
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXXX, NO. XXX, JUNE 2010 1

Locality-Sensitive Hashing for Chi2 Distance
David Gorisse, Matthieu Cord, and Frederic Precioso

Abstract —In the past ten years, new powerful algorithms based on efficient data structures have been proposed to solve the problem
of Nearest Neighbors search (or Approximate Nearest Neighbors search). If the Euclidean Locality Sensitive Hashing algorithm which
provides approximate nearest neighbors in a Euclidean space with sub-linear complexity is probably the most popular, the Euclidean
metric does not always provide as accurate and as relevant results when considering similarity measure as the Earth-Mover Distance
and χ2-distance. In this paper, we present a new LSH scheme adapted to χ2-distance for approximate nearest neighbors search in
high-dimensional spaces. We define the specific hashing functions, we prove their local-sensitivity and compare, through experiments,
our method with the Euclidean Locality Sensitive Hashing algorithm in the context of image retrieval on real image databases. The
results prove the relevance of such a new LSH scheme either providing far better accuracy in the context of image retrieval than
Euclidean scheme for an equivalent speed, or providing an equivalent accuracy but with a high gain in terms of processing speed.

Index Terms —Sublinear Algorithm, Approximate Nearest Neighbors, Locality Sensitive Hashing, χ2-distance, image retrieval

✦

1 INTRODUCTION

In the recent years, the development of effective methods
to retrieve images in large databases (more than 100 000
images) has seen a growing interest both in computer
vision and data mining research communities.

Commonly, “Image Similarity Search” refers to the
problem of retrieving, from a database, all images shar-
ing perceptual characteristics with a query image q.
Describing explicitly these perceptual characteristics re-
quires:

• to extract relevant visual features to represent per-
ceptual image characteristics,

• to define a (dis)-similarity function between the
two image representations in order to evaluate the
original perceptual similarity of these two images.

Let us notice that these two processes are not indepen-
dent but related to the proper matching between distance
and visual features. When discriminating histograms for
instance, some (dis)-similarity functions, or distances, are
more accurate than the L2 distance [1]–[3].

The most simple approach to perform “Image Simi-
larity Search” is then to compute the similarity function
between the query image q and all database images
in order to find the k best images. In Content Based
Image Retrieval (CBIR), more sophisticated systems, like
interactive search [4], have been considered in order
to perform semantic similarity search and to reduce
the semantic gap. However, as the complexity of such
approaches grows linearly with the size of the database,
this problem is intractable when considering the sizes of

• D. Gorisse is with ETIS, CNRS/ENSEA/UCP, Fr. and Yakaz, Fr.
E-mail: david@yakaz.com

• F. Precioso is with ETIS, CNRS/ENSEA/UCP, Fr. and I3S-UMR6070-
UNS CNRS
E-mail: frederic.precioso@unice.fr

• M. Cord is with LIP6, UPMC-Sorbonne Universités, France.
E-mail: matthieu.cord@lip6.fr

current databases. Facing the huge increase of database
sizes, a third issue must be considered: the design of
a data structure allowing to quickly identify similar
images.

The type of index structure depends directly on what
visual features (descriptors) are considered to describe
the images. Indeed, in the context of copy detection or
near duplicate search, images are described with sparse
vectors, as it is the case for Bag-of-Word description
approaches (BoW), inverted files are then an optimal
solution. Indeed, this index structure allows fast exact
search fully exploiting vector sparsity.

However, in the context of semantic search, when
images are described with dense vectors as for instance
color histograms [1], [4], all known techniques to solve
the similarity search problem fall prey to ”the curse of
dimensionality” [5].

Indeed, exact search methods, as kd-tree approaches,
are only possible for small size description vectors [6].
Approximate Nearest Neighbors algorithms (ANN) have
shown to be interesting approaches to overcome the
issue of dimensionality by drastically improving the
search speed while maintaining good precision [6].

The effectiveness of such approximate similarity
search methods are classically evaluated using two cri-
teria:

• efficiency: speedup factor between exact and ap-
proximate search,

• accuracy: fraction of the k nearest images retrieved
by exact search which are also retrieved by approx-
imate search.

Several approximate search algorithms have been pro-
posed like VA-files, Best-Bin-First, Space Filling Curves,
K-means (see [7] and references therein), NV Tree [8].
One of the most popular ANN algorithms is the Eu-
clidean Locality Sensitive Hashing (E2LSH) proposed
by Datar et al. [9]. The authors proved their scheme
to integrate into the theoretical framework provided by

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXXX, NO. XXX, JUNE 2010 2

[10], based on hashing functions with a strong “local-
sensitivity” in order to retrieve nearest neighbors in
a Euclidean space with a complexity sub-linear in the
amount of data. The LSH Scheme has been successfully
used in several multimedia applications [11], [12].

Several families of hash functions have recently been
proposed to improve the performance of E2LSH [13].
However, all of them are only designed for the L2

distance while the Earth-Mover Distance (EMD) and
the χ2-distance (refer to 3.1 for the definition of the χ2

distance considered in this article) proved to often lead to
better results than using the Euclidean metric for image
and video retrieval task [1]–[3], especially when global
descriptors such as color histograms are used to describe
the images.

Indyk and Thaper [14] have proposed to embed the
EMD metric into the L2 norm, then to use the orig-
inal LSH scheme to find the nearest neighbor in the
Euclidean space. They thereby obtain an approximate
nearest neighbor search algorithm for the EMD metric.
To compare different ANN schemes in the same metric
space, the intuitive approach is to compare the set of
k-Nearest-Neighbors (k-NN) retrieved from a query for
both scheme with the exact k-NN (in this specific metric
space) of the same query, as in the work of Muja and
Lowe [15] in Euclidean space for instance. Such an
evaluation remains valid for comparing ANN schemes
for two different metrics when one of the metric can be
embedded into the other (as with EMD embedded into
L2).

In this paper, we design a new LSH scheme for
the χ2-distance that we call χ2-LSH. To the best of
our knowledge, the χ2-distance cannot be embedded
into the L2 distance since the χ2-distance between two
vectors intrinsically normalizes the two histogram intra-
component variances. We thus directly introduce the χ2

distance into the definition of the hash function family
for LSH. Then, the main issue, when comparing the χ2-
LSH and E2LSH schemes, is that the same query will
not provide comparable k-NN sets. We thus consider
semantic search to compare the two hashing schemes.

Some works have been focused on designing adaptive
data-driven hashing schemes to avoid partitioning in
low-density regions [16], [17]. However, our objective
is not to obtain a non-uniform tiling of the space but
to create a hashing local sensitive within the meaning
of the Chi2 distance (two feature vectors, similar within
the meaning of the χ2-distance, fall into the same bucket
while two dissimilar feature vectors do not).

In this paper, we design a complete χ2-LSH scheme,
then present its extension to Multi-Probe LSH (MPLSH)
[18] which allows to reduce the memory usage while
preserving, in the speedup/approximation scheme, the
better accuracy of the χ2-based similarity over the L2-
based similarity. Our method retrieves thereby data sim-
ilar to a given query with a higher search accuracy
than L2 distance approaches and with a complexity sub-
linear in the amount of data. In one of our recent works,

we have encompassed this χ2 similarity search scheme
in a learning framework in order to design a scalable
classification system, based on the fast approximation of
Gaussian-χ2 kernel and compliant with active learning
strategies [19].

With the detailed description of χ2-LSH scheme, we
also provide theoretical proofs of both validity and
locality-sensitive properties [10] of our hash functions.

We first evaluate the accuracy and the efficiency of
our ANN search algorithm (χ2-LSH vs. linear search)
providing extensive experiments for several databases.
We then focus on evaluating our method in a CBIR
framework, with semantic similarity search experiments
for color and texture based features.

2 LOCALITY SENSITIVE HASHING

In this section we present an overview of the LSH
scheme. The intuition behind LSH is to use hash func-
tions to map points into buckets, such that nearby objects
are more likely to map into the same buckets than objects
that are farther away. A similarity search consists in
finding the bucket B the query q hashes into, selecting
candidates, i.e., objects in B, and ranking the candidates
according to their exact distance to q.

2.1 Background

LSH was first introduced by Indyk and Motwani in [10]
for the Hamming metric. They defined the requirements
on hash function families to be considered as locality-
sensitive (Locality-Sensitive Hashing functions). Let S be
the domain of the objects and D the distance measure
between objects.

Definition D1: A function family H = {h : S → U} is
called (r1, r2, p1, p2)-sensitive, with r1 < r2 and p1 > p2,
for D if for any p, q ∈ S

• if D(q, p) ≤ r1 then PH[h(q) = h(p)] ≥ p1,
• if D(q, p) > r2 then PH[h(q) = h(p)] ≤ p2.

Intuitively, the definition states that nearby objects
(those within distance r1) are more likely to collide
(p1 > p2) than objects that are far apart (those with a
distance greater than r2).

To decrease the probability of false detection p2, sev-
eral functions are concatenated: for a given integer M ,
let us define a new function family G = {g :→ UM}
such that g(p) = (h1(p), . . . , hM (p)), where hi ∈ H. As
a result, the probability of good detection p1 decreases
too. To compensate the decrease in p1, several functions
g are used. For a given integer L, choose g1, . . . , gL from
G, independently and uniformly at random, each one
defining a new hash table, in order to get L hash tables.

2.2 Euclidean metric hashing

Datar et al. [9] proposed a method to build a LSH family
for the Euclidean metric, named E2LSH.

Their hashing function works on tuples of random
projections of the form: ha,b(p) =

⌊

a.p+b
W

⌋

where W spec-
ifies a bin width, a is a random vector whose each entry
is chosen independently from a Gaussian distribution, b

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXXX, NO. XXX, JUNE 2010 3

is a real number picked up uniformly in the range [0,W]
representing an offset.

Each projection splits the space by a random set of
parallel hyperplanes; the hash function indicates in what
slice of each hyperplane the vector has fallen.

The main drawback of this approach is a computa-
tional limitation since each hash table must be stored in
main memory. Moreover, a large number of hash tables
is required to reach high accuracy.

2.3 Multi-Probe LSH

Lv et al. in [18] proposed a new indexing scheme for the
L2 metric called Multi-Probe LSH (MPLSH) that over-
comes this drawback. MPLSH is based on the E2LSH
principle. Indeed, this approach also uses hash function
to map points into buckets and the pre-process (hash
table construction) is therefore identical. However, the
exploration stage is quite different: instead of exploring
only one bucket by hash table, success probabilities are
computed for several buckets and buckets which are
most likely to contain relevant data are examined. Given
the property of locality sensitive hashing, we know that
if an object is close to a query object but does not hash
into the same bucket, it is likely to be in a neighboring
bucket. The authors defined a hash perturbation vector
∆ = (δ1, . . . , δM) where δi ∈ {−1, 0, 1}. For a query q and
a hash function g(x) = (h1(x), . . . , hM (x)), the success
probabilities for g(q) + ∆ are computed and the T most
likely buckets of each hash tables are visited. As a result,
the authors reduce the number of hash tables by a factor
of 14 to 18 for similar search accuracy and query time
as E2LSH.

3 χ2-LSH HASHING

In this section we detail how we adapt the algorithm of
E2LSH then MPLSH to the χ2 distance.

3.1 Basics

Definition D2: For any 2 d-sized vectors x and y with
strictly positive components, the χ2-distance between x

and y is defined as χ2(x,y) =
√

∑d
i=1

(xi−yi)2

xi+yi
.1

As mentioned previously, the χ2-distance is more ap-
propriate than the L2 distance to compare histograms.
We thus want to work with the χ2 distance keeping
the same efficiency as Datar’s E2LSH algorithm. There-
fore, we map all the points into a space of smaller
dimension and cluster this sub-space. The clusterization
must ensure that the probability for two points to fall
into the same bucket (a cluster cell) is higher when
the distance between these two points is smaller than
when this distance is greater than a certain threshold.
In our case, the sub-space is the line la. This line is
obtained by projecting all points on a random vector
a where each entry is chosen independently from a

1. The χ2-distance is a weighted standardized Euclidean distance
thereby a true metric [20]. Furthermore, even if there is not a firm
consensus on the definition of this distance, all our developments still
hold for a definition without the square-root by substituting W to W 2

in all equations.

Gaussian distribution. We uniformly partition this line
with respect to the χ2 distance, i.e. each partition interval
[Xi,Xi+1] has the same length, W (see Fig. 1):

∀i ∈ N, χ2(Xi,Xi+1)
def
=

√

(Xi − Xi+1)2

Xi + Xi+1
= W . (1)

On the other hand, as shown on Fig.1, the length of
the interval on the line la is not constant anymore if
we consider the same bounds Xi and Xi+1 but with the
L2 distance: ∀i, L2(Xi,Xi+1) 6= W . The partition, in the
sense of the χ2-distance, ensures that when two points
are at a distance less than W after mapping to la, the
probability of being in the same cluster is higher.

3.2 Hash function definition

Given the sequence (Xn)n∈N which satisfies eq.(1) with
initial value set to zero: X0 = 0 and a a random
vector where each entry is chosen independently from a
Gaussian distribution with positive value N+(0, 1), we
want to define hash functions ha such that:

∀p ∈ R
+d, ha(p) = n iff Xn−1 ≤ a.p < Xn . (2)

We can rewrite eq.(1):

Xn = Xn−1 + W 2

√

8.
Xn−1

W 2 + 1 + 1

2
. (3)

By fixing X0 = 0, we get:

Xn =
n(n + 1)

2
W 2 . (4)

Let us denote f , the function such that f(n) = Xn =
n(n+1)

2 W 2 . We have now to determine, for any x = a.p,
the integer n such that n ≤ ⌊f−1(x)⌋ < n + 1. 2 In the
next section we exhibit the definition of f−1, that we call
yW , and prove the validity of the hash function family
ha(p) hence defined.

3.3 Efficient hashing scheme: χ2-LSH

Definition D3: For any W ∈ R
+, let yW be a function

defined such that:

∀x ∈ R
+ , yW (x) =

√

8x
W 2 + 1 − 1

2
(5)

Proposition P1: Given a point p ∈ (R+)d, a a random
vector where each entry is chosen independently from a
Gaussian distribution with positive value N+(0, 1), hash
functions according to χ2-hashing can be built as follows:

ha(p) = ⌊yW (a.p)⌋ . (6)

Proof: To prove P1, we first define the sequence
(Yn)n∈N:

2. Since f is a strictly increasing function, f−1 is strictly increasing
too. Thus, knowing the interval [Xn, Xn+1[into which x is falling,
is sufficient to determine n (when f−1 cannot be explicitly computed
for instance). A tree structure, based on (Xn)n∈N values, can then be
considered to efficiently find the right interval (and thus the hash value
n) for any given x = a.p.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXXX, NO. XXX, JUNE 2010 4

Fig. 1. χ2 and L2 space tilings. 4500 image feature vectors have been randomly selected from the COREL database.
Space grids for 2 features components with respect to χ2 (in red) and to L2 (in blue) distances are reported. Points
falling into the same bucket in χ2 hashing scheme may fall into seperate buckets in L2 hashing scheme.

Yn = yW (Xn) :

√

8 Xn

W 2 + 1 − 1

2
. (7)

We prove that for all n ∈ N, (Hn) : Yn = n by induction
on n.
Since by definition Y0 = 0, then (H0) is true.
Rewriting eq.(7) as Y 2

n + Yn = 2 Xn

W 2 and combining this
with eq.(1), we get:

Y 2
n + Yn = 2

Xn−1

W 2
+ 1 +

√

8
Xn−1

W 2
+ 1 . (8)

Let us now assume that (Hn−1) true, i.e. Yn−1 = n − 1.
From eq.(7) we deduce that: 2Xn−1

W 2 = n(n − 1).
Introducing this result in eq.(8), we then get:
Yn(Yn + 1) = n(n + 1) .

The only positive solution of this equation is Yn = n.

We thus show that the hash function defined in eq.(6)
satisfies:

∀p′ ∈ (R+)d s.t. Xn = a.p′, ha(p
′) = ⌊yW (Xn)⌋ = n .

(9)

It is then straightforward, using the strict monotony
of yW , to see that:

∀p ∈ (R+)d s.t. Xn ≤ a.p < Xn+1, ha,b(p) = n .

(10)
This completes the proof of proposition P1.

To avoid boundary effects, we introduce, as in [9], an
offset in the hash functions, i.e. a real number b picked
randomly following the uniform distribution U([0, 1[):

ha,b(p) = ⌊yW (a.p) + b⌋ . (11)

Since all points are shifted by b, the previous construc-
tion of the hash functions holds by setting X0 = b.
Let H be the family of such hash functions.

3.4 χ2-LSH: a locality sensitive function

We now demonstrate that the original LSH scheme
(Definition D1) still holds for this family H.

Theorem 1 (χ2-LSH sensitivity): The χ2 hash function
family H, defined in eq.(11), is (r1, r2, p1, p2)-sensitive
when input vectors get positive components.

Proof: Let us define P as the probability of the hash
functions to be locality-sensitive:

P = PH[ha,b(q) = ha,b(p)]

= Pa,b

[

∃n, n 6 yW (a.p) + b < n + 1,
n 6 yW (a.q) + b < n + 1

]

For all a, as defined in the previous section, we can
consider either a.p ≤ a.q or a.p ≥ a.q without loss of
generality. For the sake of demonstration clarity, let us
consider a.p ≤ a.q. a and b are independent and both
admit density probabilities p(a), p(b). Then P may be
computed using marginalization over b with the follow-
ing integral bounds. From the 2 previous inequalities we
have: n 6 yW (a.p) + b 6 yW (a.q) + b < n + 1, so that
bounds on b are:

n − yW (a.p) 6 b < n + 1 − yW (a.q) (12)

and we also have:

0 6 yW (a.q) − yW (a.p) 6 1 (13)

Integrating on the random variable b leads to:

∫ n+1−yW (a.q)

n−yW (a.p)

db = 1 − (yW (a.q) − yW (a.p)) (14)

P may then be rewrited as:

P = Pa [0 6 1− (yW (a.q)− yW (a.p)) 6 1] (15)

Combining the relation between hash function ha,b and
interval bounds Xn in the sense of χ2 hashing of eq.(2)
with the expression eq.(4),

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXXX, NO. XXX, JUNE 2010 5

we can then rewrite,

P = Pa

[

0 6 1 −
1

(n + 1)W 2
a(p − q) 6 1

]

(16)

Following the reasonning in [9], we use the 2-stable
distribution property: for two vectors p and q, a random
variable a where each entry is drawn from a 2-stable
distribution, a.(q − p) is distributed as cX where c =
‖p − q‖L2

and X is a random variable drawn from a
2-stable distribution. It follows that:

P = p(c) =

∫ (n+1)W 2

0

1

c
f(

t

c
)(1 −

t

(n + 1)W 2
)dt , (17)

where f(t) denotes the probability density function of
the absolute value of the 2-stable distribution.

Let us define c′ = χ2(p,q). Since pi and qi ∈ R
+

and since on (R+)d × (R+)d, the scalar product between
the gradients of the χ2-distance and the L2-distance
is always positive: the two distances vary similarly.
Therefore, p decreases monotonically with respect to c,
and p decreases also monotonically with respect to c′.
Reminding that r1 < r2, if we set p1 = p(r1) and
p2 = p(r2), then p2 < p1. This concludes the proof of
Theorem 1: Our H family is (r1, r2, p1, p2)-sensitive.

3.5 Multi-probe hashing scheme: χ2-MPLSH

To adapt the multi-probe scheme to the χ2-metric we
have to compute the success probability of finding a
vector p that is close to q after it has been perturbed
by a hash perturbation vector, as presented in section 2.3
Pr [g(p) = g(q) + ∆]. As all coordinates hi in the hash
functions g are independent, we have:

Pr [g(p) = g(q) + ∆] =

M
∏

i=1

Pr [hi(p) = hi(q) + δi] (18)

Note that each hash function hi first maps q to a line
and divides the line into slots of length W . We remind
that the length of a slot, according to the χ2-metric, is W ,
i.e., the χ2-distance between two consecutive bounds Xi

and Xi+1 is equal to W . Each slot is numbered and the
hash value is the number of the slot q falls into. A point
p close to q is likely to fall in the same slot as q but the
probability it falls in one of the adjacent slots hi(q) − 1
or hi(q) + 1 is high too. In fact, the closer q to the right
boundary Xi+1, the higher the success probability that
p falls into hi(q) + 1. Thus, the position of q in the slot
allows to compute the success probability of hi(q) + δi.
For δ ∈ {−1,+1}, let xi(δ) be the distance of q from
the boundary between hi(q) and hi(q) + δ, then xi(δ) =
|ki(q) − hi(q) − δ| with ki(q) = y(a.p) + b.

As, in [18], we then estimate the probability that p falls
into the slot hi(q) + δ by:

Pr [hi(p) = hi(q) + δ] ≈ e−Cxi(δ)
2

(19)

where C is a constant depending on the data.
Introducing the eq.(19) in eq.(18), we deduce the score

representing the likelihood of finding a point close to q

in the bucket defined by ∆: score(∆) =
∑M

i=1 xi(δi)
2. The

smaller the score, the higher the probability of finding a
point in the bucket perturbed by ∆.

For each query, we compute all possible perturbed
vectors ∆ and use their scores to select the T buckets
likely to hold a nearest neighbor.

4 EFFICIENCY AND ACCURACY ANALYSIS

In this section, we present the empirical performance
evaluation of our hash function. We first evaluate the
efficiency for different accuracy values of the χ2-LSH
scheme. Next, we assess the memory factor gain by the
χ2-MPLSH scheme.

4.1 Experimental Setup

No consensus among the community is currently
achieved on a standardized experimental setup for
the evaluation of high-dimensional indexing methods.
Therefore, among the main challenges for researchers
focusing on this topic, we should point out the choice
of databases, of queries, and of ground truth. Though
early works tried to use synthetic data, following a
uniform random distribution, it is now usually accepted
that this is an unrealistic context of evaluation. Recent
works are usually assessed on real data. We performed
evaluation of our scheme on the 158,929 keyframes of
Trecvid 2009 database. Each keyframe is represented by
a high dimensional histogram of 128 bins obtained by
the concatenation of 2 histograms, one of 64 chrominance
from CIE L*a*b and one of 64 textures from Gabor filters.

To assess the influence of the size of the database, we
have built 3 datasets, one of 43,616 images corresponding
to Trecvid 2007 database, called DB1, a second of 86,077
images corresponding to Trecvid 2008 database, called
DB2, and the whole database corresponding to Trecvid
2009, called DB3. For each dataset, we created an evalu-
ation benchmark by randomly picking 25,000 images as
query images.

The ground truth is built by brute force search of each
query image’s exact k Nearest Neighbors, using the χ2

distance and not including the query image itself. The
ground truth is used both to compute the speedup factor
and to estimate the approximation of χ2-LSH. In our
experiments, we set k = 20.

Performance is evaluated on two aspects: accuracy
(the capability of the method to return the correct results
using precision metric) and efficiency (the capability of
the method to use as few resources as possible us-
ing speed up ratio with respect to brute force search).
Therefore, this measure does not depend neither on the
machine nor on the operating system.

4.2 Speedup factor: exact search vs χ2-LSH

We ran two sets of experiments to assess the speedup
performance of χ2-LSH: we evaluate the impact of both
the LSH parameters and the size of the dataset.

Three parameters impact the performance of the LSH
algorithm: the number of hash tables (L), the number
of projections per hash value (M) and the size of the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXXX, NO. XXX, JUNE 2010 6

search window (W). The first set of experiments allows
us to study the influence of the two last parameters
(M and W). We used the first parameter L to control
the trade-off between accuracy and efficiency. Firstly,

Fig. 2. Influence of W : curves for 4 values of W , M fixed
to 26 and 6 different values of L

to study the influence of W , we fix M to 26 and we
make W and L vary. Fig. 2 reports the evaluation on
DB3 of the influence of the two parameters W and
L. For each pair of parameters, the efficiency and the
accuracy are computed. W spans the range from 125 to
160 and L from 25 to 150. We observe that for a same
L, increasing the value of W decreases the speedup.
Indeed, as we increase the value of W , we increase the
number of false positives per hash tables, i.e. points that
are not near neighbors but hash into the same bucket.
As a result, the number of candidates to visit increases.
However, at the same time the precision increases too.
Indeed, the number of false negatives, i.e. points that are
near neighbors but do not hash into the same bucket,
decreases.

As we can see in the Fig. 2, W = 140 gives the
best trade-off between false negatives and false positives.
Secondly, to study the influence of M , we hold fixed the

Fig. 3. Influence of M : curves for 3 values of M , W fixed
to 140 and 6 different values of L
parameter W to 140 and we make M and L vary. Fig. 3
reports the evaluation on DB3 of the influence of the two

other parameters M and L. For each pair of parameters,
the efficiency and the accuracy are computed. M spans
the range from 24 to 28, and L from 25 to 150. We
notice that for a same L, increasing the value of M

increases the speedup. Indeed, as we increase the value
of M , we decrease the number of false positives per
hash tables. As a result, the number of candidates to
visit decreases. However, at the same time the precision
decreases too. Indeed, the number of false negatives
increases. To keep low the probability of false negatives,
we have to increase the number of tables L. However, it
takes more time to compute two tables rather than one
table. Therefore a good trade-off is to be found between
the number of candidates to check and the computation
time for hashing. This explains why we obtain better
performance for M = 26 than for M = 28.

To sum up, W = 140 < with M = 26 are considered
as default parameters because they give a good trade-off
between accuracy and efficiency.

Fig. 4. query time vs number of images for DB1, DB2 and
DB3 and different Average Precision rates

The second set of experiments aims at evaluating the
complexity of the search, according to the database size
in order to prove the sub-linearity of our algorithm
complexity, and the stability of the method with respect
to W parameter value. In Fig. 4, we evaluate the search
time for the 3 datasets and for Average Precision (AP) of
80%, 85%, 90% and 95%. M and L are respectively set
to 26 and 115. As we can see in Fig. 4, the brute force
search is indeed linear: DB3 is 3.64 times higher than
DB1 and the search time for DB3 is 3.67 times slower
than for DB1 (respectively 233 and 63 msecs).

For our χ2-LSH scheme, the search time is of course
connected to the target AP. We can notice that for an
AP of 85%, our χ2-LSH scheme provides a very good
trade-off between AP and query time which is the same
as for an AP rate of 80%. For an accuracy of 85%, the
query time is only 1.98 times higher for DB3 than for DB1
(respectively 13.44 and 6.77 msecs), which illustrates the
sub-linear complexity of our scheme. Our χ2-LSH is

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXXX, NO. XXX, JUNE 2010 7

Average Precision 0.8 0.85 0.9 0.95

W
DB1 142 149 161 188
DB2 132 144 155 176
DB3 128 140 150 169

TABLE 1

then 9.37 times faster for the database of 44K images
(DB1) and becomes 17.35 times faster for the database of
160K images (DB3), than the exhaustive search. It follows
that the efficiency of our fast scheme increases with the
size of the database for an AP of 85%. This remains
true for an AP of 90% but the gain over exhaustive
search decreases since our χ2-LSH is 4.92 times faster
for DB1 and becomes 9.07 times faster for DB3 than the
exhaustive search. For the highest AP rate of 95%, the
gain over the exhaustive search is almost linear with a
gain of about 3.5 times faster for the 3 databases.

The value of the parameter W is directly connected
to both the target value for the AP and the size of the
database. In the following table (Tab.1), we present the
variations of W during the previous experiment. The
value of W is set to 142, 132 and 128, respectively for
DB1, DB2 and DB3, to maintain an AP of 80%. These W

values evolve, with the target AP, homogeneously for
the 3 databases. One can also see that, as expected, the
larger the database, the more dense the feature space is,
and thus the smaller the LSH bin width W is. Of course,
in order to reach an AP of 95%, our scheme has to be
less approximating and thus the value of W increases
to account for feature vectors farther away from the
query, considering hence more of the feature space. This
table illustrates also the stability of W with respect to
both the increase of the size of the database and the
increase of AP. Indeed, we can notice that whatever
the rate for the target AP is, W decreases within a
range of less than 15 to get adapted to the database
size. Equivalently, whatever the size of the database
considered, W increases within a range of less than 40
to get adapted to the increase of the AP rate.

4.3 Memory usage: χ2-LSH vs χ2-MPLSH

In this part, we assess the improvement of χ2-MPLSH on
χ2-LSH in terms of space requirements and effectiveness
for various accuracy values on the DB3 dataset.

First, we evaluate the accuracy according to the effi-
ciency of χ2-MPLSH to ensure that χ2-MPLSH is able
to reach the same precision as χ2-LSH with few hash
tables, thus less memory usage. Results are reported in
Fig. 5. In this experiment, we set W = 140 and M = 26
and we make the parameter L span the range from 2 to 6
and the parameter T from 25 to 150. To reach a precision
between 0.8 and 0.9 (see Fig. 5), only 6 hash tables are
necessary for χ2-MPLSH against between 75 and 150 for
χ2-LSH (see Fig. 3). Moreover, only 4 tables are required
for a precision between 0.6 and 0.8.

On Tab.2 and Tab.3, we compare memory usage for χ2-
LSH and χ2-MPLSH. By using the second scheme, the
memory requirement falls down from Gb to hundreds
of Mb.

Fig. 5. χ2-MPLSH, influence of L: curves for 3 values of
L, W and M fixed to 26 and 140 and 6 values for T

L 25 50 75 100 125 150
Mem. χ2-LSH (Gb) 1.00 1.65 2.24 2.86 3.47 4.09

TABLE 2
L 2 4 6

Mem. χ2-MPLSH (Mb) 445 527 546

TABLE 3

Secondly, we evaluate the effectiveness of χ2-MPLSH.
We use χ2-LSH has a baseline setting W = 140 and
M = 26 and we make L vary from 25 to 150 to change
the accuracy. As shown in Fig. 6, choosing the same
parameters W = 140 and M = 26 for χ2-MPLSH as for
χ2-LSH and L = 6 is not optimal. Indeed, for a similar
accuracy, the χ2-MPLSH does not reach same speedup
factor. However, with W = 130, M = 24 and L = 6,
χ2-MPLSH reaches the same efficiency as χ2-LSH for
an accuracy between 0.72 and 0.9. Furthermore, with
W = 120, M = 24 and L = 4, χ2-MPLSH reaches the
same efficiency as χ2-LSH for an accuracy between 0.55
and 0.76. It is worth noting that for accuracy between
0.65 and 0.8, χ2-MPLSH with W = 120, M = 24 and
L = 6 reaches higher efficiency than χ2-LSH.

Finally, χ2-MPLSH achieves the same performance as
χ2-LSH with little memory requirements: for instance, if
we consider W = 120, L = 4, M = 24 for χ2-MPLSH, the
memory usage gain is about 8 with the χ2-LSH default
scheme. Considering that the system is installed on a
recent computer with 32 Gb of RAM, the system deals
with a 10 Million image dataset.

5 SEARCH QUALITY FOR χ2 VS L2

The aim of this experiment is to compare the search
quality of the two methods: MPLSH and χ2-MPLSH
for different parametrizations. To compare the search
quality, we consider a context of supervised classification
of image database.

5.1 Experimental protocol

We do not perform evaluation on near copy detection
database (like INRIA Holidays used in [7]) because, as
aforementioned, for this task BoW and inverted file are
optimal solutions. Moreover, we do not use SIFT descrip-
tors because they are designed for the L2-distance.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXXX, NO. XXX, JUNE 2010 8

(a) accuracy between 0.9 and 0.7 (b) accuracy between 0.8 and 0.5

Fig. 6. χ2-MPLSH: speedup vs precision for several parameters

Unlike the copy detection tasks, we are rather inter-
ested in CBIR and interactive CBIR tasks that aim to
retrieve semantic classes [2], [4], [21]. In this context,
color and texture descriptors are widely used.

Let {pi}1,n be the n image indexes of the database. A
training set is expressed as A = {(pi, yi)i=1,n|yi 6= 0},
where yi = c if the image pi belongs to the class c.

Since we are interested in comparing L2- and χ2-
distances, we use simple classification rule based on [5]:

fc(p) =
∑

Nj(p)∈k-NN(p)

(K(p, Nj(p))|yj = c) (20)

where Nj(p) is the jth neighbor point of p in A, k the
number of nearest neighbors considered and K(p,q) =

1 − d(p,q)
R

with R a search radius and d(p,q) the L2 or
the χ2 distance between p and q. We set k = 20.

As [1], [14], we perform evaluation of our scheme on
the well-known COREL database. The dataset contains
c = 154 classes of 99 images per class or n = 15246
images. Each image p is represented by a 128-dimension
vector obtained by concatenating 2 histograms, one of
64 chrominances value from CIE L*a*b and one of 64
textures from Gabor filters.

As in PASCAL Challenges, we use the Mean Average
Precision (MAP) to assess the classification: To compute
the MAP of a class c, each image belonging to this class is
successively removed from the training set and used as
query image (leave-one-out strategy). A Precision score
is computed for each query, then averaged (AP) on the
whole class c. The MAP is then computed by averaging
the AP of each class.

5.2 Quality assessment

In this part, we evaluate the classification as explained
in the previous experimental protocol section with four
nearest neighbor methods: E2LIN, χ2-LIN for linear scan
using respectively the L2- and χ2- distance, MPLSH

and χ2-MPLSH. Fig. 7 shows the AP in function of
speedup factors. As in [18], we have experimented with
different parameter values for the LSH methods and
picked the ones that provide best performance. We set
W = 110000, M = 20, L = 6 for MPLSH and W = 115,

M = 22, L = 6 for χ2-MPLSH. Let us notice that
the bin width parameter W is squared in our χ2-LSH
11 and not in Datar’s E2LSH algorithm [9]. Thus, W

parameter values are comparable (differing from a factor
of less than 3). To modify both accuracy and efficiency,
T varies from 10 to 150. Linear scanning searches allow

Fig. 7. Average Precision vs speedup
us to compute the speedup factor and to estimate the
approximation of LSH. We thus confirm that χ2 reaches
better accuracy than L2. The AP is 0.36 for L2 and 0.47
for χ2 or a gain of 30.56%.

We reduce the approximation of search quality from
10 to 5% (compared with linear scan) by making the
parameter T spanning the range from 150 to 10. For
all these parametrizations, χ2-MPLSH is at least 28%
more accurate than MPLSH for the same efficiency: for
a speedup factor of 44, the precision of MPLSH is 0.32
and the precision of χ2-MPLSH is 0.41.

6 CONCLUSION
In this paper, we have introduced a new LSH scheme
fitted to the χ2-distance for approximate nearest neigh-
bor search in high-dimensional spaces. Our method out-
performs the original E2LSH algorithm in the context of
image and video retrieval when data are represented by
histograms. This approach makes the most of LSH effi-
ciency since it does not require any embedding process.
The experiments we lead showed the relevance of such
a new LSH scheme in the context of image retrieval.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXXX, NO. XXX, JUNE 2010 9

ACKNOWLEDGMENTS

We sincerely thank A. Andoni for providing us with
the package E2LSH [?]. We are grateful to the reviewers
whose valuable comments helped greatly improve the
paper.

REFERENCES

[1] O. Chapelle, P. Haffner, and V. Vapnik, “Support vector machines
for histogram-based image classification,” IEEE trans. Neural
Networks, pp. 1055–1064, 1999.

[2] P. Gosselin, M. Cord, and S. Philipp-Foliguet, “Combining visual
dictionary, kernel-based similarity and learning strategy for image
category retrieval,” CVIU, vol. 110, no. 3, pp. 403–417, 2008.

[3] Y. Rubner, C. Tomasi, and L. Guibas, “The earth mover’s distance
as a metric for image retrieval,” Int. J. Comput. Vision, vol. 40,
no. 2, pp. 99–121, 2000.

[4] A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain,
“Content-based image retrieval at the end of the early years,”
IEEE Trans. Pattern Anal. Mach. Intell, pp. 1349–1380, 2000.

[5] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning. Springer, 2009.

[6] H. Samet, Found. of multidim. metric data struct. MK, 2006.
[7] H. Jégou, M. Douze, and C. Schmid, “Product quantization for

nearest neighbor search,” IEEE Transactions on Pattern Analysis
& Machine Intelligence, vol. 33, no. 1, pp. 117–128, jan 2011.

[8] H. Lejsek, F. Ásmundsson, B. Jónsson, and L. Amsaleg, “NV-Tree:
An efficient disk-based index for approximate search in very large
high-dimensional collections,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 31, no. 5, pp. 869–883, 2009.

[9] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Locality-
sensitive hashing scheme based on p-stable distributions,” in
SOCG. ACM, 2004, pp. 253–262.

[10] P. Indyk and R. Motwani, “Approximate nearest neighbors: to-
wards removing the curse of dimensionality,” in STOC. ACM,
1998, pp. 604–613.

[11] Y. Ke, R. Sukthankar, and L. Huston, “Efficient near-duplicate
detection and sub-image retrieval,” in Multimedia. ACM, 2004,
pp. 869–876.

[12] D. Gorisse, M. Cord, F. Precioso, and S. Philipp-Foliguet, “Fast
Approximate Kernel-Based Similarity Search for Image Retrieval
Task,” in ICPR. IAPR, 2008, pp. 1873–1876.

[13] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions,” in FOCS.
IEEE, 2006, pp. 459–468.

[14] P. Indyk and N. Thaper, “Fast image retrieval via embeddings,”
in Int. Workshop SC Theories of Vision, 2003.

[15] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors
with automatic algorithm configuration,” in VISSAPP, 2009.

[16] B. Georgescu, I. Shimshoni, and P. Meer, “Mean shift based
clustering in high dimensions: A texture classification example,”
in International Conference on Computer Vision, 2003.

[17] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashng,” in NIPS,
2008.

[18] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-
probe lsh: Efficient indexing for high-dimensional similarity
search,” 2007, pp. 950–961.

[19] D. Gorisse, M. Cord, and F. Precioso, “Scalable active learning
strategy for object category retrieval,” in ICIP. IEEE, 2010.

[20] M. Greenacre, Correspondence Analysis in Practice, Second
Edition. Chapman & HallCRC, 2007, iSBN 1-584-88616-1.

[21] E. Chang, S. Tong, K. Goh, and C. Chang, “Support vector
machine concept-dependent active learning for image retrieval,”
IEEE Trans. on Multimedia, vol. 2, 2005.

David Gorisse is now a research engineer at Yakaz. He
received an M.Sc. in electrical engineering and telecommuni-
cations by ISEN, France, in 2006 and an M.Sc. degrees in com-
puter science from the University of Cergy-Pontoise, France, in
2007. He obtained his PhD degree in Image Processing in 2011
from the University of Cergy-Pontoise as member of ETIS joint
Laboratory of CNRS/ENSEA/Univ Cergy-Pontoise, France.

Matthieu Cord is Professor of Image Processing at the
Computer Science Department, University of UPMC PARIS
6 since 2006. He received the PhD degree in 1998 from the
University of Cergy, France. In 1999, he was post-doc at the
Katholieke Universiteit Leuven, Belgium, and he joined the
Image Indexing team of the ETIS lab., France. In 2009, he is
nominated at the IUF (French Research Institute) for 5 years.
His current research interests include Computer Vision, Pat-
tern Recognition, Information Retrieval, Machine Learning for
Multimedia Processing, especially interactive learning image
and video retrieval systems. He has published over 100 papers
and is involved in several International research projects and
networks.

Frederic Precioso is Professor at I3S laboratory, University of
Nice-Sophia Antipolis since 2011. He has a PhD in Signal and
Image Processing, obtained from Univeristy of Nice-Sophia
Antipolis,France, in 2004. After a year as Marie-Curie Fellow
at CERTH-Informatics and Telematics Institute, (Thessaloniki,
Greece), where he worked on semantic methods for object
extraction and retrieval, he has become Associate professor at
ENSEA since 2005. He used to work on video and image seg-
mentation, active contours and his current main research topics
concern video object detection and classification, content-based
video indexing and retrieval systems, scalability of such sys-
tems.

