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Abstract

In this paper, we address the problem of building reconstruction in high resolution stereoscopic
aerial imagery. We present a hierarchical strategy to detect and model buildings in urban sites,
based on a global focusing process, followed by a local modeling. During the first step, we extract
the building regions by exploiting to the full extent the depth information obtained with a new
adaptive correlation stereo matching. In the modeling step, we propose a statistical approach,
which is competitive to the sequential methods using segmentation and modeling. This parametric
method is based on a multi-plane model of the data, interpreted as a mixture model. From a
Bayesian point of view, the so-called augmentation of the model with indicator variables allows
using stochastic algorithms to achieve both model parameter estimation and plane segmentation.
We then report a Monte Carlo study of the performance of the stochastic algorithm on synthetic

data, before diplaying results on real data.

Introduction

Automatic techniques for building reconstruction are important for various application fields. Highly
accurate and up-to-date 3D building cartographic information is essential in all investigations concern-
ing telecommunication, urbanism, environmental modeling, ete.. In this context, man-made features
extraction has been widely studied, especially in urban areas [1] [2].

Many approaches based on feature grouping have been developed to model simple shape buildings

in mid-resolution aerial imagery [3] [4].



New data types (high resolution aerial images, such as a few centimeters per pixel; digital color
camera images) are now available. That allows extracting more accurate three dimensional building
descriptions out of urban site images. Actually, the quality of the result really depends on the type
of scenes that we process. In dense urban sites, automatic recognition and reconstruction are very
difficult tasks because of the complexity and the diversity of the scene objects. To overcome these
difficulties, most techniques use a prior focusing step on regions of interest (ROT). The reconstruction
may then be locally carried out. The region selection can be interactively done by a human operator
[5] [6], or using GIS data (for instance, by projecting cadastrial maps [7] into the dataset, or by
exploiting digital elevation models (DEM) [8] [9] [10]).

The problem is then to extract and reconstruct the buildings, region by region. Many image-based
and DEM-based approaches have been carried out during the last years, using building databases,
parametric and prismatic models, image segmentation and grouping. However, DEM are usually not
dense and accurate enough to be efficiently used during the building reconstruction process.

We present in this paper a sequential building reconstruction method for high resolution monochro-
matic aerial image pairs. It is based on a global focusing step, followed by a statistical method for
roof area modeling. Figure 1 shows our system scheme: we first compute a dense and accurate digital
elevation model from the image pair; thanks to this depth information, buildings are detected as height
blobs (after detection, height blobs are classified as vegetation or building) (section 1). The regions
labeled building are 3D regions corresponding to multi-slope roof structures that we model separatly
(section 2). This part is the main contribution of our work. The aim is to show how stochastic
modeling approaches may be helpful for building reconstruction and 3-D roof recognition.

Sequential processings are usually made to achieve the multi-plane region research. First, a radio-
metric or range data segmentation is done, and then, a plane parameter identification is carried out
[11]. Even in the case of techniques based on fitting rigid models to the data [12] [7], segmentation
is usually used to make the matching problem linear. However, the segmentation step is difficult to
adjust and provides some artifacts, as over- or under-segmentations. For example, when there is an
under-segmented area, the data can not be correctly fitted by a plane during the second step. Because
of the planar segmentation limitation, we have considered a completely different approach which can

globally solve the identification of more than one plane in a single region and which can deal with



the particular spatial distribution of range data (high level noise, no real definition of neighborhood,
etc). The method is based on the interpretation of a multi-plane model for the data, as a mixing
model. The problem becomes non linear and can be analyzed with a Bayesian inference, solved with

stochastic algorithms.
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Figure 1: Hierarchical scheme for building detection and modeling.

1 Building detection

The building detection step aims at extracting areas corresponding to building structures. Because
of the complexity of the urban high resolution data, monoscopic approaches (only using perceptual
grouping and geometric models) are very limited. The 3D information can be very helpful for consis-
tent and efficient grouping. Furthermore, we think that DEM properties such as density, reliability,
accuracy, depth discontinuities localization are a key point for building detection and reconstruction.
That is why we will take special care of the DEM calculation.

We propose on figure 2 the main steps of our global image processing. It is based on the DEM
computation in order to segment images and select above-ground regions, which are then separated

into building regions and vegetation regions.
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Figure 2: Global analysis scheme.

1.1 Digital elevation model computation

Area-based matching techniques usually provide dense disparity maps. Unfortunately, the fixed tem-
plate size matching 1s not able to track narrow depth discontinuities. To overcome this problem,
adaptive size templates are preferred [13] [14].

As presented in [15], we have introduced an adaptive shape window matching using contour image
features to define the window shape: only the pixels on the same side of a contour and connected to
the center pixel are used for the correlation score. The depth discontinuities are then preserved and
precisely located.

However, this method is not efficient when the contour line is broken; in this case, the matching,
using all the points of the starting square correlation window, is no more adaptive.

Anyway, for high resolution image matching, a large window size is necessary to take the poorly
textured surfaces into account. It is thus interesting to use a template weighting function to reinforce
the influence of the central pixels [16]. Usually, Gaussian weight functions are used to calculate the

template weights.



We propose a new adaptive correlation scheme based on a cooperation between our adaptive shape
technique and Gaussian weighting template correlation methods. The idea is to prevent the diffusion
effects due to the contour discontinuities. We change the classical isotropic Gaussian weigthing to a

geodesic weighting, propagating on all inter-contour area (figure 3).
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Figure 3: Geodesic adaptive correlation scheme. Each pixel of the window has a weight value depending
on its distance from the central pixel P. The weight value of the pixel P2 is much smaller than the
value of the pixel P3 because the (P, P2) geodesic distance (without crossing contours) is quite larger

than the (P, P3) distance.

Our geodesic adaptive template Mg is built for each pixel (i,j) of image [} (slave image) as

following:
w—1 w—172
o V(oy) € [-25 2]
o IF there is a 4-connected way between I(i+ x, 5+ y) and I1(z, j)

¢ THEN

Mg (z,y) = exp (— (dgeoa(I1 (1 + 2,5+ y), ]1(i,j)))2)

202
with dgeod(Pl7 P2) the shortest way between P, and P> without crossing any contours.
¢ ELSE

Mg (z,y)=0



w adjusts the starting template size and o the weighting influence.
Remark

Multi-resolution matching strategy 1s most of the time used together with template-based matching
techniques to overcome computational problems [17] [18]. Adaptive window shaping techniques have
to be efficiently combined with multi-scale matching processing. Our multi-resolution strategy is based
on the geodesic adaptive matching technique applied at each level of the multi-resolution process. It
1s coupled with a validation process to avoid the matching error propagation. We use a symmetric

validation based on the two way filtering technique [19]. ]

1.2 Building extraction

Building classification may be obtained from graylevel and texture analysis, colour analysis, or 3D
local analysis [5] [20] [21] [7].

Due to the great accuracy and reliability of our DEM, we have chosen to extract building areas
using a 3D analysis.

The algorithm described in section 1.1 provides dense, accurate and discontinuity preserving DEM.
Thus it is possible to obtain a segmentation of this DEM by a classical region growing algorithm.
We define the local pixel aggregation with an altitude criterion: if the altitude difference between
two neighboring pixels is less than a threshold t,.,, they are merged in the same region. Pixels
having no altitude (the ones having no corresponding point in both images) are not considered in the
computation. The threshold #,., is chosen so as to control the maximal possible slope of homogeneous
regions.

We then select the above-ground regions as the ones being sufficiently high upon the ground. We
compute the ground altitude as the mean altitude of the lowest region, and all the regions having a
mean altitude higher than a threshold are considered as above-ground. The other regions are labeled

ground.
Remark

After this first classification, we compute an adjacency graph of altimetric regions, and regions are



merged relying on two criteria: neighboring above-ground regions are merged if they have the same
mean altitude, and some small isolated regions are eliminated from the above-ground description [22].

Finally, we make a building region extraction from the above-ground regions using the repartition
of the normal’s directions inside the region: for each point of the considered region, we compute from
a b x b neighborhood the normal of the local 3D surface (using a mean squares estimation). We then
consider the histogram of normals on the region. For a vegetation like region, normals are sparsed
and there is no privileged direction. This 1s caracterised by a flat histogram. On the opposite, for a
building region, there are some privileged directions, and corresponding peaks appear in the histogram
shape. Thus, a simple thresholding of the normal histograms enables us to decide whether the region

is building or vegetation (see [23] for more details).

2 Building modeling

At the end of the global scene analysis step, buildings have been detected. We propose in this section
to model building roofs. Thanks to the high image resolution, it becomes possible to separate the
different parts of a building with a multi-roof aggregated structure. Instead of the classical methods
making segmentation by plane, or grouping primitives by plane, we carry out a non linear optimization
method, which enables us to avoid the segmentation step [24].

First, we present the structure of the model, and its implications to the roof identification and
classification. We then write the posterior densities of the parameters that we want to identify and

we end with the description of the chosen Bayesian sampler: a stochastic EM algorithm.

2.1 Model for multi-slope roofs

Notations

We note R the building region we are working on. It contains N points, that are supposed to be dis-
tributed as p planes in the Euclidean space. X1,N = (#15N,Y15N, 215N) are the vectors which

contain the spatial coordinates of each data sample X, and a = (a1,...,a,), b = (b1,...,bp),



¢ = (c1,...,¢p) are the vectors of plane parameters. [

The tridimensionnal model of N points distributed as p planes is defined as:
P
> (anze +beye + 2 —cx) Lx,ep, =& Ve {1,...N} (1)
k=1

where ]IS is the indicator function of set S, and agx + bpy+ z — ¢ = 0 is the equation of the plane
Pyi. & is a Gaussian noise with zero mean and variance ¢ and which represents the modeling error,
that is the distance between a sample and the model for all ¢.

Such a model can be statistically interpreted as switching model, which is a particular case of
the so-called data augmentation models [25, 26]. The principle of those models is that there exists a
hidden process, generally a hidden Markov chain, which contains some important information for the
identification of the model. It is very interesting to complete the data description by adding variables
which describe this hidden process. For example, such variables can represent missing data as well
as explanatory variables in prediction models. When they are introduced in the densities (likelihood,
posterior, etc) of the model, they make them easier to work with and thereby simplify the model
estimation.

This type of augmented model is usually considered in a Bayesian framework, because the Bayes
inversion formula allows an efficient use of the augmented stochastic variables, as we will see below.
We will then try to identify our model (1) with a Bayesian inference. The first step is to express the

global posterior density, given by:

P61 X1 ) = /X P(61X1x, X) p(R| X1 n) dX (2)

with X being the augmented variables.

In our case, we introduce one augmented variable X, for each observation X:, which describes
the belonging of the data to the different planes Py of the model. We will refer to X, as indicator
variables or state variables because when augmented, the model has a Markovian representation (or a
state space representation). This augmented state variable is a vector of size p which takes its values
in the discrete set {0, 1}?. Each component & of the vector X, is therefore defined by the probabilities

of the corresponding data to belong to the plane Py.



The next step is then to deal with the posterior density in (2) to build estimators of the parameters

6. Classical Bayesian estimators are the maximum a posteriori (MAP)

8 = arg m;Xp(6|X1—>N)

or the expectation a posteriori

6 = I 6] X1, ]

As one can see in (2), the problem is that the integration has to be done with respect to a huge
number of integrands because there is a vector X, for each pixel X; in the region. In these types
of Bayesian inferences, we must turn to stochastic algorithms, which aim to produce - by sampling -
data which are asymptotically distributed as p(8| X1, n) [27].

A well known possible stochastic algorithm, called the Gibbs sampler [28], relies on iterative
sampling to build such a process (H(i)):

& (E+1)

L X ~p(X[6Y), X1, n)

: = (i41
2. 0 < @XM XLy (3)

Remark

Tanner and Wong [29] have proposed a similar iterative scheme inspired by the EM algorithm [30],

but the convergence has been found much slower [27]. [

We have adopted this sequential scheme to build MAP (maximum a posteriori) estimators of the
parameters 8 = (a, b, ¢) of our multi-slope model (1). The estimators are obtained with a stochastic
version of the well-known EM algorithm, which maximizes the posterior density p(6|X1-n). In the
next two sections, we describe each step of the process: (i) first we simulate the augmented variables
Xi,n (imputation step), (77) and then we sample data from the posterior densities of the parameters

and hyper-parameters (posterior step).

2.2 Imputation step

From the definition of the indicator variables, we have

Prob (X,[k] = 1) = Prob (X, € P)



where X, [k] is the k' component in the random vector X,.
Knowing the previous estimates of the parameters at the previous step H(i), defining p estimated
planes (P,(j), k = 1..p), the probability of a sample data to belong to the plane P,(j) i1s Gaussian, due
to the Gaussianity of the error:
(a4 6y, 4 20— )

2(02)"

Vk=1—p, Prob (Xt € Péi)) xexp | —

1)

We sample the new augmented variables XEH— from the density p(fq@(i), X15n). This density

is taken as a multinomial distribution M, usually used in mixing distribution problems [31].
XEH—U ~p (Xt|Xta a(i)a b(l)a C(Z)) = M(la (€5 PIRIRI ap) (4)

with
o o<Pr0b(Xt Epéi)) Vk=1...p

14 .
XM=
k=1

A random variable sampled from this density is then a p variate vector with only one nonzero

(5)

component. The key point of the global augmented model is the derivation of the weights ay. For

more details on indicator variables in mixture or switching models, we refer to [31].

2.3 Posterior step

The second step of our process (given in eq. 3) deals with the sampling of the conditional posterior
densities of the parameters. We start from the global posterior density derived from the classical

Bayes rule:

p (a, b,c, 0'52|X1_,N, 5(1_>N) xp (Xl_,N|a, b, c, 0'3, 5(1_”\7) m(a,b,c) 7 (0'52) (6)

2

5)1 are respectively the prior distributions of the plane coefficients and

where w(a,b,c) and 7 (0'
the variance of the error.

Markov field approaches are often used in image processing [32] to express spatial dependence on

data. Unfortunately, the range data used for building reconstruction are not everywhere dense and

Lthe complete description of the model includes also the hyper-parameters, which is in our case the variance of the

error. This variance has to be estimated (optimized) too, and therefore must appear in the full posterior density.
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above all not regularly sampled. Obtained from the correlation matching, homogeneous areas provide
very sparse range data whereas textured areas are well matched and provide dense data. We have
then prefered not to take spatial local dependences into account, and we have considered our data as
spatially independent data. From that independence, the global posterior density (6) can be developed

as follows:

N
p (a, b, c, 0'52|X1_,N, 5(1_”\7) o Hp (Xt|a, b, c, 0'?, Xt) m(a,b,c) 7 (0'52) (7)
t=1
Actually, because the modeling error is considered as Gaussian, the conditional likelihood of a

sample data is Gaussian (cf. eq. (1)):

2
(axt$t + bj'(tyt + 2 — Cf(t)

= 1
p (Xt |aa ba c, Xt) = \/@ exXp | — 20-52 (8)
with the notation ag = ag if Xt[k’] = 1 (remember from the previous section, that only one

component of X, is noNZero).

In Bayesian framework, it is convenient to make use of conjugate prior, that is prior which doesn’t
change the density family when multiplied by the likelihood term (8). This is especially convenient
when this augmented likelihood in terms of the parameters belongs to the exponential family, which

is the present case. The conjugate priors for the parameters are normal:
rlo) = N(0,0%0)  VEE{1...p) (9)

b and ¢ have exactly the same prior. While taking a large value for o2 the prior density is still

prior:
conjugate and becomes nearly noninformative. A noninformative strategy is very interesting here

since we do not want to privilegiate special range values for the plane parameters (a, b, c).

The variance of the error has an inverse Gamma conjugate prior:
77(0'52) = Ig(Aprioranrior) (10)

where the density function of the law ZG(A, 1) is written as follows (using the classical Gamma

function T'):

P et
IG(z|, B) = WW]I[”“W)

11



A nearly noninformative behavior corresponds to Aprior >> Tprior.

The full conditional posterior densities are then expressed according to eq. (7) and eq. (8):

e Plane coefficients (a, b, c)

v 2
P (ak|X1—>N,X1—>N, br, ck, 05)

xXp (X1—>N|X1—>Naakabkack’o-€2) F(ak)

2
N (Cl~ e+ b yt-l-Zt—C*)
ocHexp A X Xé 3 - 7 (ak)
t=1 gs
x N (ma,,02,) (11)

where the mean and the variance are given by

N -~
> X (k]

1 t=1

2 _
oo o + = (12)
prior €
2 N
(o -
mak = — 0_; Zl‘t (bkyt—l—zt —Ck)Xt[k’] (13)
€ t=1

b and ¢ have the same kind of distribution and are straightforwardly deduced from (11) - (13).

e Noise varlance

9 -
P (O-g |X1—>Na Xl—}Nﬁ A, bka Ck‘)

xp (X1—>N|X1—>Na ag, by, ck, 052) ™ (0?)

xIG (A, Te) (14)
with
Aa = % -1 +/\p7‘ior
(15)

N
1 2
Te = 5 g (axtxt + bf{tyt + 2 — CXt) + Tprior

t=1

2.4 Stochastic algorithm for model identification

A Bayesian sampler which will provide parameter estimators starts with the imputation of the indicator
variables X according to their multinomial distribution (4), and then makes use of the posterior
densities above described to sample the parameters. A Gibbs sampler could be a relevant choice

because one can easily sample all the posterior densities. However, these densities belong to the

12



exponential family and their maximization does not require a lot of efforts. We have then chosen a
Stochastic EM algorithm [33] which consists in two steps: (i) first, the Expectation step is achieved
by stochastic imputation, which provides an estimator of the expectation of the posterior log-density,
(ii) the Maximization step is the same as in the classical EM algorithm, and computes the maximum
of the conditional posterior densities.

This algorithm samples a Markov chain of the plane parameters, which converges on its stationary
density under weak conditions (see [25] for instance). Another attractive advantage of this algorithm

is its low complexity, which is of order O(pN).

SEM Algorithm for roof reconstruction: loop for iteration (i) to (i+1)

Start with al¥, b®, ¢, (af)(i) ,

1. Imputation step: indicator variables sampling
¢ compute V k=1—p,

. . A\ 2
(aﬁf)xt + 0 e+ 2~ CS))
2 (02)1

Br =exp | —

¢ normalize the weights,

Vk=1—p

¢ sample )~(£1+1) ~M(La,. .., a)

2. Posterior step: maximization (see Eq. (13))

eVhk=1=p alt = m,, (Xﬁ’i%bﬂcﬂ (Uf)(i))
v k=1op ) s (R (0))
eV h=15p ol = e, (K20 a0 b, (02) )

o\ (1) 1 ( (i+1) (i+1) B (i+1))2 ‘
b (Ua) = N+ 2hprior + 2 (Z a-f{t l’t+b)~{t Yyt + 2t Cxt + 27Tprior

t=1

13



o? (in meters)

0.04 0.12 | 0.25 | 05
N | 500 100% 100% | 100% | 92%
1000 100% 100% | 100% | 96%

Table 1: Monte Carlo results of the proposed algorithm on synthetic data with 2 planes.

o2 (in meters)
0.04 012 1 0.25 | 0.5
N | 500 93% 93% | 89% | 81%
1000 95% 95% | 93% | 89%
3000 98% 97% | 97% | 93%

Table 2: Monte Carlo results of the proposed algorithm on synthetic data with 3 planes.

3 Simulations

3.1 Results on synthetic data

In order to demonstrate the validity of the proposed stochastic algorithm before applying it to real
data, we have made a Monte Carlo study of its performance. For each Monte Carlo experiment, we
have randomly generated N samples spatially distributed as a mixing of 2 or 3 planes. The samples
have been corrupted by an additive white Gaussian noise with variance o2,

We have reported in tables 1 and 2, the percentage of good plane detection for several sample sizes
N and several noise powers o2, We decided that the planes were successfully detected when the mean
square error between the true parameters and the estimated ones was less than a threshold, chosen
empirically. Note that a noise power of approximately 4 centimeters (the noise with least power in
our table) corresponds to a real data case.

The results contained in tables 1 and 2 clearly demonstrate the very good behaviour of our algo-
rithm. Moreover, this study shows that the algorithm can operate at noise powers far greater than

observed real noise. As it was expected, the detection percentage grows with the number of observed

points and when the noise power decreases.
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3.2 Results on real data

We turn now to real scene results. We first explain the pre-processing that led us to the 3D samples for

the modeling process. The results of our algorithm are then compared to a man-made IGN database.

The test images are stereo pairs of 8 centimeters resolution supplied by the I.G.N. (Institut Géo-
graphique National) and cover the french city of Colombes. One of the stereo pairs is provided in
figure 4 (1000 x 600 pixels).

We make an edge detection using a Canny-Deriche edge detector [34, 35]?, and, thanks to the
contour map, we compute the adaptive geodesic template stereo matching. The starting window size
w 1s fixed to 15 x 15 which doesn’t cover more than 1.44 square meters. ¢ is chosen in such a way
that the weight of the window corner point is two times smaller than the weight of the center point.

After the DEM computation, we make the altimetric segmentation with the threshold ., = 20 cm
( § 1.2). The above-ground regions are those which are at least 5 meters (about one stair) above the
ground altitude. All of them have privileged normal directions and are classified as building (fig. 5);
in this part of the whole scene, there is no above-ground vegetation region®. We have tested our
matching and 3D building detection scheme on many stereo pairs and we have made an evaluation
thanks to a database reference (also supplied by I.G.N.). Tt results that, regarding the roofs, on the
base of about 500.000 pixels treated, 95% of pixels are matched, 96% of the matched pixels are reliable
(viz the reconstructed corresponding 3D point is less than 50 em away from the reference), and the
altimetric map is very accurate (only 15 em for the standard deviation of the error on z-value) [23].
As far as the processing time is concerned, our matching is no more time consuming than a classical
cross-correlation scheme, because the adaptive template computation time is weak in comparison with

the time to compute the curve of the similarity scores.

For the modeling, we therefore work on 3D data sets corresponding to each building region. A
roof example with 2 slopes is depicted in figure 6.a.

We show on figure 7 the Markov chains that were generated with our stochastic algorithm. Each

2We have adjusted the derivator filter thanks to limit values introduced in [36] in order to detect close contours

without error localization.

3In [23] many classifications with vegetation regions are presented.
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column represents the three coefficients (a,b,¢) of a plane in the scene. We can see that the third
plane rapidely converges, and that the first two wait approximately 40 — 50 iterations to achieve
convergence. This is the number of iterations needed for the sampling scheme to catch the a posterior:
mode of the model distribution. If K iterations are necessary to achieve convergence, the complexity
of our algorithm is actually in O(K Np). The problem of choosing K in practice - that is when we
decide that the algorithm has achieved convergence - is a real issue. We have decided to implement an
intuitive but not optimal scheme : we stop the algorithm when the variance of the last 20 generated
parameters is less than a treshold. The behaviour of the algorithm is also depicted in figure 6 in 3D
form.

The order of the model, which is the number of planes, is choosen a priori. We made the assumption
that the order P was known because the data sets that we work with in practice are often from scenes
with a small number of roof slopes (2 or 3). The simplest strategy to estimate P is then to run the
algorithm for several values of P, and choose the model that exhibits the greatest likelihood (or any
other model selection criterion: Akaike, etc). Tt is possible to consider the order of the model as a
random variable that we need to estimate, but this kind of model would lead to more complicated
sampling schemes [37].

We have tested our building modeling scheme on many regions of different stereo images. For
each 3-D region, planes are generally well detected and adjusted. Moreover, we have compared our
results to the man-made [.G.N. database: on the 30 tested building models, the mean square error on
z-value never exceeds 20 em, that confirms the accuracy of our modeling. We display on figure 8 the
result of the stochastic algorithm for one-building region. We keep the planimetric coordonnates of
the reference and we have computed the z value using our estimated planes. On figure 9 the results for
the whole scene of the figure 4 are displayed. There is one single roof, three two slope roofs; and one
three slope roof. On these data, there is no problem to build efficient models close to the reference,
even in the case of the three slope roofs (the Markov chains obtained from our stochastic algorithm in
this region are those displayed on figure 7). The final values of the state variables give us an additional
result: an image segmentation may be carried out using the state variables.

When the roof structure becomes very complicated, difficulties may appear in finding the right

planes. It might happen if there are more than three slopes in the scene, or if the scene contains
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Figure 4: High resolution digitized aerial stereo-photographs. Building regions which have been de-

tected are noted from A to E.
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Figure 5: Building detection. We display on the left figure the result of the matching scheme and on

the right figure the five building regions which have been detected by the global focusing process.

a. 8D data set (region B) b. Random initial planes

Y

= -
8 =

c. 10th iteration planes d. 30th iteration planes
Figure 6: Algorithm convergence on the building region B of the figure 4. It is a roof region with two

slopes. After only thirty iterations, the convergence is achieved.
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Figure 7: SEM Markov chains convergence for the plane coefficients corresponding to the region A

(fig. 4).

artefacts such as chimneys. In that case, it could be helpful to introduce a sequential process which
enables us to find first the largest plane, to remove the data belonging to it, and to start again the

process on the remaining data.

Conclusion

We have described an automatic multi-slope roof building detection and modeling from high resolution
digitized aerial stereo-photographs. Our method is a hierarchical technique based on a global building
detection step and a local modeling.

The first part of our process concerns the focalisation step: we do stereo computation and a 3D
data analysis to i1solate regions of interest, viz as far as we are concerned, the building regions. The
process is based on a new efficient digital elevation model computation. That has allowed us to
obtain very accurate and dense data, while preserving the depth discontinuities. Due to these 3D map
characteristics, we have carried out an altimetric segmentation of the scene, and we have made an
efficient building detection.

As for the second part, the building modeling, our method uses a stochastic optimization technique.
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Figure 8: Perspective view of the 3D model corresponding to the building noted B. The building
reconstruction is carried out using the plane parameters provided by our stochastic algorithm, and

the result is compared with the 3D data of the reference (light color).

%%%@

Figure 9: Two perspective views of the 3D models corresponding to the five buildings of the fig. 4. The

building reconstruction is carried out using the plane parameters provided by our stochastic algorithm.

We have developed a data model to express any 3D multi-slope roof distribution. The starting model
has been completed by augmented variables dynamically expressing the belonging to the different
slopes. This method works without any prior knowledge on the shape of the roof except that it is
composed by planes. When classic matching model methods are de facto limited, our modeling can
accept any slope roof configuration. There is no restriction on the distribution of the different planes.
Statistical approaches are decisive to process very complex non linear signals without segmentation,
and we believe that our modeling deriving from stochastic models is an improvement to building
recognition and shape reconstruction in urban sites. Furthermore, the principle of dynamical stochastic
sampling coupled with the parameter up-dating could be also applied to select a type of regions from
a segmentation.

This system i1s complete and well-suited to process in dense urban areas, which are usually the
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most difficult areas.

Further developments regard an extention of the modeling method using a rejection class which

should detect the outliers provided by artifacts in the detected regions (discontinuities on the roofs,

bad region detection, etc). That will enable us to take small building structures such as chimney tops

into account.
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