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Abstract

This paper presents a complete image analysis system which, from high-resolution color infrared (CIR) digital images, and a
Digital Surface Model (DSM), extracts, segments and classifies vegetation in high density urban areas, with very high reliability.

The process starts with the extraction of all vegetation areas using a supervised classification system based on a Support
Vector Machines (SVM) classifier. The result of this first step is further on used to separate trees from lawns using texture criteria
computed on the DSM. Tree crown borders are identified through a robust region growing algorithm based on tree - shape criteria.
A SVM classifier gives the species class for each tree-region previously identified. This classification is used to enhance the
appearance of 3D city models by a realistic representation of vegetation according to the vegetation land use, shape and tree
species.
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Detection, Characterization and Modeling
Vegetation in Urban Areas from High Resolution

Aerial Imagery

I. INTRODUCTION

ONE of the primary challenges to understand the dy-
namics of the Earth system is an accurate assessment

of the relationships between human population and the other
components of the system. As the global rate of urbanization
increases [1], so does the relative importance of the urban
environment to the global population. One of the keys to
managing assets (vegetation or buildings) is knowing the state
of those assets (the quantity and condition) and their trends
(are they growing or declining).

The vegetation component of a city is a dynamic entity and
its management is a considerable challenge. Residential and
business development can have significant adverse effects on
the extent and condition of urban vegetation.

Urban vegetation includes individual trees and groves of
trees, areas of bush, parks, and reserves. It includes vegetation
in either public or private space and/or the combination of
these areas.

A good knowledge of the vegetation type, of the tree species
are of great importance to all local communities for dis-
aster management, urban planning, environmental protection
or urban development policy making. Precise, reliable and
meaningful measurement of urban vegetation covers helps
decision makers and urban researchers to reach their goals.

In this paper we present a complete hierarchical system to
analyze urban vegetation from very high resolution imagery.
The proposed system extracts all vegetation areas, separates
them into high- and low-height vegetation, delineates indi-
vidual tree crowns, extracts 3D tree parameters (such as
crown diameter, height, trunk localization) and classifies them
according to their species. The result of this system is used to
create realistic urban virtual environments.

The remainder of this paper is organized as follows: datasets
and study area of our system are presented in section II. In
section III we review main approaches developed during the
last decades to deal with such problems. Section IV presents
the techniques used by each of system’s modules starting with
an overview of the proposed system. Section V presents the
output of the entire system for modeling vegetation in urban
areas, integrated in a 3D city model. The last section of the
paper draws a few concluding remarks and states future work
perspectives.

II. DATA AND STUDY AREA

A. Data

The dataset is made up of high-resolution georeferenced
aerial images with a resolution of 20 cm per pixel and having

4 channels (red, green, blue and near infrared). The overlap
between the images is of 60% within each strip and 60%
between two strips. This ensures that all the points of the
studied area are visible on at least four to nine images.

Fig. 1. Overview of the methodological process for dataset creation. Aerial
images and cadastral data are used to obtain additional data. Due to the
important overlap between aerial images, the DSM obtained is accurate
enough for 3D object analysis problems.

Additional data used by our system are derived from these
multiple view images, as depicted by the flow diagram of
Fig.1.

Four channel orthophotographs are obtained by transform-
ing the aerial images from a conical perspective into a paral-
lel perspective, with the light rays in the vertical direction.
A dense Digital Surface Model (DSM) is computed from
multiple images using a multi-view matching algorithm [2].
Buildings are masked on the DSM, and the resulting depth
map is further on used to estimate the terrain surface, thus
obtaining a Digital Terrain Model (DTM) [3] which is a dig-
ital representation of the topographic surface. A Normalized
Digital Surface Model (nDSM), containing the height of above
ground objects, is computed as the difference between DSM
and DTM.

B. Study Area

The study area is located in the city of Marseille, situated in
the south-east of France. Marseille′s climate is Mediterranean,
with a great variety of vegetation species. It is a complex
urban area, with many greened and treed resting places, highly
intermingled with buildings.

Fig.2 depicts sample images of our study area. The area
covered by this image is of approximately 54.800 square
meters, and contains all types of above-ground objects present
in a city (e.g. buildings, lawns, trees). It contains two species
of trees, namely lime trees (Tilia) and plane trees (Platanus
Hispanica).
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III. PREVIOUS WORK

With the technological improvements of the last generation
of very high spatial resolution sensors, and the growing
availability of Earth observation images acquired by these
sensors great attention is devoted to the analysis of urban
scenes.

Numerous studies have focused on the analysis of human
settlements, either to monitor urban sprawl, to map urban land
use patterns and infrastructure or to automatically reconstruct
urban environments. Although research has reached maturity
concerning the reconstruction of man-made objects [4] a lot of
challenge still exists concerning the modeling of other objects
present on the terrain surface, such as trees, shrubs, hedges or
lawns.

A. Vegetation Extraction

Traditionally, field surveys and visual interpretation from
aerial imagery were used to extract vegetation cover maps.
These time-consuming and expensive methods, evolved during
the last decades to high-level machine vision systems.

Remote sensing imagery is introduced into applied areas
and vegetation indexes are developed to extract vegetation
information. Although a great number of such indexes were
developed during the years, the most widely used is the
NDVI (Normalized Difference Vegetation Index) [5] which
is representative of the plants photo-synthetic efficiency and
provides per-pixel vegetation distribution.

While all these indexes were developed for different ap-
plications and particular type of input data and acquisition
conditions (which can be incompatible with the urban envi-
ronment), there is no ideal index designed to characterize the
urban vegetation environment.

The urban environment is a mixture of different proportions
of lawns, shrubs, treed areas, bare soil, building areas as well
as streets. Therefore, the spectral response of urban vegetation
is altered by the presence of such different types of elements,
having similar spectral signatures. Moreover, the atmospheric
conditions over urban areas are greatly influenced by the
presence of pollutants and dust issued from industrial plants
which are mainly located around big cities. All these factors
induce great variations in the spectral reflectance of the same
urban material.

B. Tree Detection

Vegetation has an unique spectral signature which enables
it to be distinguished from other type of land cover using

(a) (b)
Fig. 2. An aerial image of Marseille (France) representing a high density
urban area, where 1 pixel corresponds to approximately 20cm. (a) RGB
channels (b)IR channel

spectral reflectance properties in different spectral bands. But
the reflectance properties of different types of vegetation, such
as trees and grass, are very close and other characteristics have
to be exploited to distinguish between such classes.

An alternative solution is to incorporate texture properties
into the classification process [6] [7]. Texture classification
highly depends on the illumination conditions (the position of
the solar light source) and the position of the sensor view angle
relative to the imaged area. We therefore propose a method to
analyze the texture of vegetation areas by exploiting its 3D
height information.

C. Individual Tree Crown Delineation

Many researches deal with automatic tree crown delineation
from aerial or satellite images. Among the different approaches
proposed, we identify a first class using object-based methods,
which model tree crown templates to find tree top positions
[8] [9] [10]. Although this kind of approaches give good
results, prior knowledge about tree crown size and shape has
to be exploited, which can be rather difficult in an urban en-
vironment. Another class of methods exploits shadows around
tree crowns to delineate their contour [11], such as valley-
following algorithms [12] or region growing methods [13].
Other contour based methods use multi-scale analysis [14] or
active contours [15] to delineate tree crowns. A third class uses
local maxima information to estimate tree top position and
the number of trunks [16] [17]. Applied on optical imagery,
the performances of these methods are easily influenced by
illumination conditions, occlusions or shadings due to intensity
variations. We propose an approach to delineate individual tree
crowns which exploits tree height information.

D. Tree Species Classification

The problem of tree species classification was first issued in
the field of forestry where digital interpretation techniques of
aerial/satellite imagery have been used for the inventory and
monitoring of forested areas [18]. Depending on the spatial
resolution of the input data, the goals of these studies cover a
large range of applications. High resolution imagery was used
in pixel-based classification of individual tree crowns [13],
[19]–[21] yet low spatial resolution imagery was mostly used
to extract single species stands [22]. The method we propose
to perform tree species classification exploits beside spectral
information also texture of high resolution images.

IV. METHODOLOGY

Our objective is to extract all vegetation areas present in an
urban environment, and to characterize them according to type
and species composition. This section provides an overview of
all processing steps of our approach. All different components
of the proposed system are discussed in detail in the following
subsections. An overview is given in Fig.3.

A. Vegetation Extraction

The first step of our approach is the extraction of vegetation
areas.
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Fig. 3. Block scheme of the proposed system. First, vegetation areas are
extracted, then, treed areas are separated from lawns according to one’s
height. Subsequently, tree crown borders are delineated and finally tree species
classification is performed.

The method we propose is robust to the nature of the
urban surface and to the atmospheric conditions. It is based
on a supervised classification method using a SVM (Support
Vector Machines) [23] classifier. The training dataset is made
up manually and contains both vegetation and non vegetation
areas. For all pixels in the training dataset, the feature vector
contains four characteristics, namely, the reflectance values
of each pixel in the infrared(IR), red(R), green(G) and blue
bands(B). As most of the spectral indices used in literature to
detect vegetation areas are linear combinations of the pixels
reflectances, we chose a linear-kernel for the classifier.

Results of the proposed approach for vegetation identifica-
tion in urban environments by means of supervised classifi-
cation techniques are presented in section V-A of this article.
A comparison to results obtained by applying state-of-the-art
techniques for vegetation detection will also be presented and
the relevance of the proposed method will be highlighted.

B. Tree Detection

The next component of the system deals with the segmenta-
tion into grass and trees. The proposed method exploits texture
characteristics on the DSM to segment vegetation according
to height variation.

To extract treed areas from the vegetation areas previously
delineated we compute the local height variance on the veg-
etation areas corresponding to the Digital Surface Model.
This texture feature accentuates large changes in height values
between adjacent pixels. Variance texture is computed using

V =
∑ (xij −M)2

(n− 1)
(1)

where xij is the height value of pixel (i,j) on the DSM; n
equals the number of pixels in a sliding window and M is the
mean value of the moving window computed by:

M =
∑

xij

n
(2)

Height local variance was computed using a 11× 11 pixels
sliding window to capture both fine-scale and coarser-scale
height characteristics of urban vegetation. The variance texture
data was separated into low and high level values using a
histogram-based thresholding method. Results obtained using
this method on our data will be presented in section V-B.

C. Individual Tree Crown Delineation

The following module performs individual tree crown de-
lineation. It is based on treed areas delineated by the previous
module and exploits tree shape to segment tree crowns.

(a) (b) (c)

Fig. 4. Detecting tree tops from the DSM (a) 3D view of the DSM: all
points higher than the analysis altitude h are evaluated for tree top estimation
(b) 2D view of the 30th iteration (c) Seed points detected after the final
iteration: we can notice that we obtain one seed region for each tree.

To individually delineate tree crowns, we developed a seg-
mentation method based on a seeded region growing approach,
taking into consideration the treed areas previously detected.
Our approach consists of two steps: the first one is used to
detect seed points which are grown to regions corresponding
to individual tree crowns in the second step.

Traditionally, region growing (RG) methods developed for
image segmentation start by arbitrarily choosing seed pixels
which are grown into regions composed of all neighboring
pixels satisfying a similarity criterion. This process continues
until all pixels belong to some region. It is possible to split
the segmentation procedure in two steps, one in which seed
points are chosen, and a second one, when a region is grown.

The performance of this type of segmentation method is
highly dependent on the number of seeds (as the number of
detected regions is equal to the number of seed points) and on
the choice of the similarity criteria used (which can be based
on any characteristic of the regions in the image).

The method we developed uses a set of seed points with
a one-to-one correspondence with the number of trees in the
image, which are grown into regions made of pixels lying on
the same surface.

1) Seed Points: To obtain one seed point for each tree
crown, we use the DSM to estimate tree tops. To reduce the
number of possible candidates for a tree top, a Gaussian filter
is used as a smoothing filter on the DSM with an empirically
determined mask, approaching the average size of the trees in
the image. To determine tree tops, we evaluate the maximum
height of the trees present in the DSM and we consider all
points having the same height as tree tops. In the first iteration
we obtain points corresponding to the highest trees in the
stand. Therefore, we iteratively decrease the analysis altitude,
h. At each step, we analyze all points at greater heights than
h and detect a new seed when a new region appears and it
doesn′t touch pixels previously labeled as seeds. A graphical
illustration of this algorithm is presented in Fig.4.

2) Region Growing: Starting from the previously labeled
tree tops, tree crown borders are obtained by a region grow-
ing approach based on geometric criteria of the trees. This
approach is similar to the previous one, based on a height
descent. The altitude analysis h is iteratively decreased, and
for each step, the pixels corresponding to a height of h±4h
are iteratively aggregated to the adjacent region.

The results of the above presented method are exemplified
in section V-C. An evaluation of the accuracy of the results
obtained using the automatic segmentation algorithm and a
manual tree crown delineation method will also be presented.
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D. Tree 3D Parameter Estimation

Tree crown diameter and tree height, are estimated for
each tree using the segments obtained from the tree crown
delineation method presented above. Fig.5 depicts the param-
eters estimated for a tree, from the corresponding tree crown
segment.

(a) (b) (c)

Fig. 5. 3D scale factors estimated for each tree. (a) Crown surface estimation
(b) Tree crown diameter (c) Tree height

The width of a crown (diameter) can be measured by
vertically projecting the edges of the crown on the ground
and measuring the length along one axis from edge to edge
through the crown center (cf. Fig.5 -(a) & (b)). Tree height
(cf. Fig.5 -(c)) is estimated as the distance from the base of
the tree to the tree top and is directly computed on the nDSM
(cf. II). We estimate the position of the trunk of the trees on
the ground as corresponding to the barycenter of the crown
surface.

E. Tree Species Classification

Tree species discrimination in urban areas using remote
sensing data is a difficult task, for several reasons :

• complexity: tree stands are very complex, having great
height and shape variance (in urban areas trees of differ-
ent ages, thus height, are often adjacent and crowns are
often cut to different geometric shapes);

• density: the high density of trees, often intermingled
to each other, leads to many hidden parts of crowns, to
crown shadowing and differential crown illuminations;

• diversity: the great number of species in one genus form
difficult cases and their discrimination can be difficult
even on the field.

It is easy to enumerate cases, which are most likely unsolv-
able. Suppose we want to know the species of each of the tree
crowns depicted by Fig.6. Which are the features suitable to
discriminate between the two?

Fig. 6. Tree crowns belonging to two different species. Assigning the
correct species to each tree is a very difficult task, even for an advised photo
interpreter. Finding features suitable to discriminate between two such similar
textures is even more difficult.

We computed texture characteristics to form feature vectors
for a supervised classification approach based on SVM’s. We
study both per-pixel and per-region classification approaches,
and results obtained for the two approaches are evaluated and
compared both against each other and also against a manual
defined ground truth.

The texture of an image contains information about the spa-
tial and structural arrangement of objects [24]. There are two
classes of Texture Measures (TM): first order (occurrence), and
second order (co-occurrence) statistics [25], [26]. First-order
statistics are derived from the histogram of pixel intensities
in a given neighborhood (i.e. moving window), but don’t
take into consideration spatial relationship between pixels.
Second-order statistics are computed from the Gray Level Co-
occurrence Matrix (GLCM) which indicates the probability
that each pair of pixel values co-occur in a given direction
and distance [25], [26].

We focused on first- and second- order measures to char-
acterize tree species. Many texture features can be com-
puted from the GLCM matrix. Each element of the GLCM,
g(i, j|d, θ) describes the relative occurrence of two pixels with
gray level (i) and gray level (j), respectively, and separated
by inter-pixel distance (d) in the angle direction (θ). A GLCM
is defined as:

G(d, θ) = [g(i, j|d, θ)] (3)

We computed the following Texture Measures (TM):
Mean, Standard Deviation, Range, Angular Second Moment,
Contrast, Correlation, Entropy, Inverse Difference Moment.

The use of the GLCM method requires an appropriate
window size, inter-pixel distance and direction. Classification
results greatly depend on the selected window size: if it is
too small, the spatial information extracted is not statistically
reliable, whereas a too large window allows the overlapping
of different classes.

We use the tree crown delineation results as additional
information to compute the second order statistic parame-
ters of the GLCM method. This allows us to overcome the
overlapping classes problem. We propose two approaches
to compute texture measures : a pixel-based one in which
texture measures are computed for each pixel over a square-
neighborhood centered on it and a region-based one where
texture measures are computed on all pixels belonging to a tree
crown. The size of the window for the pixel based approach
was chosen of 31× 31 pixels to make statistically reliable the
measurements. As for the region approach we compute second
order features for all pixels inside a tree crown border.

The choice of an appropriate distance between pixels is
closely related to the coarseness or the fineness of the texture
being analyzed. The coarser the texture, the more the distance
between pixels can be increased. As we are interested in pre-
serving all possible differences between species, we decided to
consider a distance of 1 pixel and thus to characterize texture
in its finest level of detail.

Direction is important in the case of anisotropy in the
texture. This is not the case for tree crowns, therefore we
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(a) (b) (c)

Fig. 7. Vegetation detection based on linear-kernel SVM classification (a)
RGB input image (b) IR input image (c) Vegetation mask

(a) (b) (c)

Fig. 8. Spectral indices used for vegetation detection (a) NDVI image
highlighting vegetation areas (b) RGB channels for the same area as the one
presented in Fig.(a). (c) Excerpt from the RGB image presenting parasols
classified as vegetation

decided to compute second order statistics over a direction of
0°.

Since we want to separate vegetation regions which look
similar, it seems that using perceptually relevant color spaces
is important. Texture classification was done using feature
vectors computed on four different color spaces: RGB, XYZ,
Lab, HSV [27].

The supervised classifier used is an SVM [23], [28] classi-
fier with a linear kernel and in a one-against-one configuration.
The training and testing databases contain two species of trees,
namely lime tree (Tilia) and plane tree (Platanus hispanica).
Both per-pixel and per-region classification approaches are
analyzed using the same feature vectors. A manually defined
ground truth serves as data support for the training and
evaluation steps. Training is performed on a set of 18 trees
while tests are carried out on a stand of 19 trees.

V. RESULTS AND EVALUATION

A. Vegetation Extraction

Fig.7-(c) presents the vegetation mask obtained by applying
the proposed supervised classification algorithm to the test area
presented in Fig.2.

We compared the results obtained by our method to results
obtained using state-of-the-art methods to detect vegetation.
The vegetation mask obtained for the study area using a
NDVI decision-based method is depicted in Fig.8-(a). At a first
glance, there are no major differences between this vegetation
mask and the one depicted in Fig.7-(c).

The highlighted patch in Fig.8-(a) presents an area classified
as vegetation by the NDVI index, which in fact corresponds
to non-vegetation areas (blue parasols) as can be noticed in
Fig.8-(b) & (c).

Vegetation classification rates are high for the two methods,
from 87.5% for the NDVI based method to 98.5% for the SVM
classification method. The main drawback of the proposed
method compared to NDVI based method, lies in the fact that
training areas have to be defined and the classifier has to be
re-trained when data acquisition conditions change.

(a) (b) (c)

Fig. 9. Differentiation between grass and treed areas (a) Vegetation areas
on the DSM corresponding to the height local variance (b) Treed areas (c)
Lawns

(a) (b) (c)

Fig. 10. Tree crown delineation results. (a) Input data (b) Automatic tree
crown delineation results for the proposed RG method (c) Reference manual
delineation of tree crowns

The results of this module of the system give localization
areas for urban vegetation and will be used to mask all other
objects present in the urban area.

B. Tree Detection

Fig.9-(a) depicts the variance image computed on the veg-
etation areas extracted from the DSM. Fig.9-(b) & (c) depict
the result of the segmentation of treed areas from lawns.

The accuracy of the grass/lawn segmentation was evalu-
ated against a manual delineation and the results are very
promising. More than 97% of the grass surface in the reference
delineation was correctly classified as lawn.

Lawns will be masked in the vegetation areas extracted
by the first module, to accurately delineated individual tree
crowns.

C. Individual Tree Crown Delineation

Tree crown delineation will be performed on tree stands
previously identified. The segmentation algorithm proposed
in section IV-C belongs to the family of region growing
algorithms and uses tree seed regions depicted in Fig.4-(c)
as input.

The results of this algorithm are illustrated in Fig.10-(b)
on a small crop of our test area depicted in Fig.10-(a) . The
reference manual delineation presented in Fig.10-(c) for the
same tree stands will be used for evaluation purposes.

1) Evaluation Measures: The approach used for the evalua-
tion is similar to the one presented in [29]. A statistical analy-
sis is first performed taking into consideration the total number
of trees in the ground truth and the omission (omitted trees)
and commission errors (segments not associated with a tree).
We take into consideration the following cases for the spatial
analysis of the segmentation : pure segments, over-segmented
trees, under-segmented trees. Fig.11 illustrates these evaluation
measures. Pure segments (Fig.11-(a)) correspond to correctly
identified trees. We consider that a segment is 100% pure if
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(a) (b) (c)
Fig. 11. Evaluation measures defined for tree crown delineation accuracy
assessment. Yellow shapes represent ground truth delineation of tree crowns.
(a) Pure segments (b) Over-segmented trees. (c) Under segmented trees

(a) (b) (c)

Fig. 12. Tree species classification: training and test datasets (a) Input data:
tree crown delineation results (b) Training area (c)Test area

it corresponds to one and only one segment in the ground
truth and vice versa, with an overlap area greater than 80%.
Over-segmented trees (Fig.11-(b)) correspond to the case when
more then one segment is associated with the ground truth
delineation. Under segmented trees (Fig.11-(c)) correspond to
segments which include a significant part (> 10%) of more
than one tree.

The accuracy assessment results are presented in table I.

TABLE I
TREE CROWN DELINEATION ACCURACY ASSESSMENT

Quantity % of the total num-
ber of trees

Trees correctly segmented 32 78.0
Trees over-segmented 1 2.4
Trees under-segmented 4 9.7
Trees omitted 4 9.7
Total number of trees in the stand 41
Total number of detected trees 37

Tree crown delineation is performed on 3D height infor-
mation of trees and is therefore not influenced by shadings,
occlusions or intensity variations. Nevertheless, a precise DSM
is needed to obtain accurate tree crown delineation results.
Given such a DSM, the limitations remaining are the ones
corresponding to particular tree shapes. This is the case with
road-alignment trees, having highly intermingled tress crowns
and which may be delineated as an unique tree crown.

D. Tree Species Classification

Fig.12-(b) & (c) present tree crown regions used for classifi-
cation purposes. Plane trees are represented with darker tones
than lime trees.

Results obtained for tree species classification are presented
in Table II. The feature vectors are composed of the Texture
Measures (TM) previously presented (i.e. Mean, Standard
Deviation, Range, Angular Second Moment, Contrast, Corre-
lation, Entropy, Inverse Difference Moment). Feature vectors

TABLE II
ACCURACY OF TREE SPECIES CLASSIFICATION PERFORMED ON

DIFFERENT COLOR SPACES

Color space and
component

Pixel-based ap-
proach

Region-based
approach

Classification
accuracy (%)

Classification
accuracy (%)

RGB 58,19 73,68
Rlabel 68,09 68,42
Glabel 52,77 68,42
Blabel 62,10 68,42
IR 52,49 57,89
DSM 70,35 63,16
XYZ 61,61 68,42
Xlabel 62,59 68,42
Ylabel 58,62 68,42
Zlabel 63,13 63,16
HSV 95,84 94,74
Hue 61,91 57,89
Saturation 90,53 89,47
Value 93,42 100
Lab 53,13 57,89
L_label 81,42 89,47
a_label 79,61 57,89
b_label 76,71 73,68

were computed on different color spaces (i.e. RGB, XYZ, Lab,
HSV) and on each of the their components separately. Results
are presented both for pixel-based approaches and for region-
based ones.

As we can notice results obtained are very promising, with
a classification accuracy varying from 95,84% for texture
measures computed for pixel-based approach on the HSV
color space to 100% for the region-based approach on the on
the Value component of the HSV color space representation.

Two main conclusions can be drawn from this study. First,
both first- and second- order texture measures are strong
predictors of tree species. Second, models that included all
pixels of a tree crown for texture measures computation
explained better class variability. Future work is needed to
evaluate the possibility of extending tree species classification
methods to several classes.

Results of all of the above presented modules are exploited
to enhance 3D city models with realistic representation of
vegetation. Fig.13 depicts the 3D view of our study area
with automatically inserted tree models according to real tree
species. As we can observe two different tree models are
present in Fig.13. If we take a closer look at the image, we
notice that tree trunks are correctly positioned on the ground
as we can see the projection of the tree crown on the ground,
underneath the tree model.

VI. CONCLUSION AND FUTURE WORK

We presented a complete hierarchical image analysis system
to characterize urban vegetation. It works on color infra-red
aerial images and contains components dealing with vegetation
in urban areas, from extraction to tree species classification.
After identifying vegetation areas, lawns are separated from
trees, then tree crown borders are delineated and trees are
classified according to their species.
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Fig. 13. 3D tree modeling over Marseille. Left: 3D city model containing buildings. Right: Automatic generated 3D city model containing buildings and
realistically rendered trees according to vegetation information obtained using the proposed system.

The proposed approach operates on standard aerial data and
performs a complete characterization of vegetation in urban
areas without any supplementary source of information, such
as hyper-spectral or LIDAR (LIght Detection and Ranging)
data.

Research in the field of urban remote sensing often lacks
tree species information. Our study describes a novel ap-
plication of image texture analysis to classify tree crowns
according to their species. The first results are promising,
pointing towards future large-scale classification of vegetation
in human settlements from high-resolution aerial images.

In the next step, we will use this system on images from
other acquisition campaigns to check its performance when the
acquisition conditions change. The output of the system will be
used to enhance 3D city models, with a realistic representation
of urban vegetation according to its characteristics.
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