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ARTICLE INFO ABSTRACT

Available online 21 December 2010 With the democratization of digital imaging devices, image databases exponentially grow. Thus,
providing the user with a system for searching into these databases is a critical issue. However, bridging
the semantic gap between which (semantic) concept(s) the user is looking for and the (semantic) content is
quite difficult. In content-based image retrieval (CBIR) systems, a classic scenario is to formulate the user
query, at first, with only one example (i.e. one image). In order to address this problem, active learning is a
powerful technique which involves the user in interactively refining the query concept, through relevance
feedback loops, by asking the user whether some strategically selected images are relevant or not.
However, the complexity of state-of-the-art active learning methods is linear in the size of the database
and thus dramatically slows down retrieval systems, when dealing with very large databases, which is no
longer acceptable for users. In this article, we propose a strategy to overcome scalability limitations of
active learning strategies by exploiting ultra fast k-nearest-neighbor (k-NN) methods, as locality sensitive
hashing (LSH), and combining them with an active learning strategy dedicated to very large databases. We
define a new LSH scheme adapted to y? distance which often leads to better results in image retrieval
context. We perform evaluation on databases between 5 K and 180 K images. The results show that our
interactive retrieval system has a complexity almost constant in the size of the database. For a database of
180 Kimages, our system is 45 times faster than exhaustive search (linear scan) reaching similar accuracy.
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1. Introduction

In content-based image retrieval (CBIR), the search is usually
initiated using one example as query of targeted data. Most of CBIR
systems are considering retrieval task as a binary classification
task: the relevant class represents the class of data similar to the
query and the irrelevant class is the rest of the database. The system
presents to the user the most relevant images (the top ranked
images) with respect to their similarity to the query, using the
learned classifier. All retrieval methods are thus deeply depending
on the relevance of the training set .4 on which the optimal
classification function is learned. Supervised learning techniques
are concerned with optimizing this training set in order to improve
the classification. Semi-supervised learning algorithms focus on
how to incorporate unlabeled data into the training process to build
a better training set. For instance, Cheng et al. [1] propose to learn
two distinct SVM classifiers, one in color feature subspace, another
one in texture feature subspace, then unlabeled data which are
classified in different classes in the two subspaces are selected to be
annotated. On-line learning gathers all the methods which focus on
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optimizing the ranking of results by improving the training set .4 in
order to update the classification function. Among on-line learning
approaches, we consider here active learning strategies [2] which
aim at minimizing classification error over the whole set B of
images by selecting which elements from the unlabeled data pool
are the most informative and thus should be annotated to improve
the most the classification. This specific process, compared to
simple classification methods, is called sampling strategy in [3]. The
user, considered as an expert, must then iteratively annotate as
positive (relevant) or negative (irrelevant) strategically selected
images [4], in a process called relevance feedback loop [5,6]. Such
strategies are particularly relevant in image interactive retrieval
context since only few annotations should be required from the
user to define the training set. As a consequence the training set is
small, new annotated data must thus provide highest classification
improvements. Many interaction strategies between the user and
the system have been proposed [7]. In [8], an hybrid strategy
exploits together semi-supervised learning technique and active
learning strategy. In this work, two learners (one using l; distance
and the other I, distance) estimate relevance of some unlabeled
images. Then, the selection sampling gathers all the resulting
labeled images with high uncertainty after merging classification
ranking of both learners (relevance summation).

However, for the aforementioned methods, ranking the whole
database at each iteration is thus required to show the results.
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When the database becomes very large, this sorting process
becomes intractable and represents the first scalability lock of
active learning retrieval systems.

The strategy selection has, at best, a linear computational
complexity in the number of images in the database and is also
processed at each relevance feedback loop. This is the second
scalability lock of active learning retrieval systems when the
database becomes large.

Active learning strategy can be improved with transductive
approaches that take into account unlabeled data in the optimiza-
tion scheme. However, these optimizations usually lead to slow
algorithms and intractable solutions when dealing with large
databases. Even if, as in [9], greedy solutions to build better
scalable transductive approach exist, the search is at best linear
with the size of the database.

None of these methods achieve to break the complexity down to
sub-linear scheme in the size of the database.

In our previous work [10], we proposed a strategy to quickly
select, in a large database, relevant images to be annotated using an
Euclidean LSH scheme. Our first results on addressing both
scalability locks, sample selection and data ranking, of CBIR
systems for large databases were promising. In this paper, we
present a new sub-linear search approach which outperforms the
previous one: we build a pool of relevant data on which focusing
both the sample selection and the ranking process to make active
learning strategies scalable in very large database context; we
propose a strategy to quickly update this pool in order to explore
the feature space; we propose a brand new LSH scheme defining
new hash functions dedicated to y? distance which proved to often
lead to better results for image retrieval task [11]; we test our
approach on a database of 180 K images and show how our active
learning strategy, combined with a kernel-based SVM approach,
can effectively address interactive content-based image retrieval in
very large databases.

2. Active learning for CBIR

Since, in this paper, we consider global descriptors of images
(color or texture histograms, etc.), we will use equivalently the
terms vectors or images indexes.

In CBIR classification framework, retrieving classes of images is
usually considered as a two-class problem: the relevant class, the set
of images corresponding to the user query concept, and the irrelevant
class composed by the remaining of the database. Let {X;}; , be the n
image indexes of the database. A training set is expressed from any
user label retrieval session as A = {(X;,;); — 1,»1¥; # 0}, where y;=1 if
the image x; is labeled as relevant, y;= — 1 if the image x; is labeled as
irrelevant. The classifier is then trained using these labels, and a
relevance function f,(x;) is determined in order to be able to rank
the unlabeled images. The set of unlabeled images is denoted by
U={(Xi,Yi)i — 1,nlyi =0}

We use a support vector machine (SVM) [12] as learning
algorithm for its effectiveness to learn, in a binary classification
context, with very few examples. The relevance function f4
obtained with SVM define an hyperplane that separates the
relevant and irrelevant images in the training set .4 by a maximal
margin. All images lying on the positive side of the hyperplane are
considered as relevant and all images on the other side (negative
one) are considered as irrelevant. The closer to 0 an image score is,
the greater its label uncertainty. Higher the score of an image is,
higher its relevance to the target class. As such a linear separation
(hyperplane) does not often exist in the input space RY, SVMs
are generally combined with kernel functions. A kernel K is a
similarity function that maps image indexes in a Hilbert space H
(often higher dimensional) called feature space where a linear

separator is more likely to exist. A popular kernel function is the
RBF kernel K(x;,X;) = exp(||X;—X;| |2 /26%) which maps image indexes
into an infinite dimensional space that enforces the existence of a
such hyperplane. The relevance function f, is then defined by
faX) = Zl‘ﬂl yi2;K(X;,X). The learning procedure determines the
scalar weights, o;, associated with the training instances. In active
learning classification, the user is considered as an expert and is
thus involved in the process of minimizing the classification error
over the whole database 5. The user iteratively annotates strate-
gically selected images among unlabeled data ¢/ in B in order to
build an “optimal” training set A. This expert can be represented by
a function s : B—{—1,1}, which assigns a label to an image of the
database. In the case where only one image x; has to be selected,
this turns to the minimization of classification error on B3, over all
the functions f, of classification on the previous training set .4
augmented with the annotation s(x;) of the image x;:
ir =arg rBinRtest(fAu((x,-,s(xi)))) (1)
le
with Reest(f4) a risk function whose definition depends on the
approximation introduced in its evaluation. For instance, Roy and
Mc Callum [13] propose a technique to determine the data x; which,
once added to the training set .A with the user annotation s(x;),
minimizes the error of generalization. This problem cannot be
directly solved, since the user annotation s(X;) of each x; image is
unknown. Roy and Mc Callum[13] thus propose to approximate the
risk function Re.s:(f4) for both possible annotations, positive and
negative. The labels s(X;), unknown on ¢/, are estimated by training
2 classifiers for both possible labels on each unlabeled data x;.
Another selection strategy has been proposed by Tong et al.[14].
Their SVM,ive method is based on the minimization of the set of
separating hyperplanes. Their idea is to focus on the most uncertain
data x: f4(X) ~ 0. The solution to the minimization problem in
Eq. (1) is then:
i* = arg min(|fa(x;))) )
Xield
For all these methods, once the image x;. is labeled, this image is
added to the training set .A. The SVM is then retrained to update the
relevance function f.

3. Scalability issues in CBIR

As long as the number of iterations is reasonable, the training set A
is small thus the complexity of retraining the classifier is negligible.
However, when |A| increases too much, the complexity of this step
becomes not negligible, then efficient SVM formulation as LASVM [15
|can be considered. Wang et al. [16] propose a quite different approach
based on a quick test scheme to select samples to be annotated. They
extend an existing on-line kernel learning algorithm adapted to
training samples arriving one-by-one. f, , is immediately obtained
from a correction of f,, at tth relevance feedback loop and an upper
bound determines the maximum test scope required in each loop
without sacrificing retrieval performance.

In the context of on-line learning .4 remains small thus, we do
not face such scalability issue.

The second scalability lock of CBIR systems, in the context of
very large databases, concerns the ranking of the database to
retrieve the top N most relevant images, called TorN. Retrieving the
topPN when the query is defined by only one image example, is
considered as a “solved problem” since efficient solutions, based on
fast k-NN search like LSH [17], have been proposed.

When the query concept is refined by adding new positive query
images, the similarity between positively labeled images and
unlabeled data is more complex to evaluate. In this context, several
approaches have been proposed to address the scalability issue of
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retrieving quickly ToPN most relevant images. In [18], a One-class
SVM is trained on positive samples in order to estimate the
distribution of relevant image class. In [19], in order to speed up
retrieving relevant images from this distribution, this process
exploits an M-tree in the feature space. In [20], authors propose
to use another index structure KVA-file to provide an efficient
nearest neighbor search using kernel distances. However, if we
consider the number of relevance feedback loops required to
completely identify the target class then 2-class SVM with active
learning significantly outperforms One-class SVM.

When the relevant function is defined with a 2-class SVM, the
strategy to quickly retrieve the torN is more complex. Indeed, the
most relevant images are both closest to the positively labeled
images and farthest from negative examples. In [21], authors
propose to approximate the frontier of the 2-class SVM by defining
regions in the input space (space of the descriptors) with bounding
boxes (hyper-rectangles) delimited by positive and negative
images. They adapt an indexing structure based on R-tree to
quickly search images that are close to the center of theses
bounding boxes to efficiently retrieve the torPN. However, the input
space can be high-dimensional. Consequently, the proposed R-tree
based approach becomes intractable.

Wang et al. [ 16] propose a quite different approach based on a quick
test scheme to only update the relevance of images that can belong to
the top of the search at the next iteration. f, ., is hence obtained froma
correction of f,. The quick test scheme allows to compute, at the tth
iteration, an upper bound defining the maximal correction for the next
iteration. This bound allows to select images that can have a higher
score, at the (t+1)th iteration, than the TopN of the tth iteration. This
method allows to decrease the complexity of the ranking step after the
first iteration. However, at the first iteration, the ranking of all the
database is required thus the complexity of the first iteration is still
linear regarding the database size.

In[22],in order to avoid ranking all the database, authors build a
new index structure KDX [23] designed for providing most relevant
data (farthest from the query hyperplane on “relevant side”). This
index structure has important drawbacks. Indeed, KDX has no
stopping rules. Then, the search terminates when the wall-clock
time assigned to run the TorN expires. Moreover, there are some
critical cases where the search does not converge to the real nearest
neighbor. Furthermore, the search quality depends a lot on the
distance between the query and the central instance in the induced
space which controls the clustering stage.

Focusing on active learning strategies for CBIR systems in the
context of very large databases, selecting “optimal” images for
annotation becomes intractable. Indeed, the complexity of state-
of-the-art techniques, described in previous section, is directly
depending on ¥/, the set of unlabeled data. Roy and Mc Callum [13]
approach implies a computational complexity of O(|/|?), while
Tong et al. [14] approach, even though more efficient, has still a
computational complexity of O(|t/)).

In [24], Crucianu et al. propose a search method based on an M-tree
built in the feature space associated with a kernel-based 2-class SVM.
The M-tree structure allows to quickly retrieve the k-NN images closest
to the frontier hyperplane resulting from the SVM. However, when the
number of examples increases, the frontier becomes very complex and
the number of M-tree leaves to be visited increases highly which slows
down the process. In [22] for the sampling selection, the authors
propose to first explore the feature space by clustering it. Then they
consider the nearest clusters to the discrimination frontier based on
query hyperplane, defined by the the SVM, in order to select the most
uncertain data for annotation. This last process is still problematic
when considering very large database without control over the number
of clusters.

To the best of our knowledge, only Panda et al. [22] address both
scalability issues of active learning strategies for 2-class-SVM-based

retrieval systems in the context of very large databases, i.e. sampling
selection and database ranking. However, as already mentioned, this
method suffers from important drawbacks.

In this paper, we propose a new approach to break both active
learning scalability locks, in very large database context. Our
scalable fast selection strategy allows to exploit active learning
strategies combined with a kernel-based SVM for retrieving images
based on their content in very large databases. We exploit ultra fast
index structure as locality sensitive hashing (LSH) which has
already provenits efficiency for similarity search in huge databases.

4. Sub-linear scheme

In interactive CBIR, one can notice that most of the time, the user is
interested in the top of the ranking of the whole database. Only the rank
of the N most relevant images, called TorN, is useful (usually, N is fixed
by the user). We would like to exploit this specificity of on-line learning
process in interactive CBIR to overcome the problem of scalability
related to the database size. The ranking of the whole database implies
“to see” at least once each image of the database. Our idea is to shortcut
this process by selecting a pool of images, called S, which, thanks to
heuristics, are more than likely to be among the TorN. In order to be
really sub-linear and not seeing (even shortly) all images of the
database, we will need to carry out efficient indexing structure of
the database.

When considering only this pool S for the following interactive
learning process, we can break the complexity of the search
algorithm.

We are going to detail our selective subsampling strategy based
on heuristics before explaining the active learning process working
on S.

4.1. Selective subsampling strategy

The relevance of an image x is estimated by the relevance
function f, (see Section 2): f4(X) = Z}“ﬂ]yifxil((xi,x). Looking for
ToPN images means finding the N highest values for f,(x). This
function may be split into:

JA*

| JA7]
fa®) =Far 0—fa 0= 0pKXp,X)— > 0K (Xn,X) 3)

p=1 n=1

where A% denotes positive labeled images: (x,4+1) e Aand A~ the
negative ones: (X,—1) e A.

Our strategy is to replace the f 4 optimization by focusingonf .
More precisely, we assume that if an image x is close to one positive
training example X, € A", X has good chances to get a high f,+ (x)
value, and thus a high f4(x) score. Of course, this assumption is not
true for every X, since o coefficients and f4- (x) may affect a lot the
initial score, this is why candidates are filtered in a second step.

The first step of our process, called selection, is to get images
from the unlabeled image set ¢/ which are close to one of positive
training examples A". We carry out this step by using a k-NN
search for all data in . A™ which can be achieved with a complexity
sub-linear regarding the size of the whole database B (or the size of
U). This is the main motivation of our selection strategy. Therefore,
we quickly collect a lot of candidates. Even though many of them
are not good, the filtering process will clean this set.

The second step of our selective subsampling strategy, called
pruning, aims at filtering the k-NN search output. As already noted,
a candidate x may finally have a poor f4(X) score. This step consists
in computing the exact relevance of the selected images by using f4
on the selected images and keeping only the p most relevant
images. When the resulting pool of images S of size p = |S| is large
enough (p > N), the approximate pool of the TopN images is simply
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extracted from S. The pool S will be also used in our active learning
strategy presented in the next section.

Our strategy is based on heuristics, we have no theoretical
guarantee to really find exact TopN, but this solution is scalable
when the database is too large to allow linear search.

As aforementioned, one of the crucial conditions for our scheme
to be effective is that the k-NN search has to be fast. Instead of doing
a linear scanning, we use an efficient indexing scheme based on
LSH, which will be detailed in the next section. As LSH is based
on [; and I, metric, to be consistent with the learner, the kernel
considered must be based on these distances. However, it was
observed that the quality of retrieval achieved using I, is not always
satisfactory while %2 distance proved to often lead to better results
for image and video retrieval task [25,11]. In the next section, we
extend LSH to the y? distance that allows us to use any kernel based
on %2 distance.

4.2. Active learning labeling strategy

The strategy described above provides a solution to overcome the
scalability lock of the ranking stage, we are now focusing in this
section on the second lock mentioned in Section 3: the scalability
issue of the sampling stage for on-line labeling during the retrieval
process for interactive CBIR systems. Our aim is to define a strategy in
order to select, from the unlabeled dataset &, the best image(s) that,
once labeled and thus added to the training set, will lead the relevance
function to optimally improve for the next search round.

The state-of-the-art active sampling strategies have been
described in Section 2. As aforementioned in Section 3, all these
strategies are computationally demanding when the size of the
database increases. One of the most efficient techniques is Tong’s
strategy [14], given by Eq. (2). Its computational complexity is
linear in size of the dataset /. The image X} is the closest one to the
boundary between the relevant and irrelevant classes estimated
using the current classifier f4.

In order to be scalable, we propose to take benefit of our
previous process defined to approximate the top ranking images.
Actually, our strategy is based on the use of the set S instead of &/
to find the best candidates for labeling. As explained before, this
strategy is very computationally efficient, but there are also other
motivations to focus on S:

e First of all, note that S is used to approximate the TopN but is not
restricted to the TopN. In other words, the set S may be quite
larger than the approximate TopN extracted from S. Actually, we
keep the size p of S as one of the main parameters of our system
to tune the trade-off between efficacy and efficiency.

D. Gorisse et al. / Pattern Recognition 44 (2011) 2343-2357

e The classification problem considered here is very unbalanced.
Indeed, in huge databases, we know that the size of relevant
image subset is a lot smaller than the size of irrelevant image
subset. It follows that a positively annotated image is more
likely to be close to the center of the relevant class than a
negatively annotated image. By focusing not too far from
positive examples, i.e. in S, we then increase our chances to
select positive images and thus to re-balance the problem.

e Aslong as the user is not satisfied by the results, this means that
the relevance function f, is not enough accurate to retrieve
enough relevant images. Consequently the pool S contains
several uncertain images which will help to improve the
relevant function f, through interactive process.

For the optimization scheme in S, we do not solve the
optimization proposed in Eq. (2), but we follow instead the
extension of this work, proposed in [26]. The author incorporates
a diversity metric into sampling selection that outperforms pre-
vious methods. This method is named angle diversity and repre-
sents now, for sampling selection, the state of the art. The main idea
is to select the image that is the most uncertain while at the same
time is the less similar to already labeled images A.

In our scheme, the solution to the minimization problem in
Eq. (1) is rewritten over S as

L . ‘ o IK(X;,X))|
"= ar)% Err;m <)v* fax)|+(1=4) (maxxj cA I<(x,-,x,-)1<(xj,xj)>> 4)

/ is a parameter which allows to balance the diversity and the
uncertainty. We fix this parameter to J in all our experiments.

The active learning labeling strategy is reprocessed at each
relevance feedback loop.

4.3. SALSAS algorithm

The scheme of our strategy is summarized in Fig. 1 and each
block is described as follows: The system is initialized with some
query images provided by the user which are added to the training
set A (labeled dataset) to learn a relevant function f, with a SVM
classifier (training). At the same time, the positively labeled images
(y > 0) are used to perform a fast k-NN search in order to quickly
retrieve images from the unlabeled dataset U close to positive
examples.

For the initial loop, the selection step consists just in initializing
the pool S with the images retrieved by the k-NN search. The pool S
is then ranked in the pruning block using the relevance function f,.
Only the p most relevant images are kept. The pruning block ensures
thus that the size of S remains constant by removing the most

Selective Subsampling Strategy

K-NN search

(E2,Chi2)LSH Selection

—
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Fig. 1. Scheme of fast active learning.
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irrelevant images. The TorN is then shown to the user (Retrieved images).
The Active learning labeling strategy block selects the most uncertain
images of S to be labeled by the user. The system iterates as long as the
user is not satisfied by the search.

After each loop, the relevance function f is retrained thus the
pool S has to be updated. The update of S is done in selection block
by approximating f,+ of Eq. (3). Images of ¢/ close to one of the
positive training examples from A% should hence be retrieved.
However, noticing that S already contains such images of ¢/ from
previous iterations, this step is speeded up by only adding the k-NN
of the new positively labeled images (y > 0) to S. Then, the pruning
step filters the pool S. The TopN images of S can then be presented to
the user as intermediate result. Finally, the Active learning labeling
strategy block selects the most uncertain image of S to be labeled by
the user. The system iterates as long as the user is not satisfied by
the search.

4.4. Algorithm and complexity

More details for implementation are given in algorithm 1. We
consider here that the search is initialized with only one query image
example I;, considered as positively annotated. On line 2, we first fill the
unlabeled data pool S with p-NN images of the query image. The
complexity of this stage is O(n”) with p < 1 that depends on the index
structure used. At each feedback iteration, depending on the presence
(or not) of negative labels, the relevant function f, is updated, from line
4 to 8. The complexity of the training stage is O(A%). As the number of
images annotated by the user is small (|.4] < n), the complexity of this
stage is negligible. On line 9, the pool S is re-ranked with respect to this
new f4. The complexity of the ranking stage is O(|S|.log(|S])). At this
stage, S contains at most (p+k) < n images. The complexity of this
stage is thus negligible. In order to preserve a constant size for S, we
only keep the p most relevant images, on line 11. On line 13, the TorN of
S is then presented to the user as preliminary retrieval results. Our
active learning labeling strategy, on line 15, then selects b images in this
pool S to be presented to the user for annotation using Eq. (4). The
complexity of the selection stage is O(|S|.log(|S|)) with |S| = p. The
complexity of this stage is negligible. The relevant function f, is thus
improved. On line 19, the pool S is then updated by adding the k-NN
images for each new positively annotated images. The complexity of
this stage is O(i,.n”) with i, the number of positively annotated images
at the current feedback iteration (0 < i, < b). To put it in a nutshell, the
complexity of our fast scheme is O(n”) and only depends on the
indexing structure used to perform the k-NN search.

Algorithm 1.

Require: I, U, k, p, b; [+ Query image, Unlabeled set, number
of NN, pool size, batch size x/

1 A<(g,+1)

2 S<p-NN(y)

3 loop

4 if V(Xs,ys) € A, 3s | ys <0 then
5 fa< 2-class SVM(A)

6 else

7 fa« 1-class SVM(A)

8 endif

9 sort(S) (by computing f4(X;) VX; € S)
10 if |S| > p then

11 remove {Sr}rcp,..is|

12 endif

13 show topN of S
14 fora=0to b do

: IK(xi, %))
Xs < arg miny, ¢ s( #|f4(Xp)| + 3 (Maxy, ¢ 4 )

K(x;, x;)K(X;,X;

16 ys < user label {—1,+1}

17 A— AU (Xs,Ys)
18 if ys > 0 then

19 S« SUKk-NN(x;)
20 endif

21  endfor

22 endloop

5. Indexing structure

In this section we present an overview of LSH before providing
details on our new hash function for y? distance. The intuition behind
LSH is to use hash functions to map vectors into buckets, such that
nearby vectors are much more likely to map into the same bucket than
vectors that are far apart. A similarity search consists in finding the
bucket B that the query g hashes into, selecting candidates, i.e. vectors in
B, and returning the k-Nearest Neighbors (k-NN) candidates of q.

5.1. Basics

LSH was first introduced by Indyk and Motwani in [27] for the
Hamming metric. They defined the requirements for a hash
function family to be considered locality-sensitive. Let D be the
domain of vectors and d the distance measure between vectors.

Definition. A function family H={h:D-U} is called
(r,cr,p1,p2)—sensitive, with ¢ > 1 and p; > p,, for d if for any p,qe S

e if d(q,p) <r then Pry[h(q) = h(p)] = p1 and
e if d(q,p) > cr then Pry[h(q) = h(p)] < pa.

Intuitively, the definition states that nearby vectors (those within
distance r) are more likely to collide (p; > p,) than vectors that are
far apart (those with a distance greater than cr).

To decrease the probability of false detection p,, several sensitive
functions h are concatenated to define a hash function g. For an integer
M, let us defining a hash function family ¢ = {g : - UM} such that
g() = (h1(p), ..., hu(p)), where h; e H. However, as a consequence, the
probability of good detection p; decreases too. To compensate the
decrease in p,, several function g are used. For an integer L, choose
g1, ...,g from G, independently and uniformly at random. Each of the L
functions g; is used to construct one hash table, resulting in L hash table.

We now present the two sensitive functions used in this paper.

5.2. Euclidean metric hashing

Datar et al. [28] proposed LSH families for the Euclidean metric.
In this article, we will call this method E2LSH.

The sensitive function works on tuples of random projections of
the form: h, ,(p) = [(@.p+b)/W ] where a is a random vector whose
each entry is chosen independently from a Gaussian distribution, b
is a real number chosen uniformly in the range [0,W] and W
specifies a bin width.

Each projection splitting the space by a random set of parallel
hyperplanes; the value of the hash function indicates in which slice
of each hyperplane the vector has fallen.

The three parameters chosen for this algorithm are the size of
the search windows W, the number of projections M and the
number of hash tables L.

5.3. y? metric hashing

If the Euclidean locality sensitive hashing algorithm, approx-
imating k-NN search in an euclidean space with a sub-linear
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Fig. 2. Partition of 4500 feature vectors (spread along x-axis) extract from VOC2006 database according to a line R *: (a) distance y? and (b) distance I.

complexity, is probably the most popular approach, euclidean
metric does not always provide as accurate and relevant results,
when considering similarity measure, as y? distance. In this paper,
we define a new LSH scheme adapted to %2 distance, preserving the
same efficiency than Datar for E2LSH. Therefore, we map all the
vectors in a space of smaller dimension and cluster this sub-space.
The clusterization must ensure that the probability of two vectors
falling into the same bucket (a cluster cell) is higher, when the
distance between these two vectors is small, than when the
distance is upper a certain threshold. In our case, the sub-space
is the line R . This line is obtained by projecting all vectors on a
random vector a whose each entry is chosen independently from a
Gaussian distribution. We uniformly partition this line with respect
to y? distance, i.e. each partition has the same length, W. As shown
in Fig. 2b, the distance between two consecutive bounds X; and X; .
of the line R* is not constant if considering the distance Vi,
L(Xi,Xi 1) # W. However, the same interval is constant considering
the distance y? (Fig. 2a):

. [Xi—Xi1)?
Vir?(XiXis1) = | ot —w
1 (X Xi g1 X+ Xi 11

This partition in the sense of 32 distance ensures that when two
vectors are close (at a distance less than W after mapping to R*),
the probability of collision is higher.

We are looking for a sensitive function h, such that:

ha(p)=n ©)

where the sequence (X,), satisfies Eq. (5) with initial value set to
zero: Xo=0. a is a random vector whose each entry is chosen
independently from a Gaussian distribution with positive value
NT(O1L

Eq. (5) leads to the relation between X, and X,,_1:

)

iff X, 1 <ap<Xp

/8X . 2
Xn :Xn*1+W2 8X" 1/;‘/ +1+1 (7)
By fixing Xo=0, we obtain X, = (n(n+1)/2)W?2.
Let us first introduce the following function
y:RTSRT
[ 8x
XHf (8)

Proposition P1. For a function h defined by Eq. (6), a function y
defined by Eq. (8) and adding an offset b on the projected line to avoid
boundary effect, we have

hap(P) = ly(@.p)+b] 9

with peR*Y, a a random vector whose each entry is chosen
independently from a Gaussian distribution with positive value
NT(0,1) and b a real number chosen uniformly at random in the
range[0,1]. Let H the family of function defined by the set of function h.

In the next part, we may consider b=0 without loss of general-
ity. To prove P1, we first define the sequence (Y;),:

[o Xn
SW—H—I

2
We prove for all n, (H,):Y,=n.

Yn=yXn) : (10)

Proof by induction on n. As setup (Hp) is true: Yo=0. Assuming
(H,_;) true, Y,_,=n—1, from Eq. (10), we have: Y? +Y, = 2X,/W?>
with Eq. (5), we obtain

Y,3+Yn=2xv’{;; +1+\/8XV’;/‘21 +1 1)

from (H,_;) and Eq. (10) we deduce 2X,_;/W? =n(n—1) and then
replaced in Eq. (11), we obtain Y,(Y;,+1)=n(n+1). The only
positive solution of this equation is Y,=n.

Then, it is straightforward to see that h, ,(p) =n in the general
case (using the strict monotony of the function y) ending to prove
our proposition P1. O

It follows that with adding an offset b on the projected line to
avoid boundary effect, we obtain the sensitive function:

8a.p
WZ

2
with pe R*9, a a random vector whose each entry is chosen
independently from a Gaussian distribution with positive value
NT(0,1) and b a real number chosen uniformly at random in the
range [0,1].

+1-1

hap(p) = +b 12)

5.4. Multi-probe LSH

The main drawback of LSH is the memory cost. Indeed, each
hash table must be stored in main memory. Moreover, a large
number of hash tables is required to reach high accuracy.

Lv et al. in [29] propose a new indexing scheme for l,-metric called
Multi-Probe LSH (MPLSH) that overcomes this drawback. MPLSH is
based on E2LSH principle. Indeed, this approach also uses hash
functions to map vectors into buckets and the pre-process (hash table
construction) is therefore identical. However, the exploration stage is
quite different. Instead of exploring only one bucket by hash table,
success probabilities are computed for several buckets and buckets
which are most likely to hold k-NN vectors are examined. Given the
property of locality sensitive hashing, we know that if an object is close
to a query object but not hash in the same bucket, it is likely to be in a
neighboring bucket. The authors defined a hash perturbation vector
A =(d1,...,0m) where §; € {—1,0,1}. For a query q and a hash function
g(x) = (h1(x), ...,hy(x)), the success probabilities for g(q)+A are
computed and the T most likely buckets of each hash tables are visited.
As a result, the authors reduce the number of hash tables by a factor of
14 to 18 for similar search accuracy and query time than E2LSH.
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Since our new y2-based LSH scheme respects the same algo-
rithmic steps as E2LSH, it is fully compliant with the MPLSH
framework originally defined for E2LSH algorithm.

The four parameters chosen for this algorithm are the size of the
search windows W, the number of projections M, the number of
hash tables L and the number of probe T.

6. Experiments

Our experiments aims to prove that our active learning scheme
applied to a subset of relevant images and based on y? distance,
named SALSAS, is as accurate as the state-of-the-art approach
(Tong method with angle diversity [30]) while drastically decreas-
ing the computational complexity of image retrieval task.

Experiments are reported as follows:

1. we first prove the efficiency of SALSAS,

. we show the interest of using y? distance,

3. we validate the usefulness of our LSH optimization for y?
distance, and

4. we show influence of parametrization.

N

To evaluate accuracy and efficiency of our method, experi-
mental comparisons were performed with Tong’s approach com-
bined with angle diversity [26,3] on several databases from 5K to
180K images for the sake of scalability analysis. As this method has
a linear complexity w.r.t. the size of the database, we name it linear
method (LIN) in our experiments. Efficiency was only evaluate
against linear method because existing proposals to speedup active
learning process either only consider one of the scalability pro-
blems such as in [24,20,18], or use indexing structure known to be
ineffective for high-dimensional input space, as in [21]. To the best
of our knowledge, only Panda et al. [22] address both scalability
issues of sampling selection and database ranking. However, the very
brief description of the clustering stage to boost the sampling
selection does not enable reimplementation.

6.1. Databases

We first perform evaluation on the VOCO06 database [31] which
contains 5,304 images for 10 categories. The use of a ground truth is
required because user interactions are simulated during the active
learning sessions: the membership of images to ground truth
classes must be known by the “virtual user” in order to simulate
reliable feedback. Moreover, ground truth is also required to
evaluate the search quality.

In order to measure the evolution of the complexity of our
algorithm w.r.t the size of the database, we have increased the size
of the database by incorporating new images. It allows us to
estimate the search time of our algorithm in very huge database
(between million and thousand million of images).

Experiments have thus been performed on a 5 K, 20 K, 60 K, 100 K
and 180K images databases. The 20 database has been built by
merging VOC2007 and VOC2008 databases. The ground truth has been
obtained by merging classes of VOC databases. The three other
databases are, respectively, built by adding key-frames of TrecVid
2007, 2008 and 2009 databases. We have considered all these images
as irrelevant (not belonging to any of the 10 VOC classes considered).

In all of our experiments, results were provided by averaging
100 runs per category. Experiments were first performed on VOC06
and each run was initialized by a query image picked at random in
the considered class. Then, experiments were performed on the
other databases with the exact same query images as those for
VOCO06 experiments.

Each image is represented by a high dimensional histogram of
128 bins obtained by the concatenation of two histograms: one of
64 chrominance from CIE Lxaxb and one of 64 textures from Gabor
filters.

6.2. Evaluation protocol

To evaluate the accuracy, we compare the Mean Average
Precision of TopN images retrieved by the linear method with the
one reached by our fast scheme. The efficiency of our method is
evaluated by measuring how much our scheme is faster than the
linear method.

The Mean Average Precision of TorN is computed as follows: for
each query image, we evaluate the average precision of the TorN
(APy). This value is the average of the precision value obtained after
the N first images are retrieved by the system. Let RN = {ry,r5, ..., Iy}
be a ranked version of the answer set. At any given rankj, let |C N Ri|
be the number of relevant images in the top j of RV, where C is the
total number of relevant images in the whole database B. Then APy
is defined as

IR NC|

1 N
APy= > =5 A (13)
j=

where A(rj) = 1ifr; € Cand 0 otherwise. We first compute the mean
value over the set of queries for each class and we take the mean
value over the 10 classes to compute the MAPy. N is a parameter
that must be chosen by the user as a function of the number of
images that he wants to retrieve. In our experiments, we fixed
N=200 by considering that a user is never interested in more than
200 images. A lower value of N would be an advantage for our
method because it would decrease the accuracy difference with the
linear method while emphasizing on our method speed.

Experiments are performed on a machine with a 3.2 GHz
processor and 8 GB of memory.

6.3. Parametrization

We now detail the parametrization of the classical active
learning strategy (called linear method in our experiments) and
our fast scheme. The parameters have been fixed by leading
preliminary tests on the VOC2006 database without using any
annotation. We begin with presenting the parameter settings
common to the linear method and to our fast scheme, then we
detail the parameters specific to our fast scheme.

Active learning strategy with relevant feedback requires to fix as
parameters:

e the batch size b (number of labels by iteration) set at 1 (by
default) and
e the similarity kernel function.

We test two RBF-kernels (K(X;,X;) = exp(—d(x,v,xj)2 /262)): the classical
I,-RBF kernel often employed by default, where d(x;,X;) = ||X;—X;||>
and the %2-RBF kernel, where d(x;,X;) = y2(X;,X;). SALSAS is defined
with the second kernel. We set ¢ values with the following heuristics
preformed on the VOC2006 database:

e we compute the central vector X, of the input space,

e we compute the mean distance d,;, between X, and all vectors of
the database, and

e we set g so that d,, is equal to the half of the maximal value of K:
0 =dn/2,/(2log(2)) ~ dp/2.35.

We can notice that a good estimation of X and d,,, can be given with
a subsample of the database. We obtain ¢ = 213 for the y? distance
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and o =97 503 for the I, distance. ¢ values have been rounded to
o =200 for the y*-RBF kernel and ¢ = 10° for ,-RBF kernel. This
heuristic is preferred, in interactive retrieval context, to cross-
validation because of the very small size of the training set.
Moreover, as the training set is iteratively built for each search,
it is difficult to identify it from preliminary test.

Our fast scheme needs two more parameters: the pool size p
(by default p=N=200) and the number of k-NN to update the pool,
k is set at p/2.

We must then parametrize the index structure LSH to perform
k-NN search. The main parameter is the bin width W. W is the
minimal radius containing the k-NN images of all query images. As
it is impossible to compute this radius for all image of the database,
we use a statistical method to estimate this search radius.

From the theorem 6.33 (ranks on random subsets) in [32,
Section 6.5]: Denote by M : = {x1,...,xn} C R a set of m elements,
and M c M arandom subset of size fi1. Then the probability that the
best element of M is better than n elements of M is at least
1—((m—n)/m)™.

It is then sufficient to consider M by randomly selecting
elements of M to ensure with a probability # that the best element
of M is better than the nth best element of M:

log(1-n)

" Tog (1)
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On the dataset VOC2006, m=5304, then it is sufficient to randomly
select m = 158 images to ensure with a probability of 95% that the
best elements of the random subset belongs to 100-NN of the
dataset. We randomly select 1000 queries. For each query, we keep
the minimal distance obtained from 158 randomly selected images.
We then sort distances and take the 95th value. We obtain a
distance of 387 for y? distance and 173,520 for I, distance. We
round this value to fix W=400 for y? and W =1.75 x 10° for L.
For the three others LSH parameters, as in [29], we fix L=4 hash
tables, M=24 projections by hash functions and T=100 probes.

6.4. Evaluation of the proposed scheme

For all the experiments, one iteration represents one relevance
feedback loop.

We first evaluate our method SALSAS comparing it with the
linear y2-RBF kernel. Results on VOC2006 database are reported in
Fig. 3. As we can see in Fig. 3a, our method provides better results
for the 20 first iterations and is slightly less efficient for the next
iterations than exhaustive search (LIN_CHI2). At the 50th iteration,
our method reaches an accuracy of 46.06 that is less than 3% worse
than linear scheme which reaches 48.84%. This slight deterioration
of the ranking is counter-balanced by the speedup of our algorithm
that is more than twice faster on this database of only 5K images.
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Fig. 3. Evaluation of the accuracy and the efficiency on VOC2006 vs the number of iterations: (a) MAP of TOP200 vs number of iterations on VOC06 and (b) time vs number of

iterations on VOCO06.
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Fig.4. Evolution of the accuracy and the efficiency with the size of the database for 50 iterations with 1 label by iteration: (a) MAP of TOP200 at 50th iteration vs database size

and (b) time at 50th iteration vs database size.
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Fig. 7. Evolution of the accuracy and the efficiency with the size of the database for 50 iterations with 1 label by iteration: (a) MAP of TOP200 at 50th iteration vs database size

and (b) time at 50th iteration vs database size.

Indeed, as shown in Fig. 3b, for a search of 50 iterations, our
algorithm takes 230 ms against 550 for the linear method.

The second evaluation aims at measuring the evolution of
search time and the precision of our method when the database
size increases. As shown in Fig. 4a, the accuracy of the ranking
decreases for the two methods between VOC06 and the 20K
database. The accuracy decreases because we added new images
more difficult to identify in each classes which complicates the

search process. It may be noticed that the accuracy of our method
decreases less than that of linear method. Indeed, the gap between
the two methods is only of 1.3%. For bigger databases, obtained by
adding TrecVid images without changing classes, the precision
does not decrease. We have shown that the size of the pool S can
remain constant even if the number of images in the database
increases highly. Moreover, the increase of search duration is small
when the database grows (Fig. 4b). Indeed, for the database of 180 K
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images, our method takes only 0.47 s against 21.21 s for the linear
method. Then, it only takes twice as long time (0.23 s for 5K
images) to search in a more than 33 times bigger database. Our
methods is then 45 times faster than the linear method for 180 K
images. Furthermore, curves in Fig. 4b show that this gap should
increase for larger databases.

We have then shown that SALSAS is able to drastically decrease
the computational time of active learning while keeping similar
accuracy for RBF y? kernel.

6.5. Linear y?-RBF vs linear I,-RBF

This experiment illustrates the interest of using RBF with y?
distance over using classical RBF kernel with [, distance. As shown
in Fig. 5, y? distance reaches better results on all databases and
for each relevant feedback iterations. At the end of the search
(50th iterations), the gap between these two kernels is between
7% and 10%.

6.6. Comparison of indexing structure block

In this set of experiments, we show the contribution of our
indexing structure optimized for y? distances. We compare SALSAS
with two other implementations of our fast scheme. These two

Table 1
MAP of TOP200 at the 50th iteration for each category for the 180 K database.

Categories LIN_CHI2 SALSAS
Bicycle 44.38 45.28
Bus 30.33 29.74
Car 81.59 86.73
Cat 20.51 18.38
Cow 42.66 36.02
Dog 174 17.83
Gorse 19.87 20.74
Motorbike 31.12 30.36
Person 62.04 64.9
Sheep 54.34 40.98
Mean 40.42 39.1
a

implementations, named V1 and V2, use E2LSH as indexing
structure to perform k-NN search for I, distance. V1 is combined
with a [,-RBF kernel and V2 with a y2-RBF kernel.

Results are reported in Figs. 6 and 7. On Figs. 6a and 7a, we can see
that V2 is more accurate than V1. The combination between k-NN
search with I, distance for the selection stage and kernel on y? distance
is not absurd. However, SALSAS provide better accuracy than V2. Our
optimization of %2 distance for the k-NN search is more relevant. At the
50th iteration, the gap between these two implementations is more
than 3% for the four bigger databases. Indeed SALSAS reaches a MAP of
39.2% against 35.8% for V2. Moreover, SALSAS is more efficient than V2.
For the 180 K image database, the 50 iterations only take 0.47 s for
SALSAS against 2.08 s for V2.

6.7. Detailed analysis of results

In Table 1, we report the MAP for the 10 categories obtained on
the 180 K database. For seven categories over 10, the accuracy of
SALSAS and the linear method are very similar, the difference
between MAP does not exceed 2%. However, for categories car, cow
and sheep the differences are more than 5%. Our method reaches
better accuracy for the category car than the linear method.
However, for categories cow and sheep, our method does not allow
to reach same ranking.

Our investigation to understand this difference highlighted that
these two categories have a set of images strongly concentrated in
the feature space and some images are scattered into the feature
space. As illustrated in Fig. 8, when an isolated image is used to
initialize the search, the active learning system takes several
iterations before retrieving an image which allows to improve
the ranking (10 iterations are required for the illustration of Fig. 8).
During these iterations, the sampling stage only proposed irrele-
vant images and the active learning thus explores a big area of the
space before finding an image close to the center of the class. Once
this image is found, it allows to easily access to a larger number of
images of the class. As a result, the MAP increases significantly. On
the other hand, as our method does not update the pool of images S
for negative labels the exploration is limited. As a result, our
method does not allow to find the center of class when the system is
initialized with a too difficult query image (representing a very
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Fig. 8. Illustration of a disadvantageous case for our method: (a) query image and (b) MAP of TOP200 vs number of iterations on 180 K database.
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specific modality of the targeted semantic concept) and the results
are then deteriorated.

6.8. Parametrization impact

6.8.1. lIteration parametrization

In active learning, it may be interesting to perform multiple
pool-queries at once. Indeed, by presenting one image at a time to
the user, he or she is likely to loose patience after a few rounds. To
avoid this, multiple images (say, b) can be presented at the same
time for labeling. Moreover, the user does not necessarily hold a
query image to present to the system to initialize the algorithm. In
this case, the search can be started with a text search and returns
several images. Then, the user labels theses images which are used
to launch the active learning process. It may thus be interesting to
test our system by starting the algorithm with several images
(relevant and irrelevant).

Exhaustive experiments were performed by varying both the
number of image requests and the number of images to annotate

MAP
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& SALSAS
0 : . - T
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Iteration

Fig. 9. Evolution of MAP of TOP200 vs the iterations on VOC06 database with five
labels by iteration and five query images.
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in order to evaluate our system. Results with five query images
(three positives and two negatives) and five labels per feedback
loop are reported in Figs. 10 and 9. As we can see in Figs. 9 and 10,
the accuracy of SALSAS is quite similar to the linear method. Indeed,
by increasing the number of images to initialize the system, the
case illustrated in Fig. 8 is less probable to occur. Moreover, results
prove that our system is able, for the sampling stage, to find in the
pool S several images to be labeled as relevant, as the linear system
does. Therefore, the updating process of the pool S is also relevant
when several images are positively labeled.

As shown in Fig. 10, although the speedup of SALSAS goes down
by increasing the batch size with five labels by iteration, our system
is still 20 times faster than the linear method. Furthermore the
complexity is still sub-linear in the size of the database.

6.8.2. Pool size

In this set of experiments we evaluate the influence of the pool
size. As we can see in Fig. 11a, multiplying by 2 the size of the pool
does not allow to increase the accuracy of SALSAS. Moreover, the
bigger the pool size, the slower our method is (Fig. 11b).

6.8.3. LSH parametrization

In this set of experiments, we evaluate the influence of the two
main parameters of LSH, W and T, which allow to tune the trade-off
between accuracy and efficiency.

We first control that W=400, previously fixed through pre-
liminary tests and heuristics on the database VOC2006, is still valid
on the 180 K dataset. In other words, we evaluate the quality of our
heuristics. Secondly, we verify that T=100, default value provided
by [29], is also still valid on our dataset.

Impacts of the window size W and of the number of probe T are,
respectively, reported in Figs. 12 and 13.

As shown in Fig. 12a, increasing W allows to improve the search
quality until reaching a MAP of 39.1% for W=400. Our heuristic
based on preliminary tests on VOC2006 database is thus still valid
on 180 K database. This parameter allows to increase the prob-
ability of finding the exact nearest neighbors of each query images.
However, the higher the precision, the longer the search time.
A trade-off between accuracy and efficiency has to be found.

As shown in Fig. 13, the number of probes T is the second
parameter which allows to tune the trade-off between accuracy
and efficiency. The parameter provided in [29] is tuned in order to
favor accuracy.
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Fig. 10. Evolution of accuracy and efficiency with the size of the database for 25 iterations of five labels and five query images: (a) MAP of TOP200 at 25th iteration vs database

size and (b) time at 25th iteration vs database size.
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6.9. Evaluation summary

Our experiments have allowed us to prove that:

e our method provides similar accuracy as Tong method com-
bined with angle diversity [30],

e our method allows to drastically reduce the computational
complexity of active learning in large databases,

e »? is a relevant distance for image retrieval task,
e our hash function based on y? distance is accurate and effective.
o SALSAS is still efficient with multiple pool-queries.

7. Fast RETIN search engine

We have developed a CBIR system named RETIN dealing with
dictionary-based approaches and on-line statistical learning strategies
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[25,33]. We integrate, in RETIN, our fast scheme presented in this paper
in order to deal with very large databases. We present an example of
retrieval session in Table 2 on the 180 K database, providing the same
query, for both our approximate method and the exact search to
illustrate how “comparable” the results are.

8. Conclusion

Nowadays, providing the user with a system for searching into
very large image databases becomes a critical issue of Content-
Based Image Retrieval systems (CBIR). However, bridging the
semantic gap between which (semantic) concept(s) the user is
looking for and the (semantic) content of this unique image is quite
difficult. Active learning has proved to be particularly relevant in
interactive image retrieval. The image selection for annotation and
the ranking of the database are the two key aspects for scalability of

Table 2

active learning strategies of retrieval systems. In this paper, we
have proposed a strategy to tackle these scalability issues. Based on
LSH strategy we quickly select a pool of relevant images to speedup
the sampling and the ranking. A strategy is proposed to quickly
update this pool at each feedback iteration. We also design a new
LSH scheme on %2 distance that allows to use more accurate
kernels. Furthermore, taking benefits from this scheme, our
method proves to be theoretically sub-linear. Experimental results
on a huge database show that our algorithm achieves same
accuracy than the reference methods, Tong approach with angle
diversity strategy, while dividing the computational complexity by
45. Where on-line search, for 50 iterations, in a 180 K image
database takes 21 s, our method takes 0.47 s. This gain will become
crucial for the 10 million database we are working on. One of the
next step will be to investigate new strategies to explore faster and
more efficiently the feature space in order to update the pool of
considered relevant data.

Comparisons of search sessions between LIN_CHI2 and SALSAS initialized with a bike on the graphical interface of our system. Top part: retrieved images; bottom part: images
selected by the active learner; green square: image labeled positively; red square: image labeled negatively.

LIN_CHI2

ﬁrst iteration

SALSAS

EW
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Table 2. (continued )

LIN_CHI2

SALSAS

6th iteration
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