transformed versions of
these (Figure 1). Classification of a new test image
(2.3) similarly entails extraction and description of
subwindows, and the application of the learned model
to these subwindows. Aggregation of subwindow pre-
dictions is then performed to classify the test image,
as illustrated in Figure 2. In this paper, we evaluate
various tree-based methods for learning a model.

2.1. Subwindows

The method extracts a large number of possibly over-
lapping, square subwindows of random sizes and at
random positions from training images. Each subwin-
dow size is randomly chosen between 1× 1 pixels and
the minimum horizontal or vertical size of the current
training image. The position is then randomly cho-
sen so that each subwindow is fully contained in the
image. By randomly selecting a large number (Nw)
of subwindows, one is able to cover large parts of im-
ages very rapidly. This random process is generic and
can be applied to any kind of images. The same ran-
dom process is applied to test images. Subwindows
are resized to a fixed scale (16× 16 pixels) and trans-
formed to a HSV color space. Each subwindow is thus
described by a feature vector of 768 numerical val-
ues. The same descriptors are used for subwindows
obtained from training and test images.
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Figure 1. Learning: the framework first randomly extracts
multi-scale subwindows from training-set images, then re-
sizes them and builds an ensemble of decision trees.

2.2. Learning

At the learning phase, a model is automatically built
using subwindows extracted from training images.
First, each subwindow is labelled with the class of its
parent image. Then, any supervised machine learning
algorithm can be applied to build a subwindow classi-
fication model. Here, the input of a machine learning
algorithm is thus a training sample of Nw subwindows,
each of which is described by 768 real-valued input
variables and a discrete output class (Figure 1). The
learning algorithm should consequently be able to deal
efficiently with a large amount of data, first in terms
of the number of subwindows and classes of images in
the training set, but more importantly in terms of the
number of values describing these subwindows.

In this context, we compare five tree-based meth-
ods: one single-tree method based on CART
(Breiman et al., 1984), and four ensemble meth-
ods: Bagging (Breiman, 1996), Boosting (Freund &
Robert Schapire, 1996), Random Forests (Breiman,
2001), and Extra-Trees (Geurts, 2002). Extra-Trees
only were originally used by (Marée et al., 2005).

2.3. Recognition

In this approach, the learned model is used to classify
subwindows of a test image. To make a prediction for a
test image with an ensemble of trees grown from sub-
windows, each subwindow is simply propagated into
each tree of the ensemble. Each tree outputs condi-
tional class probability estimates for each subwindow.
Each subwindow thus receives T class probability es-

T2T1 T3 T4 T5

C1 C2 CM
0 0 0 00 00 14 0

C1 C2 CM
0 0 0 0 0 0 0 0 14

C1 C2 CM

?@?@??@?@??@?@?
A@AA@A
A@A

B@B@BB@B@BB@B@BB@B@B
C@CC@CC@CC@C

D@DD@DD@DD@DE@EE@EE@EE@E

F@FF@FG@GG@G

H@H@HH@H@HH@H@HH@H@HI@II@II@I

JJK
K

L@L@LL@L@LL@L@L
M@M@MM@M@MM@M@M

NONONONNONONONNONONON
POPOPOPPOPOPOPPOPOPOP
Q@Q@QQ@Q@QQ@Q@QQ@Q@QR@RR@RR@R

SOSOSSOSOSTOTTOT

U@U@UU@U@UU@U@U
V@V@VV@V@VV@V@VW@WW@W

W@W
X@XX@X
X@X YY

ZZ

[@[@[[@[@[[@[@[[@[@[[@[@[
\@\\@\\@\\@\
\@\

?

? ? ? ? ? ?

+

=

C2

3 51046 1 5249 1

Figure 2. Recognition: randomly-extracted subwindows
are propagated through the trees (here T = 5). Votes are
aggregated and the majority class is assigned to the image.

timate vectors where T denotes the number of trees
in the ensemble. All the predictions are then aver-
aged and the class corresponding to the largest aggre-
gated probability estimate is assigned to the image.
Note that we will simply consider that one single tree
method is a particular case where T = 1.

3. Experiments

Our experiments aim at comparing decision tree meth-
ods within our random subwindow framework (Marée
et al., 2005). To this end, we compare these meth-
ods on three well-known and publicly available object
recognition datasets: household objects in a controlled
environment (COIL-100), object categories in a con-
trolled environment (ETH-80), and buildings in urban
scenes (ZuBuD). The first dataset exhibits substantial
viewpoint changes. The second dataset also exhibits
higher intra-class variability. The third dataset con-
tains images with illumination, viewpoint, scale and
orientation changes as well as partial occlusions and
cluttered backgrounds.

3.1. Parameters

For each problem and protocol, the parameters of the
framework were fixed to Nw = 120000 learning sub-
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windows, T = 25 trees, and Nw,test = 100 subwin-
dows are randomly extracted from each test image.
In (Marée et al., 2005), the parameters were fixed to
Nw = 120000, T = 10, and Nw,test = 100. Ensem-
ble methods are influenced by the number of trees T

that are aggregated. Usually, the more trees are aggre-
gated, the better the accuracy. We will further evalu-
ate the influence of these parameters in Section 4.

For each machine learning method within the frame-
work, the values of several parameters need to be fixed.
In our experiments, single decision trees are fully de-
veloped, i.e. without using any pruning method. The
score used to evaluate tests during the induction is
the score proposed by (Wehenkel, 1997) which is a
particular normalization of the information gain. Oth-
erwise our algorithm is similar to the CART method
(Breiman et al., 1984).

Random Forests depends on an additional parameter
k which is the number of attributes randomly selected
at each test node. In our experiments, its value was
fixed to the default value suggested by the author of
the algorithm which is the square root of the total
number of attributes. According to (Breiman, 2001)
this value usually gives error rates very close to the
optimum.

With the latest variant of Extra-Trees (Geurts et al.,
2005), the parameter k is the number of attributes
randomly selected at each test node. We fixed it to
the default value which is the square root of the total
number of attributes. The main differences with Ran-
dom Forests are that the algorithm randomizes also
cut-point choice while splitting a tree node and grows
the tree from the whole learning set while Random
Forests uses bootstrap sampling.

Boosting does not depend on another parameter but it
nevertheless requires that the learning algorithm does
not give perfect models on the learning sample (so as to
provide some misclassified instances). Hence, with this
method, we used with decision trees the stop-splitting
criterion described by (Wehenkel, 1997). It uses a hy-
pothesis test based on the G2 statistic to determine
the significance of a test. In our experiments, we fixed
the nondetection risk α to 0.005.

3.2. COIL-100

COIL-1001 (Murase & Nayar, 1995) is a dataset of
128 × 128 color images of 100 different 3D objects
(boxes, bottles, cups, miniature cars, etc.). Each ob-
ject was placed on a motorized turntable and images
were captured by a fixed camera at pose intervals of

1http://www.cs.columbia.edu/CAVE/

Figure 3. COIL-100: some subwindows randomly ex-
tracted from a test image and resized to 16 × 16 pixels.

5◦, corresponding to 72 images per object. Given a
new image, the goal is to identify the target object in
it.

On this dataset, reducing the number of train-
ing views increases perspective distortions between
learned views and images presented during testing. In
this paper, we evaluate the robustness to viewpoint
changes using only one view (the pose at 0◦) in the
training sample while the remaining 71 views are used
for testing. Using this protocol, methods in the lit-
erature yield error rates from 50.1% to 24% (Matas
& Obdrz̆álek, 2004). Our results using this protocol
(100 learning images, 7100 test images) are reported
in Table 1. Tree Boosting is the best method for this
problem, followed by Extra-Trees, Tree Bagging, and
Random Forests. One decision tree has a higher er-
ror rate. Examples of subwindows randomly extracted
and resized to 16× 16 pixels are given in Figure 3.

3.3. ETH-80

The Cogvis ETH-80 dataset2 contains 3280 color im-
ages (128× 128 pixels) of 8 distinct object categories
(apples, pears, tomatoes, cows, dogs, horses, cups,
cars). For each category, 10 different objects are pro-
vided. Each object is represented by 41 images from
different viewpoints.

In our experiments, we used for each category 9 objects
in the learning set (8∗9∗41 = 2952 images), and the re-
maining objects in the test set (8∗1∗41 = 328 images).
We evaluate the methods on 10 different partitions,
and the mean error rate is reported in Table 1. Here,
Extra-Trees are slightly inferior while Tree Boosting
and Tree Bagging are slightly better than other meth-
ods.3

2http://www.vision.ethz.ch/projects/
categorization/eth80-db.html

3We observed that the adjustment of the extra-tree pa-
rameter k to the half of the total number of attributes, in-
stead of the square root, yields a 20.85% mean error rate.
Such improvements might also be obtained for Random
Forests.
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Table 1. Classification error rates (in %) of all methods
on COIL-100, ETH-80, ZuBuD (T = 25, Nw = 120000,
Nw,test = 100)).

Methods COIL-100 ETH-80 ZuBuD

RW+Single Tree 19.20 22.04 10.43

RW+Extra-Trees 11.53 22.74 4.35

RW+R. Forests 13.06 21.31 4.35

RW+Bagging 12.77 20.34 3.48

RW+Boosting 10.75 20.27 3.48

3.4. ZuBuD

The ZuBuD dataset4 (Shao et al., 2003) is a database
of color images of 201 buildings in Zürich. Each build-
ing in the training set is represented by five images
acquired at five random arbitrary viewpoints. The
training set thus includes 1005 images, while the test
set contains 115 images of a subset of the 201 buildings.
Images were taken by two different cameras in different
seasons and under different weather conditions, and
thus contain a substantial variety of illumination con-
ditions. Partial occlusions and cluttered background
are naturally present (trees, skies, cars, trams, people,
. . . ) as well as scale and orientation changes due to
the position of the photographer. Moreover, training
images were captured at 640×480 while testing images
are at 320× 240 pixels.

About five papers have so far reported results on this
dataset that vary from a 59% error rate to 0% (Matas
& Obdrz̆álek, 2004). Our results are reported in Table
1. Due to the small size of the test set, the difference
between the methods is not dramatic and only one im-
age makes the difference between the two best ensem-
ble methods (Tree Boosting, Tree Bagging) and the
two others (Extra-Trees and Random Forests). One
single decision tree is again inferior. Figure 4 shows
the 5 images misclassified by Extra-Trees and Ran-
dom Forests, while the last one is correctly classified
by Tree Boosting and Tree Bagging. For this last im-
age, the correct class is ranked second by Extra-Trees
and Random Forests.

4. Discussion

The good performance of this framework was ex-
plained by (Marée et al., 2005) by the combination of
simple but well-motivated techniques: random multi-

4http://www.vision.ee.ethz.ch/showroom/zubud/
index.en.html

Figure 4. ZuBuD: misclassified test images (left), training
images of predicted class buildings (middle), training im-
ages of correct buildings (right).

scale subwindow extraction, HSV pixel representation
and recent advances in machine learning that have pro-
duced new methods that are able to handle problems
of high dimensionality.

For real-world applications, it may be useful to tune
the framework parameters if a specific tradeoff be-
tween accuracy, memory usage and computing times
is desired. Then, in this section, we discuss the in-
fluence of the framework parameters (4.1, 4.2, 4.3) on
the ZuBuD problem which exhibits real-world images,
and we present some complexity results (4.4).

4.1. Variation of Nw

Figure 5 shows that the error rate decreases monotoni-
cally with number of learning subwindows (for a given
number of trees (T = 25) and a given number of test
subwindows (Nw,test = 100)). For all methods, we ob-
serve that using Nw = 60000 subwindows already gives
good results, and that Nw = 180000 does not improve
accuracy, except for one single decision tree.

4.2. Variation of T

Figure 6 shows that the error rate decreases monoton-
ically with the number of trees, for a given number of
training subwindows (Nw = 120000) and test subwin-
dows (Nw,test = 100). We observe that using T = 10
trees is already sufficient for this problem for all en-
semble methods.
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Figure 5. ZuBuD: error rate with increasing number of
training subwindows.
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Figure 6. ZuBuD: error rate with increasing number of
trees.

4.3. Variation of Nw,test

Figure 7 shows that the number of test subwindows
also influences the error rate in a monotonic way, for a
given number of training subwindows (Nw = 120000)
and a given number of trees (T = 25). We observe that
using Nw,test = 25 is already sufficient for this problem
with ensemble methods, but the aggregation of more
subwindows is needed for a single decision tree.
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Figure 7. ZuBuD: error rate with increasing number of test
subwindows.

4.4. Some notes on complexity

Our current implementation cannot be considered op-
timal but some indications can be given about memory
and running-time requirements. With this framework,

Table 2. ZuBuD: average tree complexity and learning
time.

Methods Cmplx Learning Time

RW+Single Tree 92687 3h36m30s

RW+Extra-Trees 148080 14m05s

RW+Random Forests 77451 2h14m54s

RW+Bagging 63285 53h35m46s

RW+Boosting 28040 54h21m31s

original training images and their subwindows are not
necessary to classify new images after the construction
of the model, contrary to classification methods based
on nearest neighbors. Here, only the ensemble of trees
is used for recognition.

Learning times for one single decision tree and ensem-
bles of T = 25 trees are reported in Table 2, consider-
ing that subwindows are in main memory. The com-
plexity of tree-based method induction algorithm is of
order O(NwlogNw). Extra-Trees are particularly fast
due to their extreme randomization of both attributes
and cut-points while splitting a tree node. Single tree
complexity (number of nodes) is also given in Table 2
as a basic indication of memory usage.

To classify a new image, we observed that the predic-
tion of one test subwindow with one tree requires on
average less than 20 tests (each of which involves com-
paring the value of a pixel to a threshold), as reported
in Table 35. The minimum and maximum depths are
also given. To classify one unseen image, the num-
ber of operations is thus multiplied by T , the number
of trees, and by Nw,test, the number of subwindows
extracted. The time to add all votes and search the
maximum is negligible. Furthermore, extraction of one
subwindow is very fast because of its random nature.

On this problem, we have also observed that pruning
Extra-Trees could substantially reduce their complex-
ity (downto a tree complexity average of 25191 with
the same stop-splitting criterion as Tree Boosting, thus
giving an average test depth of 15.4) while keeping the
same accuracy. In practical applications where pre-
diction times are essential, the use of pruning is thus
certainly worth exploring.

5The average tree depth was calculated empirically over
the 287500 propagations (100 subwindows for each of the
115 test images, propagated through T = 25 trees), except
for one single decision tree and for Tree Boosting (because
the algorithm stopped after T = 21 trees).
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Table 3. ZuBuD: average subwindow test depth.

Methods Depth min max

RW+Single Tree 16.59 9 29

RW+Extra-Trees 18.26 8 34

RW+Random Forests 16.44 7 33

RW+Bagging 15.98 8 34

RW+Boosting 15.04 6 28

5. Conclusions

In this paper, we compared 5 tree-based machine
learning methods within a recent and generic frame-
work for image classification (Marée et al., 2005). Its
main steps are the random extraction of subwindows,
their transformation to normalize their representation,
and the supervised automatic learning of a classifier
based on (ensembles of) decision tree(s) operating di-
rectly on the pixel values. We evaluated the tree-
based methods on 3 publicly-available object recog-
nition datasets. Our study shows that this general
and conceptually simple framework yields good results
for object recognition tasks when combined with en-
sembles of decision trees. Extra-Trees are particularly
attractive in terms of computational efficiency dur-
ing learning, and are competitive with other ensem-
ble methods in terms of accuracy. This method with
its default parameter allows to evaluate very quickly
the framework on any new dataset.6 However, if the
main objective of a particular task is to obtain the best
error rate whatever the learning time, Tree Boosting
appears to be a better choice. Tuning the parameters
(such as the value of k in Extra-Trees, or the stop-
splitting criterion) might further improve the results.

For future work, it would be interesting to perform a
comparative study with SVMs. The framework should
also be evaluated on bigger databases in terms of the
number of images and/or classes and with images that
exhibit higher intra-class variability and heavily clut-
tered backgrounds (such as the Caltech-1017, Birds, or
Butterflies8 datasets).
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Abstract 

The real-time detection and tracking of moving 
objects is a challenging task and automatic tools 
to identify and follow them are often subject to 
constraints regarding the environment under 
investigation or the full visibility of the targeted 
object. Exploiting the possibility of a multi-
source acquisition in the targeted scene, firstly 
detection is performed by means of characteristic 
features extraction and storing in a database; 
secondly, the tracking task is approached using 
algorithms, where automatic search involves 
occluded or masked targets in the scene. This 
latter problem is solved through database 
retrieval, based on well-defined multi-modal 
features. The method has been tested on case 
studies regarding the identification and tracking 
of animals moving at night in an open 
environment (i.e. natural reserves or parks), and 
the surveillance of known scenes for 
unauthorized access control. 

 

1.  Introduction 

According to the cognitive processes of the human 
perception (Milner & Goodale, 1995), a methodology has 
been developed which provides a way to realize object 
recognition and tracking in 3D real environments. In 
particular, this approach is based on the acquisition of 
multi-source information that is firstly elaborated for 
object detection and characterization, and then for its 
localization and active tracking. After target detection is 
achieved through an automatic segmentation, the 
characterization phase is performed through the 
description of multi-modal features (morphological, 
densitometric and semantic), which are extracted from the 
acquired multi-source information. Localization is 
realized using also features previously extracted and 

stored in a reference database. In order to improve the 
localization performance when only partial information is 
available (i.e. in case of lost or occluded targets), the 
implemented method is supported by a content-based 
retrieval (CBR) paradigm using an a priori defined 
multimedia (MM) database. This MM database is built 
using the multi-modal features extracted from a set of 
target examples organised on the basis of semantic classes 
defined on the specific environment under investigation. 

————— 
  Appearing in Proceedings of the workshop Machine Learning 
Techniques for Processing Multimedia Content, Bonn, Germany, 2005. 

Current approaches regarding real-time object tracking 
from videos are based on (i) successive frame differences 
(Fernandez-Caballero et al., 2003), using also adaptive 
threshold techniques (Fejes & Davis, 1999), (ii) trajectory 
tracking, using weak perspective and optical flow (Yau, 
Fu & Liu, 2001), (iii) region approaches, using active 
contours of the target and neural networks for movement 
analysis (Tabb et al., 2002), or motion detection and 
successive regions segmentation (Kim & Kim, 2003). 

Regarding the CBR paradigm, techniques of shape 
retrieval in large databases are particularly interesting. 
Considering a shape of an object as a sequence of contour 
points, a method using both global and local features is 
discussed in (Wang, Yang & Acharya, 1998) while in 
(Wang, Chang & Acharya, 1999) retrieval is based on a 
hash table and a majority voting algorithm for an efficient 
estimation of shape similarity. Furthermore, another 
interesting approach considers a shape database structured 
as an M-tree of organised tokens, representing parts of the 
shape enclosed between contour points. Possible shapes 
are clustered into semantic classes, each belonging to an 
object typology defined in its environment (Berretti, Del 
Bimbo & Pala, 2000). 

In this paper, the problem of moving target detection and 
tracking is faced by processing multi-source information 
acquired using cameras of different typology (Far-IR and 
visible). Object characterization is based on region 
segmentation and feature extraction processes. Object 
localization uses a CBR approach based on similarity 
functions defined for each multi-modal feature class. 

The method has been applied to real case studies 
regarding the monitoring of animal movements during the 
night in an open environment (i.e. natural reserves or 
parks) and the surveillance of known scenes for 
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unauthorized access control in both open and closed 
spaces (Pieri et al., 2004). 

2.  Problem definition 

The precise identification of a defined target in a real 
video, frame by frame, is approached. The proposed 
methodology is based on recognition and spatial 
localization of the target: recognition is sub-divided into 
identification and characterization, while the spatial 
localization performs active tracking. 

The multi-source information is acquired using a physical 
system composed of a thermo-camera and two stereo 
visible-cameras synchronized. Thus, we obtain a set of 
infrared (IR) images, which make the system more robust 
and invariant to light changes in the scene, corresponding 
to stereo grey level images.  

A procedure has been defined based on two different 
stages: 

 Off-line stage, in which the recognition phase is 
performed using selected examples belonging to a 
set of predefined semantic classes, in order to 
populate the reference MM database. 

 On-line stage, in which the tracking is performed 
by applying recognition and spatial localization. 

In deep details, during the recognition process, the 
identification phase consists of an automatic 
segmentation, based on edge detection using a gradient 
descent along 16 directions starting from a reference point 
internal to the target (centroid). 

In the characterization phase, for each frame, the multi-
source information is used in order to extract a target 
description from the scene. This is made through a feature 
extraction process performed on the three different 
images available for each frame in the sequence. In 
particular, the extraction of a depth index from the grey 
level stereo images, performed by computing disparity of 
the corresponding stereo points, is realized in order to 
have significant information about the target spatial 
localization in the 3D scene and the target movement 
along depth direction, which is useful for the 
determination of a possible static or dynamic occlusion of 
the target itself in the observed scene. Other features 
consisting in radiometric parameters measuring the 
temperature and visual features are extracted from the IR 
images. The visual features, grouped in morphological, 
densitometric and semantic classes, consist of shape 
contour descriptors, dominant colour discriminants, 
statistical parameters, computed on the regions enclosed 
by the contours (area, perimeter, average brightness, 
standard deviation, skewness, kurtosis, and entropy) and 
the semantic class to which the target belongs (i.e. human, 
small, medium and large animal, …). While the depth 
index and the visual features are automatically extracted 
from the images, the semantic classes of the observed 

targets are selected by the user among a predefined set of 
possible choices. 

During the off-line stage, all the multi-modal feature 
information is stored in the MM database, organised on 
the base of semantic classes. This information is used 
during the on-line spatial localization process, in 
particular in the automatic target retrieval which acts as a 
support during the active tracking in case of partial 
occlusion or quickly direction changes of the target. 

For each defined target class, possible variations of the 
initial shape, taking into account that the target could be 
still partially masked or have a different orientation, are 
recorded together with the other multi-modal features as it 
is shown in Figure 1. 

 

 
      

                

    
 

 
 

  
 
Figure 1. Example of actual targets in the MM data-base, 
grouped according to the classes “small animal” (CSA), 
“medium animal” (CMA) and “large animal” (CLA). 

 

During the on-line spatial localization, the extracted 
features drive tracking and also support CBR to resolve 
the queries to the MM database. 

The first phase of the on-line stage is the same of the off-
line one. An automatic segmentation of the target is 
performed on both the IR and stereo grey-level images, in 
order to characterize the selected target. Contextually, the 
user performs also the selection of the semantic class to 
which the target belongs. 

CSA CLACMA 
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The tracking algorithm is performed on the IR image 
sequence, in order to build a system which can be used 
both at night and daylight. 

The segmented target from the first IR image of the 
sequence is then tracked automatically in the following 
frame. The features used for the automatic tracking are 
local maxima, movement prediction (on the basis of  the 
movements of the previous steps), temperature and a 
priori knowledge about the specific class the object 
belongs to. For each frame, the algorithm performs the 
steps to correctly identify the target and to follow it. 

Firstly, a candidate characterizing point P1 of the target is 
selected in its centroid, in the actual frame. The selection 
follows criteria of brightness local maximum, inside the 
contour segmented in the previous frame; P1 is the point 
having the maximum similarity with the centroid PP of the 
previous frame. 

In a second step, the algorithm takes into account the 
previous movements of the centroid. The trajectory is 
stored and then used in the computation of the actual step, 
locating a new candidate point P2. If P2 is not coincident 
with P1 then a new point P3 is calculated as: 

 3 1 2P P Pα β= +  (1) 

where  and  represent the weight assigned, and 
. These parameters are empirically defined and 

can be adjusted by the user. 

α β
1=β+α

Again, a local maximum search is performed in the 
neighbourhood of P3 to make sure that it is internal to a 
valid object. This search finds the point PN that has the 
grey level closest to the one of PP, so that PN is the 
centroid chosen for the actual frame. Starting from this 
point, the edge detection is performed and the object new 
contour is segmented. 

In each frame, a first control is made trying to avoid a 
wrong object recognition, due to either a masking, partial 
occlusion of the object in the scene or to a quick 
movement in an unexpected direction. This control takes 
into account the above mentioned statistical parameters 
computed on the region enclosed by the contour, without 
using CBR paradigm in order to optimise the number of 
accesses to the database. If there are parameters 
exceeding p times (p is defined a priori) the standard 
deviation of the same parameters computed over the last n 
frames, the database search for the correct target is 
started. This search is based on the CBR paradigm; the 
multi-modal features of the candidate target are compared 
to the ones recorded in the MM database. A similarity 
function is considered for each feature class. In particular, 
we used similarity functions, as in (Tzouveli et al., 2004), 
for colour matching, using percentages and colour values, 
and shape matching, using the cross-correlation criterion. 
In order to obtain a global similarity measure, each 
similarity percentage is associated to a pre-selected 
weight, using the reference semantic class as a filter to 
access the MM information. If after j frames the correct 

target has not yet been grabbed, the control is given back 
to the user. The value of j is computed considering the 
distance between PP and the edge point of the image along 
the search direction, divided by the average velocity of 
the target previously measured in the last n frames (Eq. 
2). 

 Dist( ; ) / VelP rj P E=  (2) 

where Dist( , )x y  is the Euclidean distance between points 
x and y; Er is the point crossing the edge of the frame 
along the search direction r determined by the last n 
centroids; and Vel is  

  (3) 
1

1

0

Vel Dist( ; ) /
n

i i
P P
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P P n
−

+
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⎛ ⎞
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∑

where  is the centroid i steps before the actual. i
PP

The sketch of the methodology described is shown in 
Figure 2. 
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Figure 2. Recognition and description of a target object (on-line 
process). 
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3.   Results and Conclusions 

The method implemented has been applied to real case 
studies: (i) to track animal movements in an open 
environment during the night, for the fauna monitoring in 
natural parks, and (ii) for video surveillance of known 
scenes both at night and daylight to control unauthorized 
access (see Figure 3). 

 

 

 

 

 

 

 

Figure 3. Examples of thermo images regarding human (left and 
centre, two different views and shapes) and animal (right) 
targets (crosses are the centroids). 

 

Regarding the first case, due to the environmental 
conditions, only the thermo-camera has been used. 

The videos were acquired using a thermo-camera in the 8-
12µm wavelength range, mounted on a moving structure 
covering 360° pan and 90° tilt, and equipped with 12° and 
24° optics to have 320x240 pixel spatial resolution. 

Both the thermo-camera and the two stereo visible-
cameras have been positioned in order to explore a scene 
100 meters far, sufficient in our experimental cases. 

In the fauna monitoring experimental case, during the off-
line stage, the MM database has been built taking into 
account different image sequences relative to different 
classes of the monitored animals. In particular, three main 
semantic classes have been determined. The large-animal 
class counting all the monitored animals of a large size 
like deer, the medium-animal class including animals of 
medium size like boars and the small-animal class 
considering other kind of animals like rabbits or badgers. 
For each outlined semantic class, different positions have 
been considered. In more details, four different positions 
for boars, rabbits and other small animals and six for deer 
have been registered. 

In the video-surveillance case, the human class has been 
composed taking into account six different pose 
conditions for three different people typology. 

The acquired images are pre-processed to reduce the 
noise, the algorithm has shown an effective performance 
and seems promising in the lights of further 
improvements regarding for example the integration with 
audio information, coming from different aligned 

microphones installed in the scene, and aiming at the 
same direction of the cameras. 
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Abstract

Active learning methods have been consid-
ered with an increasing interest for user inter-
active systems. In this paper, we propose an
efficient active learning scheme to deal with
this particular context. An active boundary
correction is proposed in order to deal with
few training data. Experiments are carried
out on the COREL photo database.

1. Introduction

Human interactive systems has attracted a lot of re-
search interest in recent years, especially for content-
based image retrieval systems. Contrary to the early
systems, focused on fully automatic strategies, re-
cent approaches introduce human-computer interac-
tion (Veltkamp, 2002; Vasconcelos & Kunt, 2001).

Starting with a coarse query, the interactive process
allows the user to refine his request as much as neces-
sary. Many kinds of interaction between the user and
the system have been proposed (Chang et al., 2003),
but most of the time, user information consists of bi-
nary annotations (labels) indicating whether or not the
image belongs to the desired category.

In this paper, we focus on the retrieval of concepts
within a large document collection. We assume that
a user is looking for a set of documents, the query
concept, within an existing document database. The
aim is to build a fast and efficient strategy to retrieve
the query concept.

Performing an estimation of the query concept can be
seen as a statistical learning problem, and more pre-
cisely as a binary classification task between the rele-
vant and irrelevant classes (Chapelle et al., 1999). The

Appearing in Proceedings of the workshop Machine Learn-
ing Techniques for Processing Multimedia Content, Bonn,
Germany, 2005.

relevant class is the set of documents within the query
concept, and the irrelevant class the set of documents
out of the query concept. This context defines a very
specific learning problem with the following character-
istics:

1. High dimensionality. The documents used to be
represented by vectors of high dimensionality.

2. Few training data. At the beginning, the system
has to perform a good estimation of the query con-
cept with very few data. Furthermore, the system
can not ask user to label thousands of documents,
good performances are required using a small per-
centage of labeled data.

3. Relevance feedback. Due to user annotations, the
training data set grows step by step during the
retrieval session, so the current classification de-
pends on the previous ones.

4. Unbalanced classes. The query concept is often
a small subset of the database (some hundreds
of documents). Thus, the relevant and irrelevant
classes are highly unbalanced (up to factor 100),
on the contrary to classical classification prob-
lems, where the classes have approximatively the
same size.

5. Limited computation time. The user can not wait
several hours between each feedback steps. We as-
sume that a user can wait at most several minutes
between each feedback steps.

In this paper, we propose an active learning strategy
to deal with these characteristics. In section 2, we
present current methods for classification, and motiva-
tions for active learning. In section 3, we focus on ac-
tive learning, and present two well-known approaches:
uncertainly-based sampling and error reduction. In
section 4, we propose an active learning scheme to en-
hance the previous methods. In section 5, experiments

23



Active Learning Techniques for User Interactive Systems: Application to Image Retrieval

are carried out on a generalist image database in order
to compare the different strategies.

2. Learning for human interactive
systems

2.1. Kernels and SVM

The first characteristic to deal with is the high di-
mensionality of feature vectors. With vectors of high
dimensionality (for instance, 100 or more), artifacts
appear, known as the result of the curse of dimension-
ality (Hastie et al., 2001). However, with the theory
of kernel functions, one can reduce this curse (Smola
& Scholkopf, 2002), especially if one can build a kernel
function for a specific application. For instance, when
distributions are used as feature vectors, a Gaussian
kernel gives excellent results in comparison to distance-
based techniques (Gosselin & Cord, 2004a).

Using a kernel function leads to a set of classification
methods. For human interactive systems, statistical
learning techniques such as nearest neighbors (Hastie
et al., 2001), support vector machines (Tong & Chang,
2001; Chapelle et al., 1999; Chen et al., 2001), bayes
classifiers (Vasconcelos & Kunt, 2001), have been used.
We have previously shown that the SVM classification
method is highly adapted to the image retrieval con-
text (Gosselin & Cord, 2004a). Thus, we will use SVM
as classification method in the following sections.

2.2. Semi-supervised learning

A natural choice for dealing with the second character-
istic – the few training data – is to use semi-supervised
learning techniques. Semi-supervised techniques uses
labeled and unlabeled documents to compute a clas-
sification function. For instance Transductive SVM
(Joachims, 1999), semi-supervised Gaussian mixtures
(Najjar et al., 2003), and semi-supervised Gaussian
fields (Zhu et al., 2003). However, TSVM and SSGM
do not lead to significant improvements (Chang et al.,
2003; Gosselin et al., 2004). Furthermore, these tech-
niques have high computational needs in comparison
to inductive techniques, and sometimes untractable.
For instance, SSGF needs the inversion of a N × N
matrix, where N is the size of the database. For now,
semi-supervised learning techniques do not seem to be
adapted to the context we are focusing on.

2.3. Active learning

Active learning is another solution to deal with few
training data. The interaction between the user and
the system can be exploited. The user is able to label

any document in the database. The only constraint is
that this user will not label a lot of documents. How-
ever, even a small labelling lead to significant improve-
ments with active learning.

3. Active learning strategies

In this paper, we focus on the active learning scheme
where a pool unlabeled examples is available. We
suppose that we have a set X = (x1, . . . ,xN ) of
documents, a set of labels y = (y1, . . . , yN ) (1 rel-
evant, −1 irrelevant, 0 unknown), a relevance func-
tion fy : X → [−1, 1] trained with y, and a teacher
τ : X → {−1, 1} that labels documents as −1 or 1.
We also denote by I the set of indexes of labeled doc-
uments.

The aim of an active learning within this context is
to choose the unlabeled document x that will enhance
the most the relevance function trained with the label
τ(x) added to the previous labeling y. We propose to
formalize this choice as the minimization of a cost func-
tion g(x) over all unlabeled documents. Thus, accord-
ing to a particular active learning method, the chosen
document to label is the argument of the minimum of
g(x). We also denote by J the set of candidates, i.e.
the indexes of unlabeled documents evaluated by g(x).

We present here two active learning strategies:
uncertainly-based sampling, which selects the docu-
ments for which the relevance function is most uncer-
tain about, and error reduction, which aims at min-
imizing the generalization error of the classifier. We
also present a strategy for batch selection.

3.1. Uncertainly-based sampling

This strategy aims at selecting unlabeled documents
that the learner of the relevance function is most un-
certain about. The first solution is to compute a prob-
abilistic output for each documents, and select the un-
labeled documents with the probabilities closest to 0.5
(Lewis & Catlett, 1994). Similar strategies have been
also proposed with SVM classifier (Park, 2000), with
a theoretical justification (Tong & Koller, 2001), and
with nearest neighbor classifier (Lindenbaum et al.,
2004).

In all cases, a relevance function may be computed.
This function can be a distribution, a fellowship to
a class (distance to the hyperplane for SVM), or a
utility function. Thus, with some adaptation of each
approach, a relevance function fy : X → [−1, 1] is
trained, where the most uncertain documents have an
output close to 0. The cost function to minimize is
then g(x) = |f(x)|.
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With such a strategy, the efficiency of a method de-
pends on the accuracy of the relevance function esti-
mation close to 0. This is the area where it is the most
difficult to perform a good evaluation1. In this par-
ticular context, statistical techniques are not always
the best ones, and we propose in the next section an
heuristic-based correction to the estimation of fy close
to 0.

3.2. Error Reduction

Active learning strategies based on error reduction se-
lect documents that, once added to the training set,
minimize the error of generalization (Roy & McCal-
lum, 2001).

Let P (c|x) the (unknown) probability of a document
x to be in class c, and P (x) the (also unknown) distri-
bution of the documents. A training set A with pairs
(x, c) sampled from P (x), P (c|x) provides the estima-
tion P̂A(c|x) of P (c|x). The expected error of gener-
alization can be written as:

EP̂A =

∫

x

L(P (c|x), P̂A(c|x))dP (x)

with L a loss function which evaluates the loss be-
tween the estimation P̂A(c|x) and the true distribution
P (c|x).

The optimal pair (x?, c?) is the one which minimizes
this expectation:

∀(x, c) EP̂A? < EP̂A+(x,c)

with A? = A+ (x?, c?).

Roy and McCallum propose to estimate the probabil-
ity P (c|x) with the relevance function provided by the
classifier, and estimate P (x) over X. With a maxi-
mum loss function, the estimation of the expectation
becomes, with J the set of unlabeled documents:

ÊP̂A? =
1

|J |
∑

x∈J

(
1− max

c∈{−1,1}
P̂A?(c|x)

)

As We don’t know the label of each candidate. Roy
and McCallum compute the expectation for each pos-
sible label, which finally gives the following cost func-
tion:

g(x) =
∑

c∈{−1,1}
EP̂A+(x,c)P̂A(c|x)

with P̂A(c|x) estimated with the relevance function
fy(x):

P̂A(c|x) =
c

2
(fy(x) + c)

with fy(x) such as y encodes the training set A.

1In the context of human interactive system, where only
few training data is available, this is a major problem.

3.3. Batch selection

In human interactive systems, it is often necessary to
select batches of new training examples. A lot of ac-
tive learning strategies are made to select only one
new training example. With no particular extension,
these strategies can select several instances very close
in the feature space. Considering the power of current
classification techniques, labeling a batch of very close
documents or only one of them always gives the same
classification.

In the version space reduction scheme, (Tong &
Koller, 2000) propose to select batches yielding mini-
mum worst-case version space volume. However, this
method requires a lot of computations making it in-
feasible in practice. (Brinker, 2003) proposes a fast
approximation of this strategy, based on the diver-
sity of angles between the hyperplanes in the version
space. The method selects documents close to the
SVM boundary one far from another, and also far from
the current training data:
∣∣∣∣∣∣∣∣∣∣∣

I? = 0
repeat
t = argmin

i∈J
(λ|f(xi)|+ (1− λ) max

j∈I∪I?
k?(xi,xj))

I? = I? ∪ {xt}
until |I?| = l

with λ ∈ [0, 1] and k?(xi,xj) the angle between two
instances:

k?(xi,xj) =
|k(xi,xj)|√

k(xi,xi)k(xj ,xj)

The λ parameter can be used to adjust the diversity
strategy contribution; 1

2 is chosen as default value 2.

4. Active learning scheme

For both active learning strategies, the estimation of
the relevance function is decisive. We propose in the
following subsection an active correction to deal with
very few training data (less than 1%). We also propose
an active learning scheme with diversity for any cost
function-based active learning method, and a practical
solution to reduce the computation time.

4.1. Active Boundary Correction

We propose to perform the following correction to the
relevance function:

f?(x) = f(x)− f(xOs)

2If additional knowledge is available (for instance, key-
words), it can be used to tune this parameter.
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Figure 1. Values of s(t) according to feedback steps.

where O = argsort f , and s the correction index.

The aim of this approach is to compute s such as the
”ideal” relevance function is zero at xOs . To perform
this, we propose to use the interaction with the user.
The idea is to ensure that the user labels as many
relevant as irrelevant documents. Then, the selected
area is the most uncertain one. If the user provides
a lot of relevant labels, we assume that we are close
to the heart of the relevant class. Then we move the
selected area further from the heart of the relevant
class. If the user provides a lot of irrelevant labels,
we assume that we are far from the relevant class, and
then move the selected area closer to the heart of the
relevant class.

We define a document x as close to the heart of the
relevant class as f(x) is close to 1. We change the
correction index s after a sort O of the documents
according to the relevance function f(x). Small values
of s means that the zero of the ideal relevance function
is close to the heart of the relevant class, and vice-
versa. At the feedback iteration t, we assume that
the ”ideal” relevance function is zero at xOs(t) . We
compute the new correction index s(t + 1) according
to the labels given by the user:

s(t+ 1) = s(t) + h(pos(t), neg(t))

with pos(t) (resp. neg(t)) is the number of relevant
(resp. irrelevant) labels provided by the user at the
feedback iteration t, and h(a, b) an heuristic function.
In order to get the desired behavior, we propose the
following heuristic function: h(a, b) = 2× (a− b).
At step t = 0, because we have no idea of the level of
complexity of the searched concept, we set s(0) = 0.

This method is especially interesting in a context with
training data, where the estimation of f(x) is difficult.
We compared this method with SVMactive on an image
database, with 5 labels per iteration (see Experiments
Section for further details). The curves in Figure 1
shows the values of s(t) according to feedback steps.
For the SVMactive method, g(x) = |f(x)| and s is such
as f(xOs) is closest to 0. Both methods have the same
behavior, but SVMactive is very unstable during the
first iterations.

This correction can be used with the active learn-
ing methods presented in the previous section. For
uncertainly-based, this is simple. For error reduc-
tion, the correction is applied each time a classifier
is computed. The same correction is applied, accord-
ing to a new ranking of the new relevance function. A
new value fy(xOs) is computed for each new training
set y, and each case the relevance function is such as
f?y(xOs) = 0.

4.2. Incorporating diversity

In order to select batches with diversity, we propose
to use the angle diversity scheme (with g(x) instead of
|f(x)|):

∣∣∣∣∣∣∣∣∣∣∣

I? = 0
repeat
t = argmin

i∈J
(λg(xi) + (1− λ) max

j∈I∪I?
k?(xi,xj))

I? = I? ∪ {xt}
until |I?| = l

We normalize the cost function g(x) before performing
this step, in order to get values in the same interval
than the cosines value interval. We observe that a
diversity technique allows to select documents for la-
beling which are not close one to another. It is decisive
in image retrieval context.

4.3. Reduce the computation time

In order to propose labels to a human expert in a rea-
sonable time, all unlabelled documents can not be eval-
uated. We propose to restrict the evaluation of g(x)
to a set of candidates. We denote by J the set of the
indexes of these candidates. We propose to reduce
the set of unlabeled documents to the m closest docu-
ments to the boundary. For methods using boundary
correction, the correction is made before the selection
of the candidates. Thus, the boundary correction also
changes the choice of the candidates.

26



Active Learning Techniques for User Interactive Systems: Application to Image Retrieval

5. Experiments

5.1. Evaluation Protocol

Tests are carried out on the generalist COREL photo
database, which contains more than 50, 000 pictures.
To get tractable computation for the statistical evalu-
ation, we randomly selected 77 of the COREL folders,
to obtain a database of 6, 000 images. To perform in-
teresting evaluation, we built from this database 50
concepts3. Each concept is built from 2 or 3 of the
COREL folders. The concept sizes are from 50 to 300.
The set of all the concepts covers the whole database,
and each image of the database is at least in one of the
concepts, and at most in 5 different concepts.

Color and texture distributions are used as feature vec-
tors, the kernel is a Gaussian kernel with a χ2 distance,
and the classification method is SVM.

We simulate the use of a image retrieval system. For
one retrieval session, we assume that the user chooses
one picture in the database for the concept he is look-
ing for. A concept and a picture from this concept
are randomly chosen for each new simulated retrieval
session. In practice, this is done when the user brings
one picture of its own. Then, the system computes
features of this picture, and labels as relevant the clos-
est picture. Other techniques could be used for this,
for instance using keywords.

Thus, the simulated retrieval session starts with one
relevant picture. Next, the system asks the active
learner for 5 images to label. These images are labeled
according to the desired concept, and the system asks
again the active learning for 5 other images to label,
using the 6 current labels. These feedback steps are
iterated 10 times, and at the end of the retrieval ses-
sion, the training set has 51 labels. Using these labels,
a classification of the database is performed. The er-
ror of classification and the number of pictures in the
concept within the 100 most relevant ones (top-100)
are computed. We simulate 1,000 retrieval sessions
for each active learning method. The error of classifi-
cation and the top-100 are averaged over all retrieval
sessions.

5.2. Comparison

Results are reported in Figure 2 with a full set of
candidates (all unlabeled documents), and in Figure
3 with a reduced set of 100 candidates. The first

3A description of this database and the
50 concepts can be found at: http://www-
etis.ensea.fr/∼cord/data/mcorel50.tar.gz. This archive
contains lists of image file names for all the concepts.

line shows the active learning method. The “None”
method means that no classification is performed, only
the distance between an image and all other ones is
computed. The second line shows the Top-100 for each
method. For the “None” method, this result means
that the average probability to find an image within
the same concept than the considered image in the
100 nearest neighbors is 16%. The third line shows
the average classification error. The last line shows
the average computation time for a retrieval session.

The error reduction method (ER) gives better results
than the uncertainly-based method (UB) (cf. Fig. 2).
However, much more computation time is required (cf.
Fig. 2) for ER, and it does not well support the reduc-
tion of the set of candidates in terms of classification
error (cf. Fig. 3). The angle diversity improvement
(AD) increases performances in all cases. This shows
that, even if this method was built especially for UB,
it can be used with others active learning methods.
Furthermore, its costs in terms of computation time
is small. The active boundary correction (BC) also
increases performances in all cases. It has also a neg-
ligible cost in terms of computation time, and well
supports the reduction of the set of candidates. Note
that the improvement is much more significant for UB
than for ER. Globally, the reduction of the set of can-
didates is interesting for all strategies, expect for ER
without BC. For comparable performances, the com-
putation time is divided by 10. Finally, the most ef-
ficient strategy is the BC+UB+AD strategy, which
combines boundary correction, uncertainly-based, and
angle diversity.

6. Conclusion

In this paper, we proposed active learning strategies
for interactive search systems. We introduced an al-
gorithm to correct the boundary of a classifier func-
tion, in order to improve the active learning efficiency.
We proposed an active learning scheme combining dif-
ferent techniques, and a method to reduce the com-
putation time. These strategies have been compared
on a generalist image database. Results show that
the efficiency of the proposed combinations, especially
our strategy using boundary correction, uncertainly-
based, and angle diversity. These results also show
that the computation time can be significantly reduced
using the proposed method without dramatical degra-
dation of performances.

27



Active Learning Techniques for User Interactive Systems: Application to Image Retrieval

Method None UB ER UB+AD ER+AD BC+UB+AD BC+ER+AD
Top-100 16 28 33 31 34 36 35

Classification Error – 8.2% 6.7% 6.7% 4.3% 2.5% 3.0%
Time 0.07s 0.41s 600s 60s 700s 60s 700s

Figure 2. Average Top-100, classification error and execution time for each active learning method, 10 feedbacks steps,
5 labels per step, with full set of candidates (all unlabeled documents). Legend: UB = Uncertainly-Based, ER = Error
Reduction, AD = Angle diversity, BC = Boundary Correction.

Method None UB ER UB+AD ER+AD BC+UB+AD BC+ER+AD
Top-100 16 28 32 31 34 36 35

Classification Error – 8.4% 19.3% 6.9% 13.7% 2.6% 3.1%
Time 0.07s 0.41s 5.4s 2.4s 6.8s 2.4s 6.8s

Figure 3. Same protocol as Fig.2 with a reduced set of 100 candidates.
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Abstract

In this demo we present a Multi-Agent Sys-
tem using mobile agents for Content-Based
Image Retrieval on distributed databases.
The search system is based on 2 sub-systems:
the databases discovery, using “ant-like”
agents marking their route; the database in-
dexing and retrieval using color signatures of
the images.

Content-Based Image Retrieval (CBIR) are intrinsi-
cally limited by the semantic gap: the low-level infor-
mation extracted from images and the semantic user
request are very different by nature (Santini et al.,
2001; Eakins, 2002; Smeulders et al., 2000). The final
user is more interested in the semantic content than by
the color or the texture of the image... although this
is what is actually used by CBIR techniques. Besides,
databases are now distributed all over the Internet.

One strategy to reduce this gap is to allow on-line in-
teractive search (Ishikawa et al., 1998; Tong & Chang,
2001; Cord et al., 2004; Gosselin & Cord, 2004). The
system asks the user to conduct the search within the
database. Starting with a coarse query, the interactive
process allows the user to refine the query as much
as necessary. Most of the times, the user interaction
consists of binary annotations indicating whether the
image is relevant or not. The system integrates these
annotations through a relevance feedback step to im-
prove the system effectiveness.

Currently, interactive strategies only address fixed,
closed image databases. Besides, the database is cen-

Appearing in Proceedings of the workshop Machine Learn-
ing Techniques for Processing Multimedia Content, Bonn,
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tralized. In the demo, we extend the problem to dis-
tributed databases (image databases distributed on a
local network) by using Multi-agent systems (MAS)
whose interest has been shown concerning resource
sparing (Bonabeau et al., 2000; Simonin et al., 1998).

In previous works (Revel, 2003) inspired from robotics
(Revel et al., 1998; M.Quoy et al., 2000; A.Revel &
P.Gaussier, 2003), a MAS based on ANT algorithms
(M.Dorigo et al., 1996) was proposed to find text con-
tent in HTML pages on the web. In this demo, we
show how the system has been adapted to find images.

1. Summary on the “ant” search
web-agent

The principle of “ant” strategies is to optimize routes
towards a given resource by reinforcing markers (called
pheromones) on sites situated along the pathway from
the source to the destination. Given a set of agents
launched from site s1 (source) and which should reach
site sn (destination), the optimization is performed
collectively and is the result of the emergence of a dy-
namical attractor coming from the interaction between
all the agents and their environment.

Formalization:

Let Phk(t) be the pheromone level on site sk.

Let {s1, ..., sk, ...sn} be the set of sites

Let prof the number of moves since s1

Let {succ(si)} be the set of sites sj directly
following si

Let {pred(si)} be the set of sites sj the agent
has visited before reaching si

Let ξ be some noise value ∈ [0, 0.0001]

Practically, we have proposed the following algorithm:
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“Ant”-agent A behavior
Do

If A is on site sn
// The information is found!

Increase Phn
Go back to the nest & Increase Phj (∀j ∈

{pred(sn)})
Else
// Look forward

Decrease Phj (∀j ∈ {succ(j)})
Go to site sj with probability

Phj(t)Pk
l=1 Phl(t)

+ ξ

End If
While sn not found or prof > θ

With Decrease and Increase given by:

Pheromone Phk updating

Decrease: Phk(t+ 1) = (1− α) · Phk(t)

Increase: Phk(t+ 1) = Phk(t) + β

Given this algorithm, we have shown that a population
of “ant-agents” is able of optimizing a route leading to
a given information and exhibit re-routing abilities.

2. Setup of the Demo

Figure 1. top) Image used as request — bottom) Example
of answers given by the system.

In the demo, the agents are only able to move to three
different machines directly from the source of the re-
search (user interface — see 2). The first (A), is filled
with 100 animals images, the second with 100 flowers
images and the third contains both the animals and the
flowers images (200 images1). Each research uses 20
“ant”-agents simultaneously (see figure 3). We choose
these types of images because of their “orthogonal”
characteristics: animals are very different from flowers
both in meaning and in color composition. A signature
for the target image (see figure 1) is computed and is
compared to the signatures of the images within the
database. When the distance is under a given thresh-
old, the corresponding images is considered as correct
(smiling “smileys” vs sad “smileys”). As computing
the signatures could take much time and thus cannot
be performed “on-the-fly”, we have chosen to compute
an index of the signatures of all the images “off-line”
and stored it in a file containing both the URL of the
images and the corresponding signature. The features
we used to compare the example to the images from
the databases were based on a HSV transform. The
HSV space is known for its similarities with humans
color perception. The HSV representation of the im-
age was quantified in 163 colors, and the histogram
was compute as a signature (Smith & Chang, 1996).

Figure 2. User interface: the user can select the image to
search (upper left corner), the threshold (upper right cor-
ner). The URL of the results are given on the bottom of
the window.

Two images are considered as alike when the euclidean
distance between their signatures is under a threshold
fixed by the user (see figure 2 and example of results
in figure 1).

∑

16i6163

|ci(r)− ci(k)|2 6 s (1)

The user interface asked the user to choose an image
example and compute its HSV histogram. It also asked

1Although the demo uses 200 images only for purpose
of simplicity and resources sparing, we are currently using
databases with 1200 images concerning 14 categories.
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for the threshold and save it with the histogram in a
string. The string was then sent to the “ant”-agents.

The agent making the interface with the image
database receives the string containing the signature
and the threshold. It parses an indexes the file con-
taining the histograms of the images stored on the
computer and computed the similarity between the re-
ceived signature and those in the index file (see equa-
tion 1). The URL of the images of which the histogram
comparison were under the threshold are finally re-
turned to the “ant”-agent coming back to the user (see
figure 2).

Figure 3. Demo interface: agents are launched from the up-
per platform and can reach 3 different machines (left, bot-
tom and right). If an image is found (right “smiling” smi-
ley), the agent comes back and reinforces the pheromone
level (grey/green bar). Conversely, if no image is found
(bottom “sad” smileys), the pheromone level decreases
(dark bar).
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Abstract  
This paper outlines and demonstrates a new 
algorithm which is capable of extracting and 
classifying human walking from video image-
sequences, even in the non-ideal case of typical 
varying illumination conditions. The method 
works with spatio-temporal input information to 
detect and classify the patterns typical of human 
movement. The paper presents a new 
information-extraction and temporal-tracking 
method based on a simplified version of the 
symmetry which is characteristic for the moving 
legs of a walking person. In a further processing 
stage these patterns are filtered, then re-sampled 
using Bezier-splines to generate an invariant and 
noise-cleaned signature or “feature”. With this 
use of temporal tracking and non-linear 
classification we have achieved pedestrian 
detection from cluttered image scenes with a 
correct classification rate of 91% from 1-2 step 
periods. The detection rates of linear classifier, 
SVM and Gaussian mixture model are also 
presented in the eigenspace for recognition 
purposes. 

1.  Introduction 

Gait analysis has a wide range of possible applications. 
Being a no intrusive biometric feature it can be used for 
recognition/detection of people. Gait can be detected at 
low resolution, and therefore it can be used in situations 
where face or iris is not available in high enough 

resolution for recognition. The impact of pedestrian 
detection in intelligent vehicles could be great. The 
extraction and the tracking of human figures in image-
sequences is a key issue for video surveillance and video-
indexing applications. This interest is strongly motivated 
by the need for automated person-identification systems 
(http://www.darpa.mil/iao/HID.htm). The process may be 
broken down into several parts: detection (Cutler & Ellis, 
2000), tracking, classification (Murase & Sakai, 1996) 
and identification (Wang et al., 2003, Hayfron-Acquah et 
al., 2003) of human movement or gait.  

————— 
Appearing in Proceedings of the workshop Machine Learning 
Techniques for Processing Multimedia Content, Bonn, Germany, 2005. 

Two main trends are pursued in recent research on gait 
analysis. One takes into account motion information and 
tries to detect the periodic features of human gait in the 
movement of candidate objects. The second trend does 
not integrate information from previous frames, but rather 
verifies possible pedestrians by means of shape/silhouette 
analysis or pattern matching. The more traditional 
approach to the classification of a periodic signal is with 
the Fourier transform. Some systems operate a frequency 
analysis of the candidate pattern changes over time and 
then select the one characteristic of human gait. The 
selection is made with statistical methods or by simple 
thresholding (Fujiyoshi&Lipton 1998, Lipton 1999, 
Polana&Nelson 1997). As an example in (BenAbdelkader 
et al. 2001, Cutler&Ellis, 2000) a Short-Time Fourier 
Transform is used with a Hanning windowing function to 
analyse the signals obtained by correlation of the pattern 
of detected objects. HMM based models are very popular 
for human gait analysis. In (Kale et al.) the periodic 
change of human’s silhouette was modeled by a HMM. In 
(Curio et al., 2000) the periodic movement detected is 
correlated to an experimental curve derived from the 
statistical average of human gait periods. High peaks of 
the correlation function indicate the presence of a person. 
A useful and popular approach is based on silhouette 
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analysis (Soriano et al. 2004) with spatiotemporal 
representation, where a key aim is to achieve a more 
invariant data representation of the detected object. In the 
work of Hayfron-Acquah et al. (2003) the symmetries of 
the silhouette are utilized as a biometric parameter for 
person-identification.  
Our method focuses on the periodic dynamics of human 
gait. It utilizes derived third-level symmetries of the edge-
map to detect and track structural changes in video 
sequences, and uses SVM for pattern classification in an 
eigenspace with a small number of dimensions (it uses 
PCA to reduce the dimensionality of the feature-space). 
Our method (under certain not severely restrictive 
assumptions) can detect pedestrians in real-time, with 
91% correct detection. 

2.  Feature Extraction 

Generally, object detection in videos must be done in two 
steps. Firstly, some detectable features are needed; 
secondly, robust tracking of the extracted features must be 
performed.  
The present paper describes a method, comprising the 
following processing steps on the input image: 

� Adaptive background filtering 
� Constructing third-level symmetries 
� Tracking the symmetries 
� Re-sampling motion patterns 
� Dimension reduction of normalized patterns 
� Pattern classification: walk or non-walk 

2.1  Background Modeling 

For the detection of changes in video image sequences we 
have implemented an adaptive background-modelling 
algorithm. Our method tries to extract the accurate 
silhouettes of foreground objects even if they have partly 
background like colors and shadows are observable on the 
image. It does not need any a priory information about the 
shapes of the objects, it assumes only they are not point-
wise. The method exploits temporal statistics to 
characterize the background and shadow, and spatial 
statistics to the foreground. A Markov Random Field 
model is used to enhance the accuracy of the separation. 
The background modelling step is based on the work of 
(Stauffer et al. 2000). The algorithm collects statistics 
about the occurring values at each pixel position, and the 
recent history is modeled as a mixture of Gaussians. The 
i-th component of the mixture has the following 
parameters: weight wi, mean value µi

 and covariance 
matrix Σi in Σi=σiּI form. (I is the 3x3 identity matrix.) 
The component with the greatest weight is considered the 
background component. The parameters are updated via 
online k-means algorithm. 
Shadow detection is an important issue. Usually shadows 
have to be handled separately, because they do not belong 

to moving objects but their color properties are different 
from the background, see Figure 2. Our shadow detector 
works in the HSV color space. (Cucchiara et al. 2001) 
established that shadow cast on the background does not 
change its hue significantly, but it lowers its luminance. 
The detector uses the parameters of the current 
background model. The output I is a binary decision: 
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Parameters 21,, τττ offset  are characteristic for lighting 
conditions and reflection. 
For the detection we used a general Markov Random 
Field model described in (Berthod et al. 1996). Each pixel 
is classified into one of the following classes: foreground, 
background, and shadow; and a label is assigned to it 
according to the classification result. An energy term 
constructed depending on the global labelling of the entire 
image. One part of this energy term evaluates the 
similarity between the current value of the pixel and the 
“usual value” in the actual class of the pixel. The other 
term penalizes the high number of neighbouring pixels 
having different label. The aim is to minimize the energy 
term, so the algorithm should find the best, or nearly the 
best labelling in the image. 
We developed a probability model to describe the desired 
classes and get the first part in the energy term. We 
collected the background, and shadow statistics in time 
using the previously mentioned methods, and the 
foreground properties in space through a pixel value 
classification algorithm. We introduced the details of our 
work in (Benedek&Sziranyi 2005). 
 

   
Figure 1: a) Original frame  b) Silhouette image created by 

Stauffer-Grimson algorithm c) Foreground and shadow 
detection with our method (white: foreground, gray: shadow, 

black: background) 

Figure 1 shows the result of our method in a difficult case 
when a man is walking in white shirt in front of a white 
wall. 

      
Figure 2: Experimental results: a) a good detection results b) 

detection problem caused by reflection and shadows 
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2.2  Local-Symmetry Extraction 

Symmetry is a basic geometric attribute, and most objects 
have a characteristic symmetry-map (Giblin & Kimia, 
2003). These unique and invariant properties lead to the 
applicability of symmetries in our approach to image-
processing. Our method (Havasi & Szlávik, 2004) 
employs a modified shock-based method (Sharvit et al., 
1988): it calculates symmetries by propagating parallel 
waves from the ridge. In our approach, we simplify the 
algorithm by using only horizontal morphological 
operators; since, in the practical cases we are considering, 
we essentially need to extract only vertical symmetries. 
This modification has the advantage that it assists in 
reducing the sensitivity to fragmentation. Sample outputs 
of the algorithm can be seen in Figure 4. The symmetry 
operator normally uses the edge map of the original image 
as its input; we used the Canny edge-detector algorithm to 
derive the locations of the edges (ridges). 

 
Figure 3: An idealised outline of a walking person, together 

with the derived Level 1, Level 2, and Level 3 symmetry maps. 

As illustrated in Figure 3, the symmetry concept can be 
extended by iterative operations. The symmetry of the 
Level 1 symmetry map is the Level 2 symmetry; and the 
symmetry of the Level 2 map is the Level 3 symmetry 
(L3S). 

2.3  Tracking 

The extracted L3Ss are primary useful for analysing 
images of the legs of the human target. On the other side, 
symmetry-images resulted from the arms are typically 
composed of small fragments which are difficult to 
distinguish from the noise. However, even the existence 
of clear symmetries in a single static image does not 
necessarily provide usable information about the image 
content; for this, we need to track the changes of the 
symmetry fragments by temporal comparisons. The 
symmetry fragments and their radii define an outline that 
can be used as a mask between successive frames to aid 
classification of the coherent fragments in successive 
frames, as illustrated in Figure 4. The tracking algorithm 
calculates the overlapping areas between symmetry 
masks; and as time progresses it constructs the largest 
overlapping area. The results of temporal tracking can be 
seen in Figure 4, where we demonstrate the resulting 
symmetry-patterns in real-life situations. The first L3S 
appears when the legs are opening and the last is detected 
just before the legs are closed; so a symmetry-pattern for 

the motion of a walking person corresponds to the 
movement of the legs from opening to closing. 

   
Figure 4: Masks of the reconstructed symmetries from 

successive frames; and symmetry-patterns. 

2.4  Re-Sampling 

The extracted symmetry-patterns are represented with the 
upper and lower end points (2 each) of the L2S in each 
frame; these points can be seen on Figure 5.  

 
Figure 5: The limits used to define symmetries for the re-

sampling and classification tasks. 

Thus there are four 3D coordinates, which correspond 
approximately to the “end-points” of the two legs. 
Temporally these patterns depend both on the frame rate 
and the walking speed, so a pattern usually contains data 
from 4-8 frames. Rates of digital cameras may vary by 
time when bus-control drops the transmission. It is not 
rare and it needs the re-sampling on time. We perform 
this normalization task with Bezier spline interpolation. 
This technique has the advantage that it performs two 
tasks: (i) data is re-sampled in a defined time interval with 
fixed point count, (ii) noise-filtering is performed on the 
trajectories, which gives a smoother symmetry-pattern. In 
our experiments the noise-cleaning is critical because in 
real outdoor scenes these patterns are often damaged. The 
Bezier spline (B-B spline) (1) is a good choice because 
the effect of base points is global; so the presence of some 
damaged points does not cause significant change in the 
whole trajectory. 
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The base points consist of the (x,y) image coordinates of 
the above-mentioned symmetry patterns, while the z 
coordinate represents the time (in milliseconds) at which 
the frame was captured. This time-extended data 
representation permits the integrated analysis of data 
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obtained from several cameras where the frame rate is 
different (e.g. network cameras); the extracted features 
must be resampled with a continuous time-division. The 
result of Bezier spline interpolation of data can be seen in 
Figure 6. 

  
Figure 6: Original symmetry-pattern, the trajectories of 9 frames 

and interpolated trajectories of 100 points. 

2.5  Dimension Reduction 

The interpolated 3D (XYT) points are rearranged into a 
row-vector with dimension of 800: 

],,,,,,,[~
44332211 yxyxyxyxx =  

It follows from the linearity of the z coordinate (time), the 
smooth time-division (time is linearly related to the 
successive samples), that this coordinate can be omitted: 
it has no discriminative information-content. After the 
patterns are centered in both x and y, both coordinates are 
normalized using a constant chosen such that max(y)= 1 
and min(y)= –1; we do this because we have found that 
the y-size of the patterns varies less than does the x-size. 
We do not normalize with individual coefficients for x 
and y, since in that case the information-content of the 
ratio of the x and y values would be lost. 

A well-known technique for dimension reduction is the 
PCA method (Huang et al., 2001). To find the principal 
components of the distribution of the feature space we 
first obtain the mean m and the covariance matrix Σ of the 
data set. Then we can compute N≤rank(Σ) nonzero 
eigenvalues and the associated eigenvectors of Σ based on 
SVD. The eigenvectors associated with a small number of 
the largest eigenvalues correspond to large changes in 
training patterns; thus a transformed matrix can be 
constructed from eigenvectors to project the original data 
into a parametric eigenspace with a drastically reduced 
number of dimensions. We keep the first 3 eigenvalues 
and their associated eigenvectors to form the eigenspace 
transformation matrix. Figure 7 gives these three 
eigenvectors. From Figure 7, we can see that these eigen-
walks are periodic, which reveals the construction method 
of raw data. Furthermore we can determine that the 
relevant information is the x directional motion of lower 
end points and walk has a characteristic symmetry on the 
y directional motion of end points. 
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Figure 7. The first three eigenvectors obtained by PCA training. 

We considered the space spanned by the 3 most 
significant eigenvectors that account for 93% of the 
variation in the training data-set: we call this the 
Eigenwalk space. Figure 8 demonstrates the results using 
the test-set of labeled “walk” and “non-walk” patterns 
which is described below. 

-10 -5 0 5 10 15 20
-4

-2

0

2

4

6

8

 
Figure 8. “Walk” and “non-walk” patterns in the eigenspace 

In the Figure 8 we can observe two main groupings of the 
“walk” patterns; these two groups correspond to the two 
opposite walking-directions. The human patterns lie on a 
non-linearly shaped manifold in the eigenspace. This 
drastically reduced number of dimensions is of great 
assistance in increasing the speed of classification, which 
is an important factor in real-time applications. 

3.  Pattern Classification 

Level 3 symmetries can also appear in other parts of the 
image, not only between the legs; and the tracking method 
also collects all of these related symmetries. Our previous 
work (Havasi et al., 2004) introduced an algorithm that is 
able to detect pedestrians from recognition of their 
characteristic symmetry-patterns, using Kernel Fisher 
Discriminant Analysis (KFDA technique). Here we 
present a more established pattern-classification method 
based on the continuous interpolation of the symmetry-
patterns and the classification process is carried out via 
non-linear classification method, namely Support Vector 
Machine (SVM) (Müller et al., 2001). 
In our experiments we compared the performance of 
linear – Linear Discriminant Analysis (LDA), Linear 
Perceptron, and non-linear – KFDA with gaussian kernel, 
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SVM with gaussian (2) and inverse multiquadratic (3) 
kernels, classification methods.  Selecting properly the 
kernel parameters for SVM the number of support vectors 
can be controlled with an acceptable classification error 
rate, see Figures 9 and 10. The number of support vectors 
in the SVM-based algorithm has a direct effect on the 
speed of the algorithm: less the number of support vectors 
faster is the algorithm. 
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Figure 9. Relation between the kernel parameter and the 
classification error rate for the Gaussian (2) and inverse 

multiquadratic (3) kernels 
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Figure 10. Relation between the kernel parameter and the 
number of support vectors 

Analyzing Figures 9 and 10 we obtained that the optimal 
kernel parameters are σ=1.26 and θ=0.92 for gaussian and 
inverse multiquadratic kernels respectively. 
To evaluate the proposed method, we derived “walk” and 
“non-walk” patterns from a considerable number of real-
life indoor and outdoor video sequences representing a 
variety of different walk directions, frame rates, viewing 
distances and surrounding situations. For training we used 
920 samples, and according to our manual classification 
these comprised 420 “walk” and 500 “non-walk” patterns. 
In the experiments our main goal was to reliably detect 

human movements, but at the same time with a false-
positive detection rate as small as possible. Testing of the 
methods were made on a dataset of 1500 samples, 500 
“walk” and 1000 “non-walk” patterns. Table 1 
summarizes the detection results of the tested 
classification methods. 

Table 1. Correct classification rates of different methods 

METHOD DETECTION 

RATE 
FALSE-

POSITIVE 
FALSE-

NEGATIVE 

LDA 76.4% 15.6% 8.0% 
KFDA 
(GAUSSIAN) 

87.9% 7.2% 4.9% 

LINEAR 
PERCEPTRON 

79.0% 17.3% 7.7% 

SVM 
(GAUSSIAN) 

89.2% 8.2% 2.6% 

SVM 
(INV. MULTIQUAD.) 

91.0% 6.9% 2.1% 

4.  Experimental Results 

After considering the numerical results, we summarize 
some practical limitations (see Figure 11) of the 
symmetry-tracking method which we noted. The L3Ss 
can be evolved only if the leg-opening is visible. In our 
tests we found that this meant that the direction of 
movement had to be at more than about 70° from the 
viewing axis; but this is not a serious limitation when 
more than one camera is monitoring the area (Szlávik et 
al., 2004). Crowds, and some other specific “overlap” 
situations are the main cases which cause problems, 
although “overlap” does not always prevent successful 
tracking. The most common problematic cases were as 
follows: subject wearing long coat; subject carrying large 
bag etc. in the hand nearest to the camera; full masking of 
the legs by another person in the perspective view; partial 
masking by another person moving on a parallel track, 
with synchronized step periods. All in all, the proportion 
of such non-conform walking (with no visible leg-pairs) 
in the processed real-life video sequences was about 20% 
in the campus area. 

       
Figure 11. Typical problematic cases 

5.  Conclusions 

The method we describe can detect pedestrians in image-
sequences obtained in outdoor conditions in real-time. 
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Considering even a single step-period, a very low false-
detection rate is obtainable. To achieve this, we used a 
novel feature-extraction and tracking method that can 
reflect the natural structural changes of human leg-shape; 
the method seems promising for the purpose of providing 
a useful “understanding” of image-content and thanks for 
the simplified symmetry extraction algorithm the 
detection method can run 15-20 FPS in 640x480 
resolution on a 2.4GHz Pentium CPU. 

In this paper, we have introduced an extended version of 
our pedestrian detection method described in a previous 
paper (Havasi et al., 2004). We are able to achieve an 
improved detection rate because we now use a more 
invariant and effective data representation in the 
Eigenwalk space, based on spline interpolation and a 
dimension-reduction technique. 

The method appears suitable for the detection of human 
activity in images captured by video surveillance systems 
such as those typically used in public places. 
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Addressing Partial Relevance in Image Retrieval
through Aspect-Based Relevance Learning
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Abstract

We consider the special structure of the rel-
evance feedback learning problem in image
retrieval, focusing particularly on the effects
of image selection by partial relevance on
the clustering behavior of feedback exam-
ples. Aspect-based relevance learning ad-
dresses this issue directly by means of a hy-
pothesis testing approach. We evaluate its
performance by comparison to two feature re-
weighting methods.

1. Introduction

As image content interpretation is both user- and task-
dependent, content-based image retrieval (CBIR) re-
volves to an important extent around the task of in-
teractively reaching an understanding of what a user
is looking for. One natural type of interaction is by
soliciting feedback directly in terms of the presented
images: by analyzing indicated relevant (positive) and
irrelevant (negative) example images, the system may
iteratively improve the selection presented to the user.
Feedback in terms of images is particularly convenient
given that, unlike for text documents, relevance of im-
ages can truly be determined “at-a-glance”. Recent
reviews of the state-of-the-art of relevance feedback in
CBIR are given in Zhang et al. (2003) and Zhou and
Huang (2003).
As the importance of image features representing the
image content differs from query to query, much re-
search has been aimed at feature re-weighting (e.g.
Rui et al. (1998), Salton and Buckley (1990)). For
example, Rui et al. (1998) update weights of differ-
ent feature classes by using the inverse variance of
the positive examples, thereby giving higher weights
to features for which the positives are relatively close
together. Many variants of this approach have been
proposed (e.g. Ciocca and Schettini (1999), Peng et al.
(1999)) typically based on the idea of assigning higher

Appearing in Proceedings of the workshop Machine Learn-
ing Techniques for Processing Multimedia Content, Bonn,
Germany, 2005.

weights to features in which positives cluster, while
negatives remain separated.
In many recent approaches the feedback images are
taken as training samples and are used to train a clas-
sifier or other learner for predicting the (ir)relevance
of the database images. Examples of learning methods
used are: SVMs (Tong & Chang, 2001), boosting (Tieu
& Viola, 2004), decision trees (MacArthur et al., 2000),
and nearest neighbors (Wu & Manjunath, 2001).
In this paper we also treat relevance feedback analy-
sis primarily as a learning problem but as one with
a special structure that requires careful attention. In
Huiskes (2005a) we proposed aspect-based relevance
learning as an analysis method well suited to this
structure. In this paper the main contribution lies in
the comparison of the performance of this method to
two feature re-weighting methods, where we focus in
particular on the effects of example selection by par-
tial relevance. The experimental results are based on
testing with a retrieval system for decoration designs
(e.g. wallpaper or textile patterns) for which example
selection based on partial relevance is a particularly
pressing issue.

2. Structure of the Relevance Feedback
Learning Problem

As a learning problem we cannot treat relevance feed-
back analysis as a standard two-class, relevant versus
irrelevant, classification problem; we mention the fol-
lowing issues:

Small sample learning problem. It has often been
recognized (e.g. Zhou and Huang (2003)) that the rel-
evance feedback problem is a small sample learning
problem. The number of example images depends on
the willingness of the user to cooperate but is gener-
ally small, say at most 10 examples per feedback cycle,
whereas the dimension of the feature space is large (of-
ten higher than 100). The small sample sizes disqualify
many of the standard learning methods unless special
measures are taken (e.g. Tong and Chang (2001)).

Example selection by partial relevance. Images are typ-
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ically relevant in some aspects and not relevant in oth-
ers, and in many retrieval applications fully relevant
images are hard to come by initially. When a user se-
lects an image as feedback example he generally does
so based on one or a few salient aspects; however, not
all aspects of interest need to be present in the image,
nor need all salient aspects present in the image be
relevant. For features other than those by which an
image is chosen, which can be a large majority, the
feedback received is thus to a large extent random:
positive feedback is given for feature values for which
no such feedback was intended. As a consequence ex-
amples often provide misleading evidence, see Fig. 1.

Figure 1. Shown are a target image (representing a sim-
ple user query for images of this type) and an image that
the user has selected as a positive example. Also shown
are histograms of database values for three (hypothetical)
features: “presence of horizontal stripes”, a feature mea-
suring some characteristic of ground texture, and “presence
of blue ground”. The plus sign indicates the feature values
of the example image; the T symbol indicates target values
desired by the user. The example image is selected based
on a single feature, viz. the possession of horizontal stripes.
No positive feedback for other features was intended; as a
consequence, such features will receive feedback on values
that are (approximately) random draws from the feature
value distributions. This often leads to misleading evi-
dence, as is illustrated by the two other features shown
here.

Examples will tend to cluster at feature values that are
most common in the database, thus interfering with
the identification of the proper regions of relevance.
This is related to the next issue.

Feature value distributions. Features often have value
distributions that are skewed. Take for instance a fea-
ture measuring the yellow-ness of an image, say di-
vided into three classes: “no yellow”, “some yellow”
and “very yellow”. Then most of the database images
will be in the first class and, relatively, very few will
be in the last. Generally only few images have values

that correspond to perceptually salient properties.
The effect of example selection by partial relevance
may thus be amplified by feature value distributions:
clustering will naturally occur at the most common
feature values. Even though negative examples may
counteract misleading clustering of positives to some
extent, learning methods will generally be influenced
by the unintended concentration of positive examples
and the relatively small fraction of feature values for
which feedback was actually intended. This also holds
for many feature re-weighting approaches as they are
usually based on the variation or clustering behavior
of example feature values.

3. Aspects and Relevance

In Huiskes (2005a) we treat images as sets of aspects,
where we understand an “aspect” simply as a property
which an image either has or has not, and for which
we intend to resolve its effect on perceived relevance as
a unit. Aspects can thus be explicitly defined in terms
of conditions on feature values, i.e. as derived binary
features that model a specific perceptual quality, but
can also live solely in the “eye of the beholder”.

There are two main reasons why we choose to employ
aspects as an intermediary conceptual layer between
the features and relevance estimates. First, it provides
an effective framework for modeling partial relevance.
Each aspect can be considered as either neutral, rele-
vance enhancing (positive, or simply relevant) or rele-
vance inhibiting (negative). In this way we can model
a search task as a collection of positive, neutral and
negative aspects. Note this is not the case for fea-
tures as a whole. For “relevant features”, not only will
there be feature values that lead to higher perceived
relevance, but by necessity there are also feature val-
ues making images less relevant. Second, it allows us
to associate a frequency of occurrence to such “unit
of relevance” given a specific context. As we under-
stand the context to be the database under study, we
define for each aspect an aspect image frequency pdb

as the fraction of images in the database that possess
the aspect. As explained in the next section this is the
key to quantifying meaningful clustering and discern-
ing neutral from positive and negative aspects. The
actual construction of aspects is discussed in section
5.1.
For illustration, suppose a user is interested in finding
designs that have: (i) a blue background; (ii) simple
round motifs that are far apart; and (iii) high contrast
between motifs and ground. Depending on the avail-
able features, we can translate this to requirements in
terms of aspects. Some aspects are clearly positive,
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e.g. blue-ness of the ground should be high, dominant
motif shape should be round, and relative amount of
background should be high. Aspects in opposition to
relevant aspects are negative, e.g. the user does not
want squares, or a ground that is red. Additional nega-
tive aspects may come up during the feedback process,
e.g. the user may decide that he does not like yellow
motifs. Other aspects are neutral, e.g. he may not
care about ground pattern: it may be plain or have
some texture.

4. Aspect-based Relevance Learning

In our retrieval system feedback example selection is
implemented by presenting images in clickable selec-
tion displays, each consisting of a grid of a fixed num-
ber of, say 50, thumbnail images. The number of im-
ages inspected per cycle may be larger as the user can
leaf through the selection displays, or “reset” for a new
random selection. Additional selection displays may
be available, for instance offering “most-informative-
images” (e.g. Zhou and Huang (2003)). The sequential
ordering of the images is random in the first cycle, and
by relevance ranking in subsequent cycles. The exam-
ples and counterexamples are collected in positive and
negative example sets. At each cycle of the feedback
process the user updates the examples in the exam-
ple sets by either: (i) selecting new images as positive
or negative examples adding them to their respective
sets; (ii) removing images from the sets, i.e. the sets
are preserved unless images are no longer deemed rep-
resentative enough and are deleted explicitly.

4.1. Aspect Selection

For aspect-based relevance learning we use the feed-
back data available at the end of each cycle foremost
to establish the effect (neutral, positive or negative)
of the various aspects. The main idea is the follow-
ing: as the user selects an image as feedback example
based on some positive or negative aspects, possession
of the other aspects will approximately follow the dis-
tribution of aspect possession in the database. We are
interested in finding those aspects for which the user
has actively selected more examples with that aspect
than may be expected to arise by chance only, i.e. as a
side product of selection by other aspects. As for each
aspect we know its associated aspect image frequency
pdb we can model the probability distribution of the
number of examples that would arise for a neutral as-
pect. Taking this approach has the benefit that fea-
ture selection and, ultimately, relevance assignment is
based not only on clustering behavior of positives and
negatives, but is also compared to clustering behavior

of all database images. This leads to a natural empha-
sis on salient1 aspects, effectively giving higher weights
to example image feature values that are more rare
in the database. In addition, by taking into account
feature value distributions, we are not dependent on
negative examples to down-weight positives that clus-
ter at aspects with low saliency. This means negatives
can be used to indicate which aspects are not desired,
but are not required for the sole purpose of getting
sufficient data for classification.

Let n+ (n−) be the total number of positive (nega-
tive) images selected, which we take to be fixed, and
N+ (N−) be the number of positive (negative) ex-
amples that possess the aspect. For each aspect, we
consider two independence hypotheses, H+

0 and H−
0 ,

stating that the aspect behaves as if it were neutral
to the user in regard to the accumulation of positive
(resp. negative) examples. Under these hypotheses
we model aspect possession of an example image as a
Bernoulli variable with probability pdb; consequently,
the number of positives and negatives with given as-
pect can be modeled as binomial variables with prob-
ability parameter pdb:

N+ ∼ B(n+, pdb), and N− ∼ B(n−, pdb). (1)

We intend to select aspects as positive or negative,
only if there is sufficiently strong evidence supporting
this decision relative to the independence hypotheses.
We do so by first assessing the probabilities of finding
the same or a higher number of example images with
the given aspect as in the current example sets given
the aspect is neutral. If we select only those aspects
for which these probability values are below a certain
threshold, p+

0 (resp. p−0 ), we limit the probability of
the error of erroneously deciding that the aspect is not
neutral.

More formally, we define two p-values associated with
the respective hypotheses

p+(N+) =
n+∑

i=N+

(
n+

i

)
pi
db(1− pdb)(n

+−i), (2)

with p−(N−) defined analogously.

When we reduce the p-values, thereby raising the num-
ber of examples required for selection, we also increase
the probability of missing actual positive and negative

1Saliency, in the sense of how rarely the aspect occurs
in a given context, is inversely related to image frequency.
Note that we do not use the tf/idf approach (e.g. Squire
et al. (1999)): we do not have terms and use a rejection
rather than a weighting mechanism.
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aspects. As evidence is expected to accumulate in sub-
sequent feedback cycles, we use the following dynamic
p-value strategy. For the positive aspects we start with
a relatively large p-value, say 0.05, in order not to miss
relevant aspects when evidence is still relatively weak.
After a number of feedback cycles (e.g. 3) evidence can
be expected to have accumulated and the p-value is re-
duced, to say 0.001, in order to increase precision by
avoiding false positive aspects. For negative aspects
we take a small p-value (0.005) from the beginning,
as negative feedback is necessary only when a certain
aspect starts to accumulate in the display of highest
ranking images, at which point sufficient examples will
be available. To monitor evidence accumulation more
accurately, explicit user involvement is required e.g.
by indicating fully relevant examples or by measuring
satisfaction with respect to the quality of the example
sets.

4.2. Relevance Ranking

Let M be the aspect matrix with columns of boolean
variables indicating if images have a given aspect or
not. We can, trivially, determine N+

j and N−
j from

the image index sets S+ and S− of positive and neg-
ative examples, giving the two p-values, p+(N+) and
p−(N−) by (2). Let A+ be the index set of accepted
enhancing aspects, and A− be the index set of accepted
inhibiting aspects, then the relevance reli for image i
is defined by reli =

∑
j M(i, A+

j )−∑
j M(i, A−j ).

Note that once a group of aspects is accepted, the deci-
sion of how take these into account of course need not
be so black-or-white; a variety of weighting schemes
could be devised to obtain more gradual aspect influ-
ences based on the strength of the evidence.

5. Query Simulation Experiments

At the end of each feedback cycle the information in
the example sets is transformed into a new image rel-
evance ranking. In the following we will compare the
performance of relevance feedback inference mecha-
nisms by means of query simulation experiments, i.e.
by controlled simulation of example sets. As we ex-
plain below this allows us to simulate the “intention”
behind an example set and to use this to compare the
quality of the generated relevance rankings.

We simulate example sets by selecting a number of
target aspects. Each aspect represents a feature value
or range of feature values the user is actively interested
in. The target aspects are randomly sampled from
aspects with a pdb value below a given threshold. This
assures the generation of example sets such that the

(a)

(b)

Figure 2. Two simulated example sets, for target aspects
“large amount of background” and “very grey”, generated
according to the (a) full relevance scenario, and (b) partial
relevance scenario.

target aspects are saliently present and perceptually
relevant. In this study we consider only these positive
aspects, and do not simulate negative aspects. The
target aspects imply a set of target images, viz. those
images that possess all the target aspects.

We consider two main scenarios for generating the pos-
itive example sets. In the full relevance scenario the
positive example set consists of a fixed number of ran-
domly sampled target images. Fig. 2 (a) shows a
generated example set of 4 target images for two tar-
get aspects, labeled as “large amount of background”
and “very grey”. In the partial relevance scenario we
generate a fixed number of images for each of the tar-
get aspects, randomly sampled from those images that
have such aspect but do not have the remaining tar-
get aspects. In Fig. 2 (b) an example set is shown
that is generated for the same two aspects as before
but now according to this scenario. Note for instance
that the last 4 images are grey but have relatively lit-
tle background. Compared to the first scenario where
simulated example sets consist strictly of fully rele-
vant images, this scenario represents the other extreme
where feedback is provided exclusively by means of
partially relevant images. The scenarios represent re-
alistic modes of relevance feedback as may occur in the
image retrieval process; for both cases users would ex-
pect rankings for which images with target aspects are
ranked higher. As further detailed below we quantify
performance by means of precision-recall graphs for
the target images, as well as by counting the number
of target aspects present in the top-ranking images.

We have compared the aspect-based relevance learning
method to two feature re-weighting methods. These
methods represent an interesting reference of perfor-
mance as they are also based on clustering of exam-
ples, but do not take into account evidence if such
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clustering is significant given the distribution of fea-
ture values in the database. The first re-weighting ap-
proach (FRW1) is that of Ciocca and Schettini (1999)
in which feature weights are inversely proportional to
the mean normalized distance within the example set.
Higher weights are thus given to features for which
the examples are similar. The second re-weighting ap-
proach (FRW2) follows Rui et al. (1998) where feature
weights are taken inversely proportional to example
variance. For both approaches, the relevance rank-
ings are based on the moving query point mechanism
(e.g. Rocchio (1971)). Each example set determines
an “ideal query point”, computed as the average fea-
ture vector over the examples, where in our case all
examples receive equal weight. The relevance ranking
then follows from the sorted distances of the images
to this query point, using the weights of the features
determined as described above. For the aspect-based
relevance learning method we consider two different
p-values, ARL1 using p = 0.05 , and ARL2 using
p = 0.001, respectively.

5.1. Aspect Construction for Decoration
Designs

Testing is based on aspects and features for a data-
base of decoration designs. To characterize decoration
designs we have selected and developed a variety of
features suitable for representing their global appear-
ance; these include features for: color, texture, com-
plexity and periodicity. In addition several features
have been computed based on the decomposition of
designs into figure and ground, e.g. relative amount of
background, background texture, properties of motifs
(e.g. size, number, variation) and their spatial organi-
zation. Finally, a set of 42 manually annotated seman-
tic category labels (e.g.“geometric”) is also available.
For details we refer to Huiskes (2005b).

Construction of aspects varies by feature type. Bi-
nary and discrete features can be converted directly
into aspects. For single dimensional numerical fea-
tures we use quantization, either manually by inspec-
tion, or automatically. We have taken an automatic
approach based on a grouping mechanism: we take
a redundant group of aspects, defined at a number
scales and overlapping in range (here a total of 14 as-
pects at 2 scales), and consider for each scale only
the aspect with the smallest p-value of the group as
a candidate for selection. High aspect redundancy is
feasible as the computational cost per aspect is very
small. For higher dimensional feature spaces our pre-
ferred solution is to take an exemplar or case-based
approach. For instance, we have selected a number of
simple example shapes as prototype shapes, and de-

fined a “simple-motif” aspect by marking shapes that
are close enough to one of the prototypes based on
the similarity metric of the MPEG-7 contour shape
descriptor. Another approach would be to construct
data-driven aspects by mining for image clusters in
feature spaces, where aspects again follow from clus-
ter membership.

Numerical features were computed for a database of
1018 images that are representative in variety for a
much larger (commercial) database. From the fea-
tures, a total of 504 aspects were derived.

5.2. Experimental Results

Fig. 3 shows precision-recall graphs based on the rank-
ing of the target images for the scenarios outlined
above based on 1000 simulations for each scenario. For
the simulations random target aspects were sampled
such that the number of target images was at least
10, and additionally the selected aspects corresponded
to different features. Only salient aspects with pdb

value of at most 0.1 were considered as target aspects,
and for each aspect 4 example images were selected.
Several variations to the experiments have been per-
formed (e.g. taking more example images, increasing
the saliency threshold, or leaving out various feature
groups). All showed the same relative performance of
the four methods.
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Figure 3. Target image precision-recall graphs obtained by
methods ARL1, ARL2, FRW1 and FRW2, for the (a) full
relevance scenario and (b) partial relevance scenario.

In the first scenario the aspect-based relevance feed-
back methods outperform the feature re-weighting
methods mainly because the re-weighting methods as-
sign too many features with high weights, which leads
to poor precision. Similarly, ARL2 outperforms ARL1
as it selects fewer false positive aspects. In our retrieval
system improved performance is obtained by using the
adaptive threshold strategy of section 4.1 which rep-
resents a mix of ARL1 and ARL2. There, ARL1 is
used in the initial stage where example set quality is
expected to be low. We also reiterate the potential
of using explicit user interaction to decide on which
p-values to use. In scenario II the performance of the
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feature re-weighting methods further deteriorates due
to additional difficulty in selecting the correct features
as clustering is less clear due to the partial relevance
of the examples.

Fig. 4 demonstrates that the ARL methods lead to
a higher accumulation of target aspects in the top
ranking images. For each target aspect the fraction
of images having that aspect was determined for the
50 highest ranking images (corresponding to the first
selection display in our retrieval system). Shown are
the average fractions over the target aspects. Note
that the high accumulation of the ARL methods is
preserved under the partial relevance scenario.
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Figure 4. Accumulation box-plots for the (a) full relevance
scenario, and (b) partial relevance scenario.

6. Conclusion

The aspect-based relevance learning method guaran-
tees that feedback on feature values is accepted only
once evidential support that the feedback was intended
is sufficiently strong. This is a beneficial property for
retrieval applications where example selection by par-
tial relevance is important, as for instance in our re-
trieval system for decoration designs.

Our experience with the retrieval system and first sim-
ulation results confirm the feasibility of the approach.
When features are reliable, generally few positive ex-
amples are required, and there is a regular progression
to the target class without needing to browse through
many selection displays in search for suitable exam-
ples. Another interesting property is that there is no
need for negative examples solely for obtaining suffi-
cient data for classification.

Future work will be directed at detailed comparison to
other relevance learning methods. Also we intend to
study generalizations such as fuzzy aspect possession,
and alternative relevance ranking schemes.
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Abstract  
We have developed a new semi-automatic blotch 
detection method with an object based post-
processing to reduce false alarm results on 
archive films. Blotches can be modeled as 
temporal discontinuities of pixel intensity not 
originating from object motion, occlusion, 
disocclusion or non-rigid objects. In practice, 
usually, after the automatic detection step an 
operator, significantly decreasing the efficiency 
of the restoration process, removes the false 
alarms manually. Our proposed method reduces 
this manual intervention by a trainable 
classification method that filters out most of the 
false detection results. The examined 
classification methods are evaluated on ground 
truth data sets generated from real archive 
sequences. In our new evaluation method, we 
measure the number of the erroneously classified 
blotch objects describing the accuracy of the 
classification methods. 

1.  Introduction 

National film archives store huge amounts of degraded 
films to be restored. Digital restoration methods can 
provide semi-automatic processing that results in efficient 
and cost effective saving and reconstruction of the film 
heritage. This should be achieved by fast, robust and 
automatic processing with a minimal human intervention, 
which is the bottleneck in the restoration work. Archive 
films suffer from several degradations such as blotches, 
scratches, flickering (intensity fluctuation), image 
vibration (displacement of adjacent frames), fading, 
discoloring, etc. One-frame defects are typical film 
artifacts, which are mostly visible as blotches. These 
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artifacts appear at random positions on consecutive 
frames and have arbitrary shape, size and varying range of 
intensity (from bright to dark). Blotches are usually 
caused by dirt, damage of the film surface and chemical 
or biological processes such as mold. One-frame defects 
can be modeled as temporal intensity discontinuities, 
hence false detection results originate from object motion 
(e.g. occlusion), non-rigid objects or erroneous motion 
estimation. A typical restoration procedure of one-frame 
defects is the following: (1) detection of the defected 
regions, (2) interpolation of the corrupt image regions by 
spatio-temporal inpainting methods. In this paper, we 
focused only on the detection of artifacts. Automatic 
blotch detection methods could generate false alarms 
(non-valid blotches classified as valid blotches), and the 
inpainting of them causes loss of original image details 
not acceptable by archivists. Our concept is detection with 
lower false alarm rate rather than with maximal detection 
rate. In practice, after the automatic detection an operator 
manually verifies and classifies candidates as false alarms 
or as valid artifacts. Hence, an automatic method is 
needed to reduce false alarms by classifying the 
previously detected blotch candidates. Our paper 
introduces an object based classification method that 
minimizes the time-consuming manual correction steps. 
The proposed method, after trained by an operator, 
automatically filters out some of the detected blotches to 
avoid the further processing of the image based on false 
alarm detections. 

2.  Blotch Detection and Post-Processing Methods 

Blotch detection methods can be divided into two groups: 
(1) spatial detection by analysis of the contrast or local 
maxima/minima; (2) spatio-temporal methods based on 
the detection of temporal discontinuities. The first group 
includes morphological operator based methods (Naranjo,  
2004; Joyeux, 2001; Tenze, 2000) resulting in low 
complexity because they do not require temporal analysis 
such as motion estimation. Methods in the second group 
are based on the detection of temporal discontinuities like 
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the SDI (Spike Detection Index) (Kokaram, 1998), ROD 
(Rank Ordered Differences) (Nadenau, 1997; Gangal, 
2004), MRF (Markov Random Field) (Kokaram, 1995) 
methods, simplified ROD detector (SROD) (Roosmalen, 
1999). According to the comparative evaluation of these 
methods (Nadenau, 1997), ROD resulted in the best trade-
off between accuracy and computational cost. Post-
processing and pre-processing methods of detection 
methods are intended to reduce false alarms preserving 
detection rate. Post-processing methods are hysteresis 
thresholding or constrained region growing (Roosmalen, 
1999) of blotches to correct partially detected blotches 
and to reduce false alarms. A typical pre-processing step 
before detection is the bi-directional motion compensation 
of neighboring frames, which reduces false alarms due to 
the local/global motion. Important factor is the motion 
estimation complexity because we are processing a huge 
amount of data of high-resolution sequences (2000x1500 
pixels (2K) or 6K resolution (Czúni, 2004)) of 35mm 
archive films. Others usually apply block matching 
methods with multi-scale processing (Buisson, 2003; 
Roosmalen, 1999; Nadenau, 1997), and several heuristic 
(e.g. logarithmic) searching methods (Gangal, 2004; 
Buisson, 2003) in order to increase the computation 
speed. The drawbacks are that they do not guarantee 
optimal detection and the estimation gives only pixel 
accuracy.   

3.  New Blotch Detection Method with Object 
Based Post-Processing 

Our aim is to decrease the rate of false detections and to 
accelerate the motion estimation. The main steps of the 
algorithm are the following (the detailed description of 
the algorithm can be found in (Licsár, 2005)):  

1) SROD method analyses the maximal intensity 
difference between the actual pixels and the set of 
neighboring pixels on the preceding and consecutive 
images and then segments defected points according to 
the blotch detection parameter.  

2) The mask, obtained by the previous step, involves false 
alarms mostly due to the scene motion. In our new 
concept, the motion estimation and compensation is a 
post-processing method and it is only computed on the 
previously detected mask pixels. We use a hierarchical 
gradient-based motion estimation method (Bergen, 1990) 
that is based on Horn and Schunck’s (Horn, 1981) optical 
flow constraint equations where the motion is modeled by 
simple translations. This approach significantly reduces 
the computational complexity of motion compensation 
(MC-SROD).  

3) The next step is the object based blotch classification 
of image features extracted from the image intensities 
(luminance channel) given by the actual blotch mask. 
This step reduces the residual false alarms analyzing only 
the current frame because motion compensation does not 

give satisfactory result due to the incorrect motion 
estimation in regions with complex motion, non-rigid 
motion, occlusion, disocclusion, motion blur etc. 
Extracted features are as follows: maximal horizontal and 
vertical intensity change inside the blotch area, local 
internal/external intensity contrast inside/outside the 
blotch area, local internal/external mean and variance of 
the blotch area, and perimeter of the blotch. 

4.  Performance Analysis of the Object Based 
Classification 

The object based classification is carried out by a feed-
forward neural network (NN) or by a support vector 
machine (SVM). The configuration of the NN was 8 input 
features and 1 output result with two hidden layers (with 
12 and 10 neurons), the training algorithm was the back-
propagation method. The SVM method uses radial basis 
function kernel (RBF), where the gamma was 0.125. 
Usually, the performance of detection methods is 
statistically evaluated on artificially generated test 
sequences where randomly selected image regions are 
replaced with a rendered blotch, defined by a simple 
blotch model, i.e. homogenous blotch with sharp contour. 
On the contrary, we made our tests on real archive 
sequences where the ground truth data set of real artifacts 
is produced by manually marking blotches on the 
digitized films. This is important because our post-
processing method analyses the intensity information of 
the detected regions and in case of artificially generated 
blotches the applied blotch model determines these. This 
process is semi-automatic because the operator frames 
each blotch by a rectangle and this region will be 
automatically replaced with the help of neighboring 
frames. The difference image between original and 
replaced region determines the blotch mask by a threshold 
based segmentation. If the result is not satisfactory, a 
manually painted mask can determine the one-frame 
defect. During the statistical evaluation the detected 
smaller blotches, for which the perimeter is not greater 
than 10, are skipped owing to the huge amount of image 
noise (e.g. grain noise). The test sequences are from the 
first Hungarian color film “Mattie the Goose-Boy” at 2K 
resolution. Our 5 test sequences include 50 frames with 
the corresponding blotch masks. This ground truth 
database involves varied content such as local/global 
motion with complex motion and/or motion blur or zero 
camera motion with small amount of local motion. The 
main questions are how the false alarm and detection rates 
and the amount of manual interventions change thanks to 
the automatic blotch classification. 

4.1  Experimental Settings 

Our supervised training is divided into two phases: (1) 
detection and displaying of the blotches by the previously 
described automatic method in the selected frame for 
training purposes; (2) operator selects typical examples of 
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positive (detected and displayed blotch is a valid artifact) 
and negative (non-valid artifact) samples by selection or 
framing them with a rectangle. The initial detection of the 
blotch mask is computed only once so the training and the 
classification steps have low computational cost (typically 
classification takes less than 1 second on a 2K frame). 
After the training process, the blotches are detected 
automatically. If the result is not satisfactory, the operator 
can expand the training set with new samples or rebuild 
the whole training set. 

4.2  Performance Results 

In our first test, we examined the changing of the false 
alarm (FA) and detection rate (DR) carrying out our 
object based post-processing method. We measured the 
FA and DR values without the object based classification 
(MC-SROD) and with NN and SVM classification 
methods (NN-MC-SROD, SVM-MC-SROD). The 
reduction ratios (RR) of DR and FA are calculated with 
the proportion of rates after and before the blotch 
classification step as the follows: 

  

(1) 

 

The frames of the first training set (Set I.) were collected 
from our 5 sequences. The set involves 160 positive and 
negative samples. The second training set (Set II.) 
includes the Set I. and plus 30 positive and negative 
samples collected from the actual sequence. We 
summarized the reduction ratios after the NN and SVM 
based classification in Table 1. The DR reduction ratio of 
0.942 means that DR has reduced with about 6 % after the 
NN based blotch classification. It can be seen that the 
accuracy could be increased if the operator makes an 
additional training before the restoration of each sequence 
but the initial training set is more essential. 

Table 1. Reduction ratio of the average false alarm (FA) and 
detection rate (DR) after NN and SVM based object 
classification with two training set.  

Training set NN method SVM method 

 Reduction ratios (RR) 

 FA DR FA DR 

Set I. 0.158 0.942 0.109 0.882 

Set II. 0.143 0.955 0.108 0.894 
 

In our second experiment, we measured that, after the 
automatic classification method, how many manual 
reclassification (from valid blotch to non-valid blotch or 
vice versa) would be necessary to achieve the best 
matching with the ground truth database (Figure 1). Since 

the time consumption of the manual correction step is 
proportional to the number of reclassified blotches, this 
value can describe the amount of manual intervention.  

Figure 1. Number of the reclassified blotches to approximate the 
ground truth data set, where the blotch mask was generated with 
different methods (horizontal axes is in logarithmic scale). 

We found that NN-MC-SROD and SVM-MC-SROD 
reduced significantly the number of blotches to be 
manualy reclassified. The reduction of interventions is 
between 80 – 95 %. If we examine the number of false 
negative results (Table 2) of NN and SVM classification 
methods (false negative: valid blotches classified as non-
valid blotches), it can be experienced that the operator 
should make less correction steps to maximize the 
detection rate with the NN classification method.  
Therefore, the operator needs much less manual work to 
achieve higher detection rate. Otherwise, if the main 
criterion is the low false alarm without any human 
intervention (fully automatic mode) the SVM based 
method is favorable due to the lower false alarm rate.  

Table 2. Number of false negative (valid blotches classified as 
non-valid blotches) and false alarm detected objects after the 
object based classification methods measuring at 50 frames. 

NN-MC-SROD SVM-MC-SROD 

 

Blotch 
detection 
parameter 

False 
negative

False 
alarm 

False 
negative 

False 
alarm 

30 24 204 49 101 

40 8 122 26 64 

50 8 74 18 45 

60 6 46 14 33 
 

In Figure 2 there is an example of our classification 
method where circles indicate the detected blotches and 
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the radius of circles illustrate the size of the blotches (in 
case of smaller circles blotches might not be seen at this 
resolution). Red circles indicate that our classification 
method identified the blotch as non-valid blotch otherwise 
it is recognized as valid blotch. 

Figure 2. Classification results of our post-processing method: 
original image (top) and the results of the object based 
classification method (bottom), where false alarms of the initial 
detections are marked with red circle. 

5.  Conclusion 

We showed that the proposed object based classification 
method significantly improves the detection efficiency by 
the automatic reduction of the false alarms and minimizes 
the necessity of the human intervention. 
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Abstract  

Music classification is a useful technique that 
enables automation of labeling musical data for 
searching and browsing. One method for music 
classification is to label the sequence based on 
the labels of individual frames. This paper 
investigates the performance of using confidence 
measures to select only the most “useful” frames 
to make the decision of the whole sequence. 
Confidence measures for Support Vector 
Machines (SVM) and Predictive Automatic 
Relevance Determination by Expectation-
propagation (Pred-ARD-EP) are particularly 
examined. Experimental result shows that 
selecting frames based on confidence 
significantly outperform selecting frames 
randomly and the confidence measures do, to 
some extent, capture the “usefulness” of musical 
parts for classification.       

1.  Introduction 

With the tremendous growth of digital music on 
computers, personal electronics and the Internet, music 
information retrieval has become a rapidly emerging 
research field. Music classification is one of the popular 
topics in this field, which enables automation of labeling 
musical data for searching and browsing.  

Methods for music classification can be summarized into 
two categories. The first method is to segment the musical 
signal into frames, classify each frame independently, and 
then assign the sequence to the class to which most of the 
frames belong. It can be regarded as using multiple 
classifiers to vote for the label of the whole sequence. 
This technique works fairly well for timbre-related 
classifications. Pye (2000) and Tzanetakis (2002) studied 
genre classification. Whitman (2001), Berenzweig (2001, 
2002) and Kim (2002) investigated artist/singer 
classification. In addition to this frame-based 
classification framework, the second method attempted to 
use features of the whole sequence (e.g., emotion 
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detection by Liu, 2003), or use models capturing the 
dynamic of the sequence (e.g., Explicit Time Modeling 
with Neural Network and Hidden Markov Models for 
genre classification by Soltau, 1998) for music 
classification. 

This paper focuses on the first method for music 
classification, investigating the relative usefulness of 
different musical parts when making the final decision of 
the whole musical piece, though the same idea might also 
be explored for the second method.  

If humans are asked to listen to a piece of music and tell 
who is the singer or who is the composer, we typically 
will hold our decision until we get to a specific point 
which can show the characteristics of that singer or 
composer in our mind (called the signature of the artist). 
Thus, the question that this paper addresses is which part 
of a piece contributes most to a judgment about music’s 
category when applying the first classification framework 
and whether what is “important” for machines (measured 
by confidence) is consistent with human intuition.  

This paper will explore two classification techniques 
(Support Vector Machines and Predictive Automatic 
Relevance Determination by Expectation-propagation) 
and their confidence measures, and see whether we can 
throw away the “noisy” frames and use only the 
“informative” frames to achieve equally good or better 
classification performance.  

This is similar to Berenzweig’s method (2002), which 
tried to first locate the vocal part of musical signals and 
use only the vocal part to improve the accuracy of singer 
identification. The main difference is that here the 
algorithm does not assume any prior knowledge about 
which parts are “informative” (e.g., the vocal part is more 
informative than the accompaniment part for singer 
identification); on the contrary, we let the classifier itself 
choose the most “informative” parts by having been given 
a proper confidence measure. We then can analyze 
whether the algorithmically chosen parts are consistent 
with our prior knowledge. Therefore, to some extent, it is 
a reverse problem of Berenzweig’s: if we can find a 
proper confidence measure, the algorithm should choose 
the vocal parts automatically for singer identification. 

The remainder of this paper is organized as follows. 
Section 2 introduces the framework of music 
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classification, the two classifiers (SVM and Pred-ARD-
EP) and their confidence measures. Section 3 presents the 
experiments and results. Section 4 concludes the paper 
and proposes some future work.  

2.  Approach 

2.1  Procedure of Music Classification 

The first three steps are the same as the most-widely used 
approach for music classification: 

1. Segment the signal into frames and compute the 
feature of each frame (e.g., FFT, Mel-Frequency 
Cepstral Coefficients);  

2. Train a classifier using all the frames of the 
training signals independently; 

3. Given a test signal, apply the classifier to the 
frames of the sequence and assign it to the class 
to which most of the frames belong; 

Following these is one additional step: 

4. Instead of using all the frames of a test signal for 
determining its label, a portion of the frames are 
selected according to a specific rule (e.g., select 
randomly, select the ones with the highest 
confidence) to determine the label of the piece. 

Again, the last step can be regarded as choosing from a 
collection of classifiers for the final judgment. Thus, if we 
select frames based on confidence, the confidence 
measure should be able to capture the reliability of the 
classification, i.e., how certain that the classification is 
correct.  

2.2  Classifiers and Confidence Measures 

Let us consider discriminative models for classification. 
Suppose the discriminant function yS ˆ)( =x  is obtained 
by training a classifier, the confidence of classifying a test 
sample should be the predictive posterior distribution: 

        )|)(()|ˆ()( xxxx SyPyyPC ====  (1) 

However, it is generally not easy to estimate the posterior 
distribution. Thus, we need a way to estimate it, which is 
natural for some types of classifiers, while not so natural 
for some others.  

In the following, we will focus on linear classification, 
i.e., )(ˆ)( xwx TsignyS == , since nonlinearity can easily 
be incorporated by kernelizing the input point. Among the 
linear classifiers, Support Vector Machines (SVM) is a 
representative of non-Bayesian approach, while Bayes 
Point Machine (BPM) is a representative of Bayesian 
approach. This paper will investigate these two linear 
classifiers and their corresponding confidence measures. 

For BPM, w is modeled as a random vector instead of an 
unknown parameter vector. Estimating the posterior 
distribution for BPM was extensively investigated by 
Minka (2001) and Qi (2002; 2004). Here Predictive 
Automatic Relevance Determination by Expectation-
propagation (Pred-ARD-EP), an iterative algorithm to 
compute an approximate posterior distribution, will be 
used for estimating the predictive posterior distribution: 
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where D is the training set, x is the kernelized input point,  
ŷ  is the predictive label of x. )(aΨ  can be a step 

function, i.e., 1)( =Ψ a  if 0>a  and 0)( =Ψ a if 
0≤a . We can also use the logistic function or probit 

model as )(⋅Ψ . wm  and wV  are mean and covariance 
matrix of the posterior distribution of w, i.e., 

),(),|( wwNtp Vmw =α . α  is a hyper-parameter 
vector in the prior of w, i.e., 

))diag(,0()|( αα Np =w .  

Estimating the posterior distribution for SVM might not 
be very intuitive, because the idea for SVM is to 
maximize the margin instead of estimating the posterior 
distribution. If we mimic the confidence measure for 
BPM, we obtain  

      )()( zC Ψ=x      (4) 

xw Tyz )ˆ(=    (5) 

Thus, the confidence measure for Pred-ARD-EP is similar 
to that for SVM except that it is normalized by the square 
root of the covariance projected on the data point. The 
confidence measure for SVM is proportional to the 
distance between the input point and the classification 
boundary.  

2.3  Features and Parameters 

For both SVM and Pred-ARD-EP, RBF basis function 
(Eq. 6) was used with 5=σ . Probit model was used as 

)(⋅Ψ . The maximum lagrangian value in SVM (i.e., C) 
was set to 30. All the parameters were tuned based on 
several trials. 

)
2

||'||
exp()',( 2

2

σ
xx

xxK
−

−=   (6) 

The feature used for both experiments was Mel-frequency 
Cepstral Coefficients (MFCCs). It is widely used for 
speech and audio signals. 
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3.  Experiments and Results 

Two data sets were chosen for the convenience of 
analyzing the correlation between algorithmically selected 
frames based on confidence and intuitively selected 
frames base on prior knowledge. The first is a genre 
classification data set with the first half of each sequence 
replaced by white noise. The second is a data set of 
monophonic singing voice for gender classification. In 
both cases, we only consider binary classifications. 

Specifically, for either experiment, the data set was 
sampled at 11kHz sampling rate. Analysis was performed 

using frame size of 450 samples (~40 msec) and frames 
were taken every 225 samples (~20 msec). MFCCs were 
computed for each frame. Only every 25th data frame was 
used for training and testing because of the computer 
memory constraint. 30 % of the sequences were used for 
training, while 70% were used for testing. The 
performance was averaged over 60 trials.  

3.1  Experiment 1: Genre Classification of Noisy 
Musical Signals 

The data set used in this experiment consists of 112 
orchestra recordings and 45 Jazz recordings of 10 seconds 
each. The MFCCs of the first half frames of each 
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Figure 1. Accuracy of Genre Classification with Noise (left: Pred-ARD-EP; right: SVM) 
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Figure 2. Index distribution of selected frames at selection rate 50% (left: Pred-ARD-EP; right: SVM) 
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sequence (both training and testing) were replaced by 
random noise normally distributed with mean and 
standard deviation of the original data. 

The results from the experiment are summarized in Figure 
1, which shows the percentages of sequences correctly 
classified. 

In Figure 1, the x-axis denotes the selection rate, which 
denotes the percentage of frames selected according to 
some criterion. For example, selecting frames with 
highest confidence at a selection rate 60% means that the 
top 60% frames with the highest confidence will be 
counted for the final decision of the label of the whole 
sequence, while the other 40% frames will simply be 
ignored. The two horizontal lines are baselines, 
corresponding to the performances using all the frames 
available to each sequence (the above is confidence-
weighted meaning each frame contributes differently to 
the label assignment of the whole sequence based on 
confidence; the below is not confidence-weighted). The 
other four curves, from top to the bottom, correspond to:  

a. Selecting frames appearing later in the piece 
(thus, larger frame indexes and fewer noisy 
frames),  

b. Selecting frames with highest confidence,  

c. Selecting randomly,  

d. Selecting frames with lowest confidence.  

All these four curves approach the lower baseline when 
the selection rate goes to 1. It is easy to explain the peaks 
at selection rate 50% in curve a, since half of the frames 
were replaced by noise. The order of these four curves is 
consistent with our intuition. Curve a performed the best 

because it used the prior knowledge about data. 

We also want to know the property of the selected frames. 
Figure 2 shows the percentage of selected frames 
(selecting by random, by confidence and by index) that 
are noise (first half of each piece) or not noise (second 
half of each piece) at selection rate 50%. As we expected, 
frame selection based on confidence does tend to select 
more frames at the second half of each piece (not entirely 
though).   

Although this paper does not aim at comparing Pred-
ARD-EP and SVM, for this data set, SVM outperformed 
Pred-ARD-EP. Here is one explanation of it. Due to the 
nature of the added noise with mean of all frames 
including both classes, most noisy samples fall between 
the two classes and thus near the classification boundary 
in SVM, so the confidence measure for SVM proportional 
to the distance between the data point and the boundary is 
a good estimate of confidence in this case. However, 
Pred-ARD-EP attempts to model the posterior distribution 
without considering that half of the data were actually 
noise and thus gets a worse performance and estimate of 
confidence. 

3.2  Experiment 2: Gender Classification of Singing 
Voice 

The data set used in this experiment consists of recordings 
of 45 male singers and 28 female singers, one sequence 
for each singer. All the other parameters are the same as 
the first experiment except that no noise was added to the 
data, since we here want to analyze whether the 
algorithmically selected frames are correlated with the 
vocal portion of the signal. 
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Figure 3. Accuracy of Gender Classification of Singing Voice (left: Pred-ARD-EP; right: SVM) 
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The results from the experiment are summarized in Figure 
3. Similar to Figure 1, the two horizontal lines in Figure 3 
are baselines. The other four curves, from top to the 
bottom, correspond to:  

a. Selecting frames of the highest confidence,  

b. Selecting frames of the highest energy, 

c. Selecting randomly 

d. Selecting frames of the lowest confidence.  

In curve b, we used volume instead of index (i.e., location 
of the frame) as the criterion for selecting frames, because 
the data set consists of monophonic recording of singing 
voice and volume can be a good indicator of whether 
there is vocal at the time. The order of these four curves 
can be explained in the similar way as in the last 
experiment, except that, selecting frames based on prior 
knowledge seem not to outperform selecting frames based 
on confidence. The reason here is that volume itself 
cannot completely determine whether the frame contains 
vocal or not. For example, an environmental noise during 
recording can also cause high volume.  It might be better 
to combine other features, e.g., pitch range, harmonicity, 
to determine the vocal parts.  

Figure 4 shows the histogram (ten bins divided evenly 
from 0 to 1) of the volumes of selected frames at selection 
rate 55%. The five groups correspond to distributions of 
all test data, selected frames by random selection, 
discarded frames by confidence-based selection, selected 
frames by confidence-based selection and selected frames 
by volume-based selection. As we expected, the frame 
selection based on confidence does tend to select frames 
that are not silence.   

To show the correlation between confidence selection and 
another vocal indicators – pitch range, Figure 5 shows a 

volume-pitch distribution difference between selected 
frames and unselected frames based on confidence. Pitch 
of each frame was estimated by autocorrelation. It clearly 
shows that the frame selection based on confidence tends 
to choose frames that have higher volume and pitches 
around 100~300Hz corresponding to the typical pitch 
range of human speakers. Note that most singers of the 
data set sang in a casual way. So, although the data set 
used here is singing voice instead of speech, the pitch 
range is not as high as typical professional singing.  

4.  Conclusion and Future Work 

The experimental results demonstrate that the confidence 
measures do, to some extent, capture the importance of 
data, which is also consistent with the prior knowledge. 
The performance is at least equally good as the baseline 
(using all frames), slightly worse than using prior 
knowledge properly, but significantly better than selecting 
frames randomly. This is very similar to human 
perception: for humans to make a similar judgment (e.g., 
singer identification), given only the signature part should 
be as good as given the whole piece, while much better 
than given the trivial parts.  

Although the classifiers tended to choose frames that are 
intuitively more “informative”, they did not choose as 
many as they could: the noisy parts (in the first 
experiment) and the silent parts (in the second 
experiment) still seem to contribute to the classification. 
This should depend on how good the confidence measure 
is and how the classifier deals with noise. It suggests two 
directions in the future: exploring more confidence 
measure and investigating how different types of noise 
impact the estimate of confidence. 
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Figure 4. Volume distribution of selected frames at selection rate 55% (left: Pred-ARD-EP; right: SVM) 
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Abstract

We present an approach to learn user seman-
tic queries from dissimilarity representations
of video audio-visual content. When dealing
with large corpora of videos documents, using
a feature-based representation calls for the
online computation of distances between all
documents and the query. Hence, a dissim-
ilarity representation may be preferred be-
cause its offline computation speeds up the
retrieval process. We show how distances re-
lated to visual and audio video features can
directly be used to learn complex concepts
from a set of positive and negative exam-
ples provided by the user. Based on the
idea of dissimilarity spaces, we derive a low-
dimensional multimodal representation space
where an on-line and real-time classification
is performed to learn user queries. The clas-
sification consists in maximizing a non-linear
Fisher criterion to separate positive from neg-
ative examples. The evaluation, performed
on the complete annotated TRECVid corpus,
shows that our technique enables us to im-
prove the precision of retrieval results.

1. Introduction

Determining semantic concepts by allowing users to
iteratively refine their queries is a key issue in multi-
media content-based retrieval. The relevance feedback
loop allows to construct complex queries made out of
positive and negative documents as examples. From
this training set, a learning process should then extract

Appearing in Proceedings of the workshop Machine Learn-
ing Techniques for Processing Multimedia Content, Bonn,
Germany, 2005.

relevant documents from feature spaces. Many rele-
vance feedback techniques have been developed that
operate directly in the feature space (Chang et al.,
2003; Smith et al., 2003; Yan et al., 2003; Zhou &
Huang, 2004).

Describing content of videos requires to deal in paral-
lel with many high-dimensional feature spaces express-
ing the multimodal characteristics of the audiovisual
stream. This mass of data makes retrieval operations
computationally expensive when dealing directly with
features. The simplest task of computing the distance
between a query and all other elements becomes in-
feasible when involving tens of thousand of documents
and thousand of feature space components. This prob-
lem is even more sensible when the similarity measures
are complex functions or procedures, such as predic-
tion functions for temporal distances (Bruno et al.,
2005) or graph exploration for semantic similarities
(Resnik, 1995).

A solution to allow on-line interaction would be to
compute off-line monomodal dissimilarity relation-
ships between elements and to use the dissimilar-
ity matrices or distance-based indexing structures
(Chávez et al., 2001) as an index for retrieval oper-
ations. The problem is then to find distance-based so-
lutions that go beyond the classical k -NN approaches
(Boldareva & Hiemstra, 2004) in order to perform ef-
fective classification and retrieval of semantic concepts.
Pekalska et al (Pekalska et al., 2001) have proposed
dissimilarity spaces where objects are represented not
by their features but by their relative dissimilarities to
a set of selected objects. These representations seem
to form a convenient approach to tackle the similarity-
based indexing and retrieval problem.

In this paper, we investigate the idea of dissimilarity
spaces for the specific problem of multimedia docu-
ment retrieval, and show how dissimilarities can be
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used to build a low-dimensional multimodal represen-
tation space where learning machines based on eg non-
linear discriminant analysis could operate. Our thor-
ough evaluation on the complete TRECVid corpus
shows that this multimodal dissimilarity space allows
to perform effective retrieval of video documents in
real time, as defined in (Nielsen, 1993).

2. Classification in dissimilarity space

In the proposed retrieval system, video segments are
represented by their dissimilarity relationships com-
puted offline over several audiovisual features. The
user can formulate complex queries by iteratively pro-
viding positive and negatives examples in an online
relevance feedback loop. From this training data, the
aim is to perform a real-time dissimilarity-based clas-
sification that will return relevant documents to user.

2.1. Dissimilarity space

Let d(xi,xj) be the distance between elements i and j
according to their descriptors x ∈ F . F expresses the
(unavailable) original feature space. The dissimilarity
space is defined as the mapping d(z,Ω) : F → RN
given by (see (Pekalska et al., 2001) for details):

d(z,Ω) = [d(z,x1), d(z,x2), . . . d(z,xN )]. (1)

The representation set Ω = {x1, . . . ,xN} is a subset
of N objects defining the new space. The new “fea-
tures” of an input element are now the dissimilarities
between itself and the representation objects. As a
consequence, learning or classification tools for feature
representations are also directly available to deal with
the dissimilarities.

The dimensionality of the dissimilarity space is directly
linked to the size of Ω, which controls the approxi-
mation made on the original feature space (such an
approximation could be computed using projection al-
gorithms like classical scaling (Cox & Cox, 1995)). In-
creasing the number of elements in Ω increases the
representation accuracy. On the other hand, we are
interested in minimizing the space dimensionality so
as to limit computation and to speed up the response
time of the system. The selection of Ω will however be
driven by considerations on the classification problem
as explained now.

2.2. Non-linear discriminant analysis

Let us define the set T as the query formed out
of positive and negative training examples (respec-
tively denoted P and N with T = P ∪ N ), their
coordinates in the dissimilarity space are respectively

d+
i = d(zi∈P ,Ω) and d−i = d(zi∈N ,Ω).

Given a query T , the aim is therefore to find a rele-
vance measure D(di) : RN → R that maximizes the
following Fisher criterion

max
D

∑
iD

2(d−i )∑
iD

2(d+
i )
. (2)

The measure D(d) gives us a new ranking function
where positive elements tend to be placed at the top
of the list while negatives one are pushed to the end.

Depending on the separability of the data according to
a query T , the ranking function D(d) may be chosen
as a linear or non-linear function of the dissimilari-
ties. Following the kernel machine formulation, D(d)
is written in both cases (linear or not) as an expansion
of kernels centered on training patterns (Schölkopf &
Smola, 2002):

D(d) =
∑

i∈T
αik(d,d±i ) + b. (3)

Using such non-linear model in criterion (2) leads
to the formulation of the Kernel Fisher Discriminant
(KFD) (Mika et al., 1999). It has been shown that
this problem can be solved by using mathematical pro-
grams (quadratic or linear). The proofs and the im-
plementation of the algorithm we use to optimize (2)
can be found in (Mika et al., 2000).

In general, we are dealing with a 1 + x class setup
with 1 class associated to positives and x to negatives
(Zhou & Huang, 2004). It is then needed to estimate
complex decision functions to learn the semantic con-
cepts, increasing the risk to encounter difficulties for
choosing and tuning well-adapted kernels. However,
selecting the representation set as the set of positive
examples P turns the problem into a binary classifica-
tion. Assuming that the positive examples are close to
each other while all being far from negatives, the vec-
tors d(zi∈P ,P) (within scatter) have norms lower than
vectors d(zi∈N ,P) (between scatter), leading to a bi-
narization of the classification, as illustrated in figure
1. In addition, this choice readily induces to work in a
low dimensional space of p = |P| components, where
online learning processes are dramatically speeded-up.

Kernel selection and setting is a critical issue to suc-
cessfully learn queries. It actually decides upon the
classical trade-off between over-fitting and generaliza-
tion properties of the classifier and hence is very de-
pendent of the considered dissimilarity space. This
problem is discussed in the next section.
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Figure 1. The 1 + x class problem in feature space (left) and dissimilarity space (right) where the representation objects
are two points from the central class (cross)

3. Multimodal space

The video content is characterized by features cor-
responding to multiple modalities (eg, visual, audio,
speech). Each of them leads to a dissimilarity matrix
containing pairwise distances between all documents.
Let us note dfi the distance measure applied on the
feature space Fi and assume that dissimilarity matri-
ces are known for M feature spaces. We define the
multimodal dissimilarity space d as the concatenation
of all monomodal spaces dfi

d = [df1 ,df2 , . . . ,dfM ]. (4)

The kernel function used in equation (3) now oper-
ates in a multimodal space. Its choice is then a criti-
cal issue to ensure the success of the modalities fusion
coming from the resolution of equation (2). The RBF
kernel k(x,y) = e−(x−y)TA(x−y) presents a convenient
solution for our problem: it is indeed able to learn
semantic concepts that are locally distributed within
the representation space, and the scaling symmetric
positive definite matrix A permits to tune the trade-
off between over-fitting and generalization. As the in-
put space is multimodal, the scaling matrix is con-
structed so as to allow independent scaling for each
feature space, so that A = diag[σf1 , · · · ,σfM ]. The
vector σfi ∈ Rp is constant with all values equal to
the scale parameter σfi estimated for the dissimilar-
ity space dfi . Various approaches to automatically
tune the scale parameters (Cristianini et al., 2001; Ong
et al., 2003) have been proposed. However, the kernel
estimation rely on an optimization of functionals that
will drastically penalize the response time of the re-
trieval system. For this reason, the estimation of σfi
is based on a less optimal but simpler heuristic, adapt-
ing the model to the query

σfi = C ·mediani(min
j
||d+

i − d−j ||2). (5)

In other words, the scale value in space dfi is set to
be proportional to the median of all the minimum dis-
tances between the negative and the positive examples
in that space. That way, the kernel becomes sharper
as the two classes become closer to each other. The
parameter C has been empirically set to 2.0.

4. Experimentations

Our multimodal interactive learning algorithm has
been systematically experimented in the context of the
video retrieval system we have developed. The seg-
mented video documents, their multimodal description
as well as manual annotations are stored in a database
that keeps synchronized all data and allows large-scale
evaluations of retrieval results.

The experimentation consists in making queries cor-
responding to annotated concepts and measuring the
average precision (ratio of relevant documents in the
retrieved list averaged over 50 queries) for retrieved
lists of various lengths. The annotated positive exam-
ples are removed from the hitlist so that they are not
taken into account when measuring the performance.

4.1. The video database

We use the complete annotated video corpus
TRECVid-2003 composed of 133 hours of CNN and
ABC news. Videos are segmented into shots and
every shot has been annotated by several concepts.
The speech transcripts extracted by Automatic Speech
Recognition (ASR) at LIMSI laboratory (Gauvain
et al., 2002) are also available.

We extracted the three following features from the
37’500 shots composing the corpus: Color histogram,
Motion vector histogram and Word occurrence his-
togram (after stemming and stopping). The distance
measures used are Euclidean for Color and Motion
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histogram and intersection for Word occurrence his-
togram.

4.2. Results

We first test the validity of the monomodal dissimi-
larity space defined in section 2.2. We compare the
precision of the retrieval when the classification is per-
formed in the color feature space and in the corre-
sponding dissimilarity space. Figure 2 shows results
for two queries corresponding to two annotated con-
cepts (Basketball and Studio setting). Whatever the
size of the training set, the precision at the 100th posi-
tion of the retrieval list is better when the dissimilarity
space is used. It is important to note that the improve-
ment becomes more important when the training set
is small: when the class distributions to estimate are
severely under-sampled (small training set), the sim-
plification of the classification problem implied by the
dissimilarity space (see section 2.2) is crucial for the
success of the training stage.

We now evaluate how the combination of modalities
may improve the retrieval efficiency. Figure 3 com-
pares the average precision for several concepts when
the query is learned in the monomodal spaces and in
the multimodal space. We can observe that, even for
queries where the raw features used are not well-suited
(Car and Desert), the combination of the three modal-
ities performs better than considering them separately.
The precision graphs also compare the algorithm with
a random retrieval (e.g seeking hits at random within
the database). This comparison illustrates the capabil-
ity of the algorithm to use low-level multimodal infor-
mation to create models of semantic concepts defined
by user. This improves drastically the performance of
the search.

The following experiment tests how the retrieval preci-
sion evolves when the number of positive and negative
documents grows. As figure 4 shows, the precision of
the retrieval increases with the size of the training set
until a point where adding more examples does not
improve the performances anymore. This behavior il-
lustrates how the users, by providing more and more
examples (relevance feedback loop), can refine their
queries until reaching the optimum of the classifier.

Finally, since we act in an interactive setup, we were
interested in the computation time problem. The fol-
lowing measures (table 1) have been done on a PIV
2GHz and include the time to access the dissimilar-
ity matrices (37500×37500), the building of the mul-
timodal dissimilarity space and the training of the
Fisher classifier. As the dimensionality of the repre-
sentation space linearly depends on the number of pos-

Table 1. Response time

Neg. examples 20 100
Pos. examples 5 10 40 10
Resp. time (s) 1.4 2 7.4 4.3

itive examples, the response time increases according
to their number. On the other hand, negative exam-
ples have less influence since they are just involved in
the learning process.

5. Conclusion

We have presented a retrieval strategy for video doc-
uments. Based on a multimodal dissimilarity space
associated to a non-linear discriminant analysis, the
algorithm is able to take benefit from low-level multi-
modal descriptions of video documents and, as a conse-
quence, to learn semantic queries from a limited num-
ber of input examples. The design of the dissimilarity
space has been achieved so as to simplify the classifi-
cation problem while building a low-dimensional rep-
resentation of the data. The use of the positives exam-
ples as a representation set transforms the 1 +x setup
into a binary classification problem. Sophisticated
learning machines, such as the kernel Fisher discrimi-
nant analysis, can then directly be applied to classify
data. As a result, semantic concepts are learned with
more efficiency and queries on large databases are pro-
cessed near real-time which authorizes the use of feed-
back loop as a search paradigm. Extensive evaluations
on the TRECVid-2003 benchmark show the efficiency
and the usability of the proposed multimodal space
and fusion algorithm to retrieve documents within a
large corpus of videos.

While the presented classification scheme has proved
its value, the actual features considered to characterize
the videos do not permit us to design a fully-capable
and efficient video retrieval system. The design of
new feature extractors related to new modalities (e.g.
audio stream) and higher-level aspects of the content
(e.g. face and object detection) is still a major issue.
The addition of information sources should leads us
to investigate more deeply the problems of the multi-
modal kernel design and setting as well as to determine
the limits of the fusion scheme when a large number
of features is used.
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Pekalska, E., Pacĺık, P., & Duin, R. (2001). A general-
ized kernel approach to dissimilarity-based classification.
Journal of Machine Learning Research, 2, 175–211.

Resnik, P. (1995). Using information content to evaluate
semantic similarity in a taxonomy. 14th International
Joint Conference on Artificial Intelligence, IJCAI (pp.
448–453). Montreal, Canada.

Schölkopf, B., & Smola, A. J. (2002). Learning with ker-
nels. MIT Press.

Smith, J. R., Jaimes, A., Lin, C.-Y., Naphade, M., Nat-
sev, A., & Tseng, B. (2003). Interactive search fusion
methods for video database retrieval. IEEE Interna-
tional Conference on Image Processing (ICIP).

Yan, R., Hauptmann, A., & Jin, R. (2003). Negative
pseudo-relevance feedback in content-based video re-
trieval. Proceedings of ACM Multimedia (MM2003).
Berkeley, USA.

Zhou, X., & Huang, T. (2004). Small sample learning dur-
ing multimedia retrieval using biasmap. Proceedings of
the IEEE Conference on Pattern Recognition and Com-
puter Vision, CVPR’01 (pp. 11–17). Hawaii.

58



Interactive video retrieval based on multimodal dissimilarity representation

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Query ’Basketball’

P
re

ci
si

on

Color
Motion
ASR
3 modalities
Random guess

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Query ’Weather News’

P
re

ci
si

on

Color
Motion
ASR
3 modalities
Random guess

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Query ’Desert’

P
re

ci
si

on

Color
Motion
ASR
3 modalities
Random guess

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Query ’Car’

P
re

ci
si

on
Color
Motion
ASR
3 modalities
Random guess

Figure 3. Average precision vs. length of retrieved lists for monomodal and multimodal dissimilarity spaces. The query is
composed of 5 positive examples (annotated by the concept) and 20 negative examples randomly selected in the database.
The “random guess” line is equal to the proportion of the concept in the database.
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Abstract

This introductory note considers an applica-
tion of content-based multimedia retrieval,
where a semantic concept of a user query
must be learned from only a few documents,
provided as relevance feedback, that are
vastly outnumbered by the irrelevant items of
the collection. Formally, the problem in ques-
tion is situated in the context of asymmetric
classification where due to substantial imbal-
ance, different classes are not treated equally.
In contrast to the popular optimal separating
hyperplane techniques that use only one hy-
perplane, an attempt is made to further ex-
ploit the asymmetric problem setting by in-
corporating multiple hyperplanes in a classi-
fier so as to favor the under-represented class.
Although the introduced modification leads
to a more difficult optimization problem, a
preliminary empirical evaluation of such a
method in the asymmetric “one-against-all”
classification setting provides encouraging re-
sults, which warrants further investigation.

1. Introduction

In this note, we consider the asymmetric classification
problem setting, often encountered in content-based
multimedia retrieval performed as a “one-against-all”
classification scheme. The essence of the proposed
technique is to increase the number of hyperplanes
used in an optimal separating hyperplane classifier, so
as to favor the under-represented class. Such a distinc-
tion that singles out a certain target class from the rest
of the data, when modeled explicitly, has been previ-
ously shown to improve classification accuracy for un-
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dersampled and unbalanced data sets, (Akbani et al.,
2004; Veropoulos et al., 1999; Zhou et al., 2004). While
being applicable in the general classification scenario,
the proposed method is designed to further exploit the
asymmetry of the classification problem at hand.

The intuition behind the idea of introducing one or
more extra hyperplanes in a classifier is exemplified in
Figure 1, where it is shown how an additional hyper-
plane may improve the class separation margin, and
thus have the potential to reduce the classification er-
ror rate. The following section details the formulation
of the multiple-hyperplane (MH) classification, consid-
ers its generalization properties and presents prelimi-
nary experimental results.

2. Multiple-hyperplane classification

2.1. Problem formulation

The standard 2-class optimal separating hyperplane
problem setting can be extended trivially in order to
accommodate more than one hyperplane:

min
ω1,...,ωNH

||ω1||
2 (1)

subject to: yi min
j=1...NH

(ωT
j xi) > 1, (2)

||ω1||
2 = . . . = ||ωNH

||2, (3)

where (xi, yi) ∈ R
n×{±1} are data samples with their

respective class labels, and NH is the number of hy-
perplanes, each of which is defined by ωj . Here, la-
bels +1 and −1 correspond to under-represented and
over-represented classes respectively. Additionally, we
require that the sum of distances to compound border
be less or equal to the sum of signed distances to the
average hyperplane ω̄:

∑

i

yi min
j=1...NH

(ωT
j xi) 6

∑

i

yiω̄
T xi, (4)

where ω̄ = 1

NH

∑

j=1...NH
ωj . This condition ensures

some degree of flatness of the compound border avoid-
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(a) SVM, γ = 1.14 (b) MH, γ = 1.55

Figure 1. SVM vs. Multiple-hyperplane (MH) method on a toy problem in 2D: an additional hyperplane leads to a better
separation margin γ (both methods use linear kernels).

ing overfitting. There is guaranteed to be at least one
set of hyperplanes that meets this requirement. The
actual role of this average signed distance constraint,
however, will be clarified in greater detail in the fol-
lowing section.

A disadvantage of the proposed formulation is that the
above optimization problem may be quite diffcult due
to the use of non-differentiable min-function, which
necessitates the use of auxiliary numerical strategies
for attaining differentiability via smoothing of the loss
function and avoiding unacceptable local minima via
annealed penalty terms. Its advantage, on the other
hand, is that (1-4) are expressed in terms of dot prod-
ucts, and thus are easily extended to nonlinear cases
via kernel trick.

2.2. Generalization performance assessment

The following result, which we state without a detailed
proof due to space limitations, establishes the gener-
alization properties of the proposed technique.

Proposition 1. Consider thresholding a class F of
functions minj=1...NH

(ωT
j t) with unit weight vectors on

an inner product space X and fix γ ∈ ℜ+. For any
probability distribution D on X ×{−1, 1} with support
in a ball of radius R around the origin, with probability
1− δ over l random examples S, any hypothesis f ∈ F

that has margin mS(f) ≥ γ on S has error no more
than

ε(l,F, δ, γ)=
2

l

(

64R2

γ2
log

elγ

4R
log

128lR2

γ2
+ log

4

δ

)

,

(5)
provided l > 2/ε and 64R2/γ2 < l.

Note that the error bound is absoultely the same as
presented in (Cristianini & Shawe-Taylor, 2000) for a
single hyperplane case. In order to clarify the intu-
ition behind this result, we observe that the proof of a
standard result on fat-shattering dimension, fatF, of
an optimal hyperplane classifier (Schölkopf & Smola,
2002; Bartlett & Shawe-Taylor, 1999; Vapnik, 1982)
is applicable in the multiple-hyperplane setting (1-4).
That is, proceeding in a manner similar to the original
proof and explicitly taking constraint (4) into account
leads to an identical bound on fatF:

r2γ2NH 6

∥

∥

∥

∥

∥

r
∑

i

yiS
T xi

∥

∥

∥

∥

∥

2

6 NHrR2

⇒ fatF(γ) 6 r 6

(

R

γ

)2

. (6)

Then, result (5) naturally follows, once (6) is substi-
tuted into the theoretical result that establishes the
link between the fat-shattering dimension and gener-
alization error (Bartlett & Shawe-Taylor, 1999; Vap-
nik, 1982). In equation (6) above, r is the number
of observations xi, R is the radius of the smallest
sphere containing all xi, γ is the separation margin,
and S = 1T ⊗I for a vector 1 of all ones of length NH .

2.3. Preliminary experimental results

For our content-based multimedia retrieval experi-
ments we chose ETHZ80 collection (Leibe & Schiele,
2003), containing 3280 high-resolution color images of
objects from 8 different semantic classes. The visual
information for each image was represented by 286-
dimensional feature vector containing 166 global color
histogram and 120 Gabor filter texture descriptors.
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Table 1. Classification accuracy (in %%) per class for ETHZ80 image collection

Method apple car cow cup dog horse pear tomato

MH classifier 97.12 88.44 89.75 95.41 92.37 88.44 95.19 98.38
NH 6 2 5 5 6 4 5 2
SVM classifier 96.16 88.06 84.59 95.94 83.59 88.09 92.16 97.66
margin ratio
(MH/SVM) 1.37 1.10 1.11 1.02 1.77 1.76 1.22 1.01

For each semantic class the training data comprised 80
images with an imbalance ratio of 10/70, and an over-
all training vs. testing data ratio was hence 80/3200.
For each class, we compared the classification accu-
racy of the 2-class SVM (Cristianini & Shawe-Taylor,
2000; Vapnik, 1998) with a Gaussian kernel tuned by
cross-validation to that of the MH classifier using the
same kernel parameters, but letting the number of hy-
perplanes vary. The outcome of these experiments
demonstrated that in most cases the performance of
the SVM classifier is improved by introducing extra
separating hyperplanes, while the ratio of the class
separation margins achieved by the two methods in-
dicated where such improvement was most likely. The
summary of results is shown in Table 1.

3. Conclusion

We have presented a large margin classification
method that exploits the asymmetric problem setting
by increasing the number of hyperplanes used in an
optimal separating hyperplane classifier. The perfor-
mance of the proposed technique has been assessed
theoretically by establishing a bound on generaliza-
tion error, and practically by evaluating its perfor-
mance in a content-based image retrieval task, pro-
viding encouraging results. Further research is war-
ranted in order to gain a better insight into the
method’s theoretical properties via Rademacher com-
plexity bounds (Bartlett & Mendelson, 2001; Koltchin-
skii & Panchenko, 2002), and to investigate its perfor-
mance in related multimedia processing applications.
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Abstract

We explore the problem of recognizing ob-
jects in images dominated by a broad back-
ground, aiming for a low false alarm rate. We
propose a new discriminative model which
consists of a large number of weighted ob-
ject indicators. The model is learned effi-
ciently and automatically from pictorial ex-
amples using the AdaBoost algorithm, ex-
ploiting both color and shape information.
Unlike previous methods we compensate for
the class priors in the training data by as-
signing unequal weights and updating them
according to classification error. We per-
form experiments on several datasets includ-
ing pedestrians, cars, and the COIL-100 color
objects. The experimental results demon-
strate that one algorithm with (almost) no
parameter tuning can learn to recognize ob-
jects and perform as well as methods dedi-
cated to each problem individually.

1. Introduction

Trainable object recognition is a challenging problem
in computer vision. First of all, the appearance of
the object makes the learning problem not trivial for
a number of reasons. The training examples often lie
in a high dimensional space. In many cases, the back-
ground is also present in the object examples. And to
make the matter worse, even though the training data
is often seriously under sampled from the underlying
distribution, a reasonable number of training exam-
ples can be very large. In addition, generative object
models are not known and in fact not meaningful for
a generic object class. The second issue is the class
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imbalance problem. In a typical scene, the number
of instances of the object class is much less than that
of the background class. The training data, therefore,
might not represent the class prior correctly. Finally,
it is desirable that minimal supervision is needed in
training. This includes manual annotation of training
data, feature selection and parameter tuning.

We explore how shape and color information can be
used and combined to generate discriminative object
representations. In particular, we propose a new ob-
ject model capturing discriminative aspects between
object shape and color and background at various im-
age locations in space, scale and orientation. We do
not attempt to evaluate different ensemble learning al-
gorithms. We choose the AdaBoost algorithm (Freund
& Schapire, 1997) because of its performance in prac-
tice and its ease of implementation. We perform exper-
iments on a number of datasets including pedestrians,
cars, and the COIL-100 color objects. The experimen-
tal results demonstrate the genericity and efficiency of
the new method.

The paper is organized as follows. In the next sec-
tion we review related methods in literature. We then
describe the AdaBoost algorithm in section 3. In sec-
tion 4 we present the new discriminative object model
and describe a solution to the class imbalance problem
in model learning. Our experiments are presented in
section 5. Section 6 concludes the paper.

2. Related Work

Sung and Poggio (Sung & Poggio, 1998) and Rowley
et al. (Rowley et al., 1998) present early trainable sys-
tems in the face detection domain. The former assume
a mixture of Gaussians for both object and background
classes while the latter use a multilayer neural network.
A number of methods follow with different learning
algorithms. The major obstacle to a generic object
detection system lies in their exploration of training
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data. The performance of appearance-based methods,
where all pixel values are used in classification, is likely
to degrade when background is embedded with object
examples. In addition, the scalability of the learning
techniques has to be examined because of the large
size and/or high dimensionality of the training data for
other object classes rather than human faces. Finally,
the “bootstrap” method of collecting negative exam-
ples (Sung & Poggio, 1998) is not easy to automate for
generic object classes, for example the setting of the
accuracy of the system in each bootstrapping round.

Viola and Jones (Viola & Jones, 2004) present a fast
object detection system by using a cascade of classi-
fiers. This type of classifiers provides a viable approach
to exploring negative examples. However, training an
optimal classifier of this type is extremely difficult (Vi-
ola & Jones, 2004). Thus, a heuristic approach is
adopted. As a result, the generalization performance
of a cascade of classifiers is not clear.

The works in (Burl & Perona, 1996; Ioffe & Forsyth,
2001; Agarwal & Roth, 2002) belong to the class of
detection-by-part methods. In this approach the ob-
ject parts are first detected, then grouped to form
objects according to an explicit spatial relationship
among parts. This approach is intuitive. However,
under the presented formulation only translation of
parts is dealt with. The difficult problem of learning
the object model is addressed in (Weber et al., 2000;
Ioffe & Forsyth, 2001; Agarwal & Roth, 2002) where
the specific object class is handled.

Detection by part can be seen from a different per-
spective. Mohan et al. (Mohan et al., 2001) model the
pedestrian object class by six components. The sup-
port vector machine learning method (Vapnik, 1998)
is used to train a detector for each component and to
train a combined classifier. The system shows robust
detection even when partial occlusion occurs, which
is a clear advantage of this approach. Their result
also shows that combination of classifiers outperforms
a single classifier approach. The major drawback is
that the model is constructed manually. This prob-
lem is in fact also present in their related work (Pa-
pageorgiou & Poggio, 2000) where a reduced subset of
features is selected manually to improve the detection
speed.

In summary, methods that assume a generative model
are not suitable for generic detection system, while dis-
tribution free methods such as support vector machine
(SVM) (Vapnik, 1998) or Sparse Network of Winnow
(SNoW) (Yang et al., 2000) do not fully address the
class imbalance problem in an automatic manner. In
addition, appearance-based methods do not provide a

viable solution to the problem where background is
embedded with object examples. The detection by
part approach deals with this problem elegantly. How-
ever, the problem of learning a generic object model
remains unsolved. Furthermore, current methods con-
sider object parts at one scale and orientation only,
and hence important discriminative features might not
be used.

3. AdaBoost learning

Let us consider a standard two class classification
problem. Let there be a training set {(xi, yi)} drawn
from some fixed but unknown distribution P (x, y) on
X × Y , where X is the space of the data variable x
and Y = {−1, 1} is the set of the class label y. In our
context, −1 denotes the background class and 1 de-
notes the object class. The task is to predict the label
y given x.

Among the various learning techniques, ensemble
learning methods (Freund & Schapire, 1997; Breiman,
1998) are suited for our problem because they are ef-
ficient and robust with respect to training data while
making no assumption about the underlying distribu-
tion. The fact that they work directly in the distribu-
tion space of the input data allows us to deal with the
class imbalance problem in a simple manner. They
are flexible in that prior knowledge can be incorpo-
rated via the class of base classifiers. This allows us
to design a discriminative model combining both color
and shape information.

In this paper we are interested in a class of ensem-
ble methods which finds a sparse linear combination
of base classifiers (Freund & Schapire, 1997). Specifi-
cally, suppose that there are a set of classifiers (weak
hypotheses) H = {ht : X → Y } and a learning algo-
rithm (base learner) which returns a hypothesis ht ∈ H
for any distribution over the inputs. The number of
classifiers in H could be infinite. A classifier ensemble
is constructed by iteratively calling the base learner
with an appropriate distribution, depending on the
empirical performance of the hypotheses learned in the
previous steps.

The AdaBoost algorithm (Freund & Schapire, 1997) is
a powerful ensemble learning method. Empirical stud-
ies in (Breiman, 1998) show that the performance of
the AdaBoost algorithm is similar or slightly better
than related ensemble methods in terms of generaliza-
tion. We choose the AdaBoost algorithm because of
the ease of implementation. A summary of the algo-
rithm is as follows.
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The AdaBoost Algorithm

Input: N examples {(xi, yi)} and an initial distrib-
ution represented by a set of weights D1(i) over the
examples.

Do for t = 1, . . . , T

1. Learn a hypothesis ht ∈ H from the training ex-
amples with distribution Dt.

2. calculate the empirical error of ht

ǫt = Pri˜Dt
[ht(xi) 6= yi] (1)

3. set

αt =
1

2
ln

(
(1− ǫt)

ǫt

)

4. update

Dt+1(i) =
Dt(i)e

(−αtyiht(xi))

Qt

where Qt is a normalization factor.

Output: The final classifier

fH(x) = sign (gH(x)) (2)

where

gH(x) =

T∑

t=1

αtht(x) (3)

gH(x) might be used to indicate the confidence of the
classification.

4. Discriminative Object Model

A set of hypotheses {ht} together with their weights
{αt} and the discriminant function eq. (2, 3) serve as
an object model.

In this section we present a class of weak hypotheses
H, which we call object indicators, and a base learning
algorithm which returns an object indicator for each
distribution over the training examples. Finally, we
describe a simple way to deal with the class imbalance
problem.

4.1. Object Shape Indicators

Each object indicator serves as a cue suggesting the
presence of an object instance. We use the intensity
changes at different image locations in space, scale and
orientation. The indicator is local at one scale, but
global at a finer scale.

First of all, we transform the input image into a new
representation. An image pyramid is constructed.
Each level of the pyramid is smoothed with a Gaussian
kernel, then convoluted with a Gaussian derivative fil-
ter in two orthogonal directions. At each spatial lo-
cation, the strength and direction of the response are
computed from the two convolutions. The strength is
then thresholded. If it is above a threshold value, the
response direction is discretized.

We consider a class of local object indicators of the

form H = {h(l,d,s|rs) : X → Y } where l denotes a spa-
tial image location, d a response direction, s a level of
the pyramid (scale) and rs the size of a neighborhood
of l at level s. Note that both l and rs are vectors. An

object indicator h(l0,d0,s0|rs0
) is defined to classify an

input pattern x ∈ X as object (y = 1) if there is an in-
tensity change in direction d0 in the rs0

-neighborhood
of l0 at level s0 of the pyramid, and as background
(y = −1) otherwise. Figure 1 shows an example of an
object indicator at level s of the pyramid.

sr2

= d

l

(s)

Figure 1. An example of an object indicator h(l,d,s|rs) for
six different patterns at one scale shown with a given neigh-
borhood rs. The black squares indicate the locations where
an intensity change in direction d occurs. This indicator
classifies the patterns on the left as object instances (y = 1)
and ones on the right as background (y = −1).

4.2. Object Color Indicators

We take a simple approach for color using color his-
togram. Currently, in our experiment, we use the
normalized rg-histogram. An indicator is constructed
from each bin in the histogram. Given a set of train-
ing samples with a weight distribution for each bin bj

a threshold is calculated. This threshold separates the
positive and the negative samples as well as possible.
This is done using the following equation similar to
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(Viola & Jones, 2004)

hj(x) =

{
1 if pjbj(x) > pjtj

−1 otherwise.
(4)

where pj is a parity indicating the direction of the
inequality sign, and tj a threshold value.

4.3. Indicator Learning in Distribution Space

The task of the base learner is to find an indicator
h ∈ H for each set of weights representing a distrib-
ution over the training examples. Our approach is to
perform an exhaustive search over H to find the one
with the lowest empirical error. The computational
cost can be reduced by sampling from the training data
according to their weights. Then the unweighted sam-
pled data can be used for training. In our experiments
the exhaustive search approach is feasible.

4.4. Model Learning in Class Imbalance

The indicator space H and the base learning algo-
rithm can be used in the AdaBoost algorithm to learn
the object model as in section 3. The problem arises,
however, when training examples are not drawn from
the joint distribution P (x, y), but obtained separately.
This situation is rather common in object detection.
Typically, a number of instances of the object class
are prepared. They should be representative for the
object class, and ideally are drawn randomly from
P (x|y = 1). Similarly, the set of background instances
is drawn from P (x|y = −1). So, the training set is
obtained from the two class conditional distributions.

In the context of object detection one is interested in
two types of misclassification, namely the rate of miss-
ing true objects ǫI and the rate of false alarms ǫII . Let
ǫ denote the generalization error. We have

ǫ = ǫIλ + ǫII(1− λ) (5)

where λ = P (y = 1) and (1 − λ) = P (y = −1) are
the class priors. Thus, a learning algorithm aiming
at lowering the generalization error ǫ also drives down
the false alarm rate ǫII when proper class priors are
provided. A small value of λ, or equivalently a large
value of (1− λ), leads to a very low false positive rate
ǫII .

A simple way to correct the class prior in the training
set is to set the weights D1(i) of the examples equal
in each class and sum up λ and (1 − λ), respectively.
A dataset sampled from the training set according to
the weights D1(i) will reflect the class priors properly.

Note that λ is an input parameter, reflecting the user
prior belief on the class ratio. It is similar to the final

decision threshold used in many systems, which is usu-
ally set to P (y = 1)/P (y = −1). Unlike these systems,
the parameter λ is used in training in our approach. As
a result, generating a ROC curve is computationally
expensive since we need to re-train for each perfor-
mance target. However, the advantage is that better
performance is achieved by using a proper training set.

In short, we achieve a very low false positive rate
by adjusting the initial weights of the training exam-
ples to reflect the class priors. Significantly, unlike
the bootstrapping or cascade of classifiers approaches,
this method maintains generalization properties of the
learning algorithm. Furthermore, there is only one pa-
rameter to be specified and hence the learning step is
fully automatic.

5. Experiment

This section presents our experiments on a number
of datasets. First, we summarize the parameters of
the system. We then give a brief description of each
dataset and the experimental results. Finally we show
the object models learned in our experiments.

5.1. System Parameters

The scale is enlarged 20% each iteration over scale.
The size of the neighborhood at each level of the pyra-
mid is proportional to the size of that level. A small
value is expected at the top level of the pyramid, for
example 0.5. Although setting the threshold is prob-
lematic due to the differences in image contrast, it ap-
pears that camera and balancing of contrast function
similarly. In our experiments, a value of 5 is used. A
small deviation from this value does not effect the per-
formance. Finally, the performance is not sensitive to
small change in the number of discrete orientations.
Its typical values are 4, 8 and 16.

There are two parameters in the learning phase. The
first one is the class prior factor λ. It is application
dependent. The second parameter is the number of
iterations T . It could be fixed beforehand. But nor-
mally, it is set according to the performance of the
classifier ensemble.

5.2. Datasets and Experimental Results

Pedestrian - DaimlerChrysler

This dataset is a subset of the one used in (Gavrila
& Giebel, 2001). The full dataset is not available. It
consists of 1500 pedestrian shapes (including mirror-
ing) and 5000 background images of size 100 × 100.
An example of each class is shown in figure 2. We use
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500 examples in each class for training, leaving a test
set of 1000 pedestrian and 4500 background images.
There is no mirrored image of the training set in the
test set. Exactly the same learning algorithm is used.

pedestrian background

Figure 2. Examples of the DaimlerChrysler dataset.

Figure 3 shows the performance of the system. The
system with 50 indicators classifies correctly 896 out
of 1000 patterns in the object class with only 2 false
alarms (a false alarm rate of 4.4 × 10−4). This com-
pares favorably to the result reported in (Gavrila &
Giebel, 2001), where on a larger dataset the match-
ing method using the chamfer distance achieves this
detection rate at a false alarm rate of approximately
2.5× 10−3.
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Figure 3. Performance on the DaimlerChrysler dataset.

Car - UIUC

The same algorithm is evaluated on the dataset used
in (Agarwal & Roth, 2002). The dataset consists of
1050 training examples with 550 car images and 500
background images of size 100 × 40 (see figure 4). In
addition, a test set of 170 images with 200 cars is avail-
able. The cars in the test images are of approximately
the same scale as that of the training examples.

Table 1 shows the results of our system in compari-

car background

Figure 4. Examples of the UIUC car dataset.

son with (Agarwal & Roth, 2002) using the evaluation
software generously provided by the authors of (Agar-
wal & Roth, 2002). The same number of windows
is tested in this experiment as in (Agarwal & Roth,
2002). We also use the same neighborhood size for
merging overlapping hypotheses, where eq. (3) is used
as the confidence measure. The result demonstrates
that our algorithm performs equally well in compari-
son with the system dedicated to this dataset.

our system UIUC system

λ TDs DR% FAs TDs DR% FAs
10−5 182 91.0 90 181 90.5 98
10−6 178 89.0 64 178 89.0 92
10−7 173 86.5 43 171 85.5 76
10−8 164 82.0 24 162 81.0 48
10−9 153 76.5 13 154 77.0 36
10−10 142 71.0 5 140 70.0 29

Table 1. Results on the UIUC test set. TDs is the number
of instances detected out of 200. DR is the detection rate,
and FAs is the number of false alarms.

Figure 5 shows two examples of the detection results of
our algorithm using the evaluation software in (Agar-
wal & Roth, 2002). Both cars are detected in the image
on the left. There are one correct detection and one
false alarm for the image on the right.

Figure 5. Examples of the detection result.

COIL-100

The experiments are performed on the COIL-100
dataset (Nene et al., 1996). This dataset contains 100
objects; for each object 72 views were taken 5 degree
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apart. We performed experiment with different num-
ber of training views. Specifically, v views are used for
training for each object and (72 − v) views are used
for testing. To train one object model, the training
examples of other objects serve as the negative set.
The confidence value in eq. (3) is used for multiclass
classification.

We used histograms with 64 bins, 8 in each r and g
directions.

Views per Object 36 18 8 4
SNoW 95.81 92.31 85.13 81.46
Linear SVM 96.03 91.03 84.80 78.50
Nearest neighbor 98.50 87.54 79.52 74.63
Shape only 95.61 91.44 78.34 58.96
Color only 97.89 97.17 92.41 77.72
Shape & Color 99.89 99.70 97.88 80.85

Table 2. Correct recognition rate (%) on the COIL-100
dataset (Nene et al., 1996).

Table 2 compares the recognition rate of our method
and other learning algorithms. For the setting and re-
sult of previous experiments for SNoW, support vector
machine, and nearest neighbor, the reader is referred
to (Roth et al., 2002). As expected, the combination
of shape and color outperforms shape and color fea-
ture alone. The combined shape and color model also
compares favorably to all other algorithms in case of
36, 18 and 8 training views. In particular, in case of
36 training views, it gives a remarkable accuracy: only
4 test views were misclassified out of 3600 test views.

6. Discussion and Conclusion

We have proposed a new object model consisting of a
large number of object indicators which capture dis-
criminative aspects between the object and the back-
ground class at different image locations in space,
scale, orientation, and also in color. The model is
learned efficiently and automatically using the Ad-
aBoost algorithm where the class imbalance problem
is handled in a simple manner by adjusting the distri-
bution over the training examples.

The experimental results on several datasets demon-
strate the genericity of the method. Also, the var-
ious sizes of the datasets show the efficiency of the
algorithm. The system achieves a very low false pos-
itive rate. In other words, it is able to correct the
class prior in the training set. In terms of generaliza-
tion, the system performs equally well in comparison
to state of the art methods in object recognition, for
examples (Gavrila & Giebel, 2001; Agarwal & Roth,

2002). We also demonstrated the ease of combining
color and shape information with classifier ensemble,
thereby giving a better performance than using indi-
vidual modality.
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Abstract

The identification of landmark points of a
figure in an image plays an important role
in many statistical shape analysis techniques.
In certain contexts, manual landmark detec-
tion is an impractical task and an automated
procedure has to be employed instead. Stan-
dard corner detectors can be used for this
purpose, but this approach is not always suit-
able, as the set of landmark points best repre-
senting the figure is not necessarily limited to
corners. We present a Bayesian approach for
automatic landmark detection, where a set
of N landmark vertices is fitted to the edge
of a segmented region of an image. We pro-
pose a likelihood function for the observed
segmented region given the vertices and then
use a Metropolis sampler to sample landmark
vertices given the observed region. Careful
consideration has to be given to the selection
of a prior for the distribution of the land-
marks.

1. Introduction

The shape of an object in a two dimensional image is
often characterized by a set of N labelled points and
hence is represented by an N × 2 matrix. This type of
shape representation scheme can be extended to R di-
mensional surfaces and it satisfies the requirements of
invariance to translation, scale and rotation. It there-
fore is a basis for many shape analysis methods. Such
data arises in many applications and the correspond-
ing labelled points are commonly called landmarks. In

Appearing in Proceedings of the workshop Machine Learn-
ing Techniques for Processing Multimedia Content, Bonn,
Germany, 2005.

certain applications, for example in biological homol-
ogy, landmarks are assumed to be uniquely defined
locations that are identifiable across a particular class
of objects or individuals. In general, it is assumed that
a set of landmarks is found in at least two objects and
the interest is focused on their relative positions. This
abstraction allows shape theory to stand apart from
issues of interpretation (Goodall, 1991).

In object recognition context, one does not a priori
know the class of objects that the region of interest
belongs to. Therefore, this kind of definition is not
applicable. For this purpose, we define landmarks to
be be a set of coordinate points that best describe a
given region. The distinction between landmarks of
an object and salient points of an image is that the
purpose of salient points is not to summarize the shape
contour of an object, but rather to represent a subset of
image pixels where the image information is supposed
to be most important (Sebe & Lew, 2003).

Manual landmark detection is too time-consuming in
content based image retrieval applications where one
might be dealing with large databases of images. Ar-
guably it is also too subjective (Brett & Taylor, 2000).
In segmented images where a region contour is clearly
defined it is possible to use corner detectors such as
Harris (Harris & Stephens, 1988), as well as a num-
ber of other algorithms. For the purposes of image
retrieval, it is interesting to obtain information on the
uncertainty of the shape retrieved, which is why a
Bayesian approach is useful.

In this paper, presented is a Bayesian method for au-
tomatic detection of landmarks in pre-segmented im-
ages. The idea is to fit a set of N landmark vertices
to the edge of a segmented region of interest, with the
aim of describing the shape of that region well. The
edge of the region is taken to be the object contour.
There is a restriction for the segmented region to be
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solid, i.e. without holes. In theory, the particular seg-
mented region would represent one object of interest
in that image.

The Bayesian framework requires a likelihood function
to be proposed for the observed segmented region given
the landmark vertices and then a Metropolis sampler
is used to sample landmark vertices given the observed
region. Hence we obtain a distribution for the set of
landmarks given the segmented region from which we
can draw inferences on the landmarks set. In the fol-
lowing section of the paper this model is described in
more detail. Subsequently, the method was applied to
an artificial test example and a pre-segmented image
of a painting from the Bridgman Art Library, London.

Two main Bayesian approaches to high level imaging,
which involves working with components of an image
in such tasks as object recognition are based on pat-
tern theory (Grenander & Miller, 1994) and marked
point processes (Baddeley & van Lieshout, 1993); for
a recent contribution see (Hurn, 1998). The first ap-
proach uses a deformable template to represent the
outline of a typical object and the natural variabil-
ity is often represented by a probability measure on
the parameters affecting the deformations. Kent et al.
(2000) further consider some statistical aspects of this
approach including maximum likelihood based. In the
second approach, the images are characterized by pro-
cesses of simple geometrical figures, each specified by
a location and a mark containing information such as
the shape and size of the figure. Rue and Hurn (1999)
combine these two approaches by imbedding the tem-
plate models into a marked point process framework.
Other work has been done in estimating object bound-
aries in an image, usually with some prior knowledge
of the object shape. However, these approaches dif-
fer from the one discussed in this paper in that they
seek to obtain a contour of an object, as opposed to
selecting a set of points that best represent an already
estimated contour shape obtained from a segmentation
of the image.

2. The Bayesian Model

The Bayesian approach to the problem of selecting a
set of landmark points to best represent the shape of
a segmented region in an image could be described as
the following: the prior distribution for the scene of
interest X, π(x), is combined with the likelihood of
the data Y arising from a particular scene X, π(y|x).
In this particular case, X is a set of ordered N land-
mark points, where each point is specified by a two
coordinate location vector in the image matrix. The
data Y is a matrix of pixels in the segmented image,

indexed as either belonging to the region of interest
or not. Inferences for X are made using the posterior
distribution

π(x|y) ∝ π(y|x)π(x).

Hence π(x) is the prior distribution for the locations
of landmarks and π(y|x) is the likelihood of the ob-
served shape arising given the landmark points’ loca-
tions. The rest of this section describes the model
choices for π(y|x) and π(x).

2.1. Prior Distribution for X

The set of ordered landmark vertices forms a N-sided
landmark polygon. Note that in this model, the num-
ber of vertices N is a constant which needs to be set
by the user.

To model the fact that the landmark polygon edges are
not permitted to cross over, one can specify the prior
with the indicator function π(x) ∝ I [edges crossing].

The prior distribution does not place a restriction on
the points to be on the edge of the segmented region.
Also the points need not be equally spaced, as this
restriction may not always result in landmarks best
describing the segmented region.

2.2. Likelihood

One possible data model is an increasing function of
the distance of the pixels from edge of the landmark
polygon. So the data model assumed is

π(y|x, α) =
∏

pixels(s,t)∈S

π(yst ∈ S|x, α) ×

×
∏

pixels(s,t)/∈S

π(yst /∈ S|x, α)

where

π(yst ∈ S|x, α) =











1
1+exp (−α d

D
)

if yst ∈L

1 − 1
1+exp (−α d

D
)

if yst /∈L

and
π(yst /∈ S|x, α) = 1 − π(yst ∈ S|x, α).

S is the region of interest in the image, L is the region
bounded by the landmark polygon, D is the largest
minimum distance between the pixel and each edge in
the landmark polygon and d is the smallest minimum
distance. The likelihood term contains the unknown
parameter α for which a uniform prior between 0 and
a large upper bound is used.

Note that this simulation of the likelihood simply mod-
els the property that pixels from the polygon edge are
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Figure 1. (a) Observed segmented region simulated for a set of landmarks with α=1, (b) α=10 and (c) α=80. (d) observed
likelihood function contours for α=1, (e) α=10 and (f) α=80.

less likely to be classifies as being inside the shape.
More complex likelihoods do not appear necessary.

Figures 1(a) to (c) show the observed segmented region
which was simulated for a given (artificial) set of land-
marks with different parameters ( α=1, α=10, α=80).
Figures 1(d) to (f) show the observed likelihood func-

tion contours. Hence the full posterior distribution is

π(x, α|y) ∝ π(y|x, α)π(x)π(α).

2.3. Inferences

The Metropolis algorithm (Metropolis et al., 1953) was
used to obtain an iterative sequence of {x,α} that con-
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verges in distribution to π(x, α|y). The approach used
was to update x and α one at a time while the other
one is held fixed. The conditional distributions for
both variables can be derived from the posterior dis-
tribution, the distribution of primary concern being
π(x|y):

π(x|y, α) ∝ π(y|x, α)π(x).

The candidate generating density for x was set to be
multivariate normal, where at each iteration of the al-
gorithm the location of only one vertex at a time was
perturbed. The vertex to be perturbed was randomly
chosen.

The Metropolis algorithm requires initial values to be
provided for all the variables. For parameter α, a value
greater than zero was randomly chosen. From a seg-
mented image, a starting set of landmark points can
be obtained by randomly selecting their locations in
the image matrix, or by first using an edge detector
to obtain the edge points of the shape of interest and
then randomly sampling from the edge point locations
to obtain a set of N landmark points. The randomly
selected initial landmark points can be reordered by
an algorithm such as the nearest neighbour.

3. Results

3.1. Artificial Test Example

An artificial image was created to illustrate the sam-
pling behaviour of the model. The shape Of interest
is a simple rectangular region. An initial set of land-
marks (with N=4) was obtained by randomly selecting
their locations in the image matrix.

A sequence of realisations from the π(x|y) is obtained
once the convergence of the algorithm appears to have
been reached. In order to assess the convergence
four separate simulations were run with overdispersed
starting points. Figure 2 shows the sequences for all
6000 iterations for the four simulation runs.

Figure 3(a) shows four starting landmark sets and the
object of interest. Figure 3(b) shows the estimates
(sample means) from the posteriors of the four land-
mark sets. Note that the first half of the iterations of
the simulation runs was discarded for the purpose of
making inferences from the posterior.

3.2. Bridgman Art Library Painting

One segmented region was chosen in a pre-segmented
image from the Bridgman art library. The Prewitt
edge detector (Prewitt & Mendelsohn, 1966) was used
to identify the edge points of the region from which
15 points were randomly selected as the starting set of
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Figure 2. Four independent sequences of the simulations
with different starting points. All 6000 iterations are plot-
ted for each sequence and each landmark vertex. The start-
ing points are indicated by crosses.

landmarks. Figure 4(a) shows the starting landmark
set superimposed on the region and figure 4(b) shows
the estimate of the landmark sets from the posterior
distribution. Whereas the Metropolis algorithm seems
to converge for the artificial test example, there are
still some convergence and mixing problems with the
more complicated shape.

4. Discussion

In this study, the problem of automatically generat-
ing a set of landmark points to describe the shape of
a region of interest in segmented images has been at-
tempted by using a Bayesian framework. The advan-
tage of the Bayesian approach is that it provides in-
formation about the uncertainty of the shape, i.e. the
uncertainty of how good the landmarks chosen are at
summarizing the region of interest. This is particu-
larly useful in content based image retrieval applica-
tions, which is the aim of the future research on this
topic. This automatic landmark detection method will
be implemented to a content based image retrieval ap-
plication, where given a large database of segmented
images, the shapes of segmented regions in different
images are compared using Procrustes analysis.
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