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ABSTRACT 

In this paper we introduce a system for the identification of visual 

documents. Since it stems from content-based document indexing 

and retrieval, our system does not need to rely on textual annota-

tions, watermarks or other metadata, which can be missing or 

incorrect. Our retrieval system is based on local descriptors, 

which have been shown to provide accurate and robust descrip-

tion. Because of the high computational costs associated to the 

matching of local descriptors, we propose Projection KD-Forest: 

an indexing technique which allows efficient approximate k 

nearest neighbors search. Experiments demonstrate that the 

Projection KD-Forest allows the system to provide prompt results 

with negligible loss on accuracy. The Projection KD-Forest also 

compares well when contrasted to other strategies of k nearest 

neighbors search. 

Categories and Subject Descriptors 

H.3.1 [Information storage and retrieval]: Content analysis and 

indexing – indexing methods. H.2.2 [Database management]: 

Physical design – access methods. H.2.4 [Database manage-

ment]: Systems – multimedia databases. 

General Terms 

Algorithms, Performance, Design, Experimentation. 

Keywords 

Image retrieval, document identification, copy detection, multidi-

mensional indexing, k nearest neighbors search, local descriptors. 

1. INTRODUCTION 

―Which image is this?‖ — this deceivingly simple question is a 

major source of difficulties for institutions possessing large 

iconographic collections. Often, users come to libraries and 

archives with unidentified images taken from newspaper clip-

pings, books and even postcards. When the references are missing 

or incorrect the visual document itself is the only reliable evidence 

for the identification of the original and the retrieval of its context 

— author, title, subject, etc. — which are essential to uncover its 

meaning. But since the collection consists of hundreds of thou-

sands of items, unassisted search is infeasible. That simple 

question becomes very difficult to answer, frustrating the users. 

The absence of immediate means to automatically identify a 

visual document makes also difficult to curb piracy. Institutions 

whose profit depends on selling protected material are forced to 

continuously look for unlicensed uses of their images. This labor 

intensive work can be greatly streamlined if the most probable 

misused images can be detected and associated to their originals. 

Document identification or copy detection can solve those issues 

and consists in taking a query image and finding the original from 

where it derives, together with any relevant metadata. In this 

paper we describe a system for image identification. Our main 

contribution is a very efficient indexing scheme, which allows to 

profit from the excellent accuracy provided by local descriptors 

without the serious performance penalties usually associated to 

those. The indexing is based on a clever association of multiple 

moderate-dimensional KD-Trees, which minimizes boundary 

effects and boosts precision, while keeping access times low. 

2. DOCUMENT IDENTIFICATION 

A copy is a document resulting from the application of a trans-

formation on an original document. Document identification can, 

thus, be defined as finding the set of original images from which a 

query image derives. The allowed transformations varies from 

application to application but usually includes translations, 

rotations, scale changes, photometric and colorimetric transforma-

tions, cropping, occlusions, noise, and any combination of those. 

Traditional retrieval systems, based on textual keywords, are not 

up to the job of document identification. They either depend on 

manual annotation, which is expensive, or the harvesting of 

contextual text, which is imprecise and depends on the availability 

of text around the image. In addition, the users may not be 

knowledgeable enough about the image in order to provide textual 

descriptors (for example, they may want to find the original of a 

portrait precisely in order to know whose portrait is that). 

A proposed alternative, especially in the context of copyright 

enforcement, is the use of watermarks. This technique allows the 

embedding of a unique identification in the visual mesh of each 

image. Though theoretically very interesting, this technique faces 

practical challenges: watermarks are not robust to strong modifi-

cations and an agent aware of their presence may intentionally 
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remove them. But the most serious shortcoming is the fact they 

only work for images reproduced from the watermarked original. 

All the copies made outside this controlled chain (e.g., those made 

before the adoption of the scheme, or those taken from an analog-

ical source, like a painting on a museum) remain unidentifiable. 

Content-based image retrieval (CBIR) systems have the advantage 

of relying only on the visual contents, needing no annotations, 

tags or watermarks. While those systems are usually tuned to 

stimulate generalization, exploration and trial-and-error, they can 

be specialized to take advantage of the exactness of image 

identification and to tolerate transformations which completely 

disrupt the appearance of the image (Figure 1). 

Content-based systems use the concept of descriptor in order to 

establish the similarity between the images, instead of trying to 

compare directly the raw visual contents. Those descriptors can be 

either global, if the entire image is described by a single descrip-

tor; or local, if different features of the image (regions, edges or 

points of interest) are described individually, and the image is 

characterized by a set of descriptors. 

Systems based on global descriptors [1] have not shown good 

performance on the task of image identification, except for very 

slight transformations. In all comparisons, systems based on local 

descriptors have performed better [2][3]. 

Descriptor matching is usually performed through the k nearest 

neighbors search (kNN search), also known as similarity search. 

This operation consists in finding, on the descriptor space, the k 

descriptors which are the nearest to the query descriptor. An 

obvious solution to kNN search is sequential comparison, where 

we compare each element of the database to the query, and keep 

the k most similar. Unfortunately, this brute-force solution is only 

feasible for small databases. The alternative is using an indexing 

scheme, in order to accelerate the search. 

3. OUR ARCHITECTURE: LOCAL DE-

SCRIPTORS + PROJECTION KD-FORESTS 

In order to establish the similarity between images, a local-

descriptor based system has to compare sets of descriptors. This is 

a potentially complex operation, but most systems adopt a crite-

rion of plain vote count, which has the merit of being simple, and 

of avoiding the expensive pairwise comparison between the query 

image and all databases images [4]. Our system is also based on 

vote count: each individual query descriptor is matched with its 

most similar descriptors in the entire database (using a simple 

Euclidian distance). Each matched descriptor votes for the image 

to which it belongs. Then we simply count how many votes each 

image received and use this number as a criterion of similarity. 

The method is robust because the descriptors are many: if some 

get too distorted or are completely lost, enough will remain to 

guarantee good results. Even if some are matched incorrectly, 

giving votes for the wrong images, only a correctly identified 

image will receive a significant amount of votes. The process can 

be made even more robust by adding geometric consistency 

constraints which eliminate most spurious matches (Figure 2). 

Unfortunately, the multiplicity of descriptors brings a performance 

penalty, since potentially hundreds, even thousands of matches 

must be found in order to identify a single image. The system is 

only feasible if an efficient indexing scheme accelerates the kNN 

search used to match the descriptors. 

It is well known, however, that the efficiency of multidimensional 

indexing depends greatly on the dimensionality of the data. Search 

time can be made to grow logarithmically with the size of the 

database, but at the expense of introducing a hidden constant 

which grows exponentially with the dimensionality. This pheno-

menon is known as ―curse of dimensionality‖ and expresses the 

difficulty in partitioning the data or the space efficiently when 

dimensionality is high [5]. Typically, for over 10 dimensions, it is 

impossible to perform exact kNN search faster than the sequential 

method, and we are forced to accept approximate solutions, which 

get progressively coarser as dimensionality grows. Since the 

 

Figure 1: Visual document identification — we should be able 

to retrieve the original images (right) from the queries (left) 

even after strong transformations 

 

Figure 2: The local-descriptor based image identification 

system architecture 
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descriptors we want to index have over 100 dimensions, the 

challenge is considerable. 

kNN search is an important topic of research, with many applica-

tions outside descriptor matching. Many methods have been 

proposed to tackle it using techniques as diverse as space parti-

tioning [6], data partitioning [7], clustering [8], projection [9] and 

hashing [10]. For a comprehensive introduction and up-to-date 

state-of-the-art of the field the reader is referred to [11]. 

Fagin et al. proposed a very convenient scheme to perform 

approximate kNN search using projections of the data [9]. Their 

algorithm, called MEDRANK, projects all data onto a set of 

random straight lines. A sorted list is created for each line, with 

the data sorted accordingly to their position on the line. To answer 

a query, MEDRANK will project it onto the same straight lines 

and find, in each sorted lists, the elements nearest to the query 

projection. At each iteration of the algorithm, the next element 

nearest to the query (in the line) is chosen and its vote count is 

incremented. The first element to have a number of votes equiva-

lent to more than half the lines, is considered the first nearest 

neighbor. The search continues until k elements have been chosen. 

The intuitive justification is that if an element is near to the query 

in the space, it will probably be near to the projections of the 

query in several lines, and will quickly get many votes (the paper 

presents a careful probabilistic proof of this intuition).  

Unfortunately, MEDRANK performs poorly for large databases in 

very high dimensionalities. Basically, the basic premise of the 

algorithm, which is the correlation between proximity in a single 

dimension and the proximity in the high-dimensional space, 

becomes weak. But, even worse, the probability that a randomly 

chosen element will be near to the query in at least one of the 

dimensions becomes very high, making the algorithm inefficient. 

Inspired by MEDRANK, we wanted to devise a method that 

would perform similarity search in several low-dimensional 

subspaces and then combine the partial results to obtain the final 

answer. We wanted, however, to avoid the drawbacks of ME-

DRANK. The solution we envisaged was to consider more than 

one dimension at once. 

We decided to use several KD-Trees [6] simultaneously, each 

responsible for a projection of the dataset onto a subspace and 

called the method Projection KD-Forest. The choice of the KD-

Tree came mainly from the simplicity of this technique, which 

allows, when necessary, aggressively optimized implementations. 

The idea behind KD-Forests is simple and presents several 

advantages: a) each tree, being built on a projection of the com-

plete space, has moderate dimensionality — and the less dimen-

sional the trees, the more precise the search; b) in comparison 

with MEDRANK, there is a greater correlation between proximity 

in the subspaces and in the original space; c) since we have 

multiple trees, we can alleviate the boundary effects which plague 

the KD-Trees, because there is a high probability that we will 

explore different regions in the different trees. This last factor is 

very important, since it will allow us to make a radical choice 

when searching the trees: just the best leaf node (i.e., just the leaf 

node whose region contains the query) will be explored. This 

allows us to limit to the bare minimum the number of random 

accesses to the data. 

The construction of the Projection KD-Forests is simple. We 

determine beforehand how many trees we are going to build and 

which subspaces of the data space will be associated to each tree. 

Then, for each tree, we project all data onto its subspace, and 

create it using the projections. 

Naturally, the usual parameters for the component KD-Trees have 

to be decided (e.g., size of the leaf nodes, criteria for splitting, 

etc…). We use the interquartile range to choose the splitting 

dimension and the median as pivot. The size of the leaf node must 

agree with the number of descriptors which we want to examine 

in the search, since we examine just one leaf node per tree. 

To perform the search, we project the query into the subspaces of 

the trees and perform a usual KD-Tree search using the projec-

tions. Once we determine the leaf node containing the projection 

on each tree, we examine sequentially all descriptors it contains. 

We keep the k best descriptors found in all trees.  

The most important parameter for the construction of the Projec-

tion KD-Forests is the number of trees. Once this is set, we may 

start to worry about how to choose the subspaces. Our approach is 

much more pragmatic: each leaf access represents a random 

access to the data, and random accesses on disk are expensive 

operations. This will prevent any scheme with more than 8–10 

trees. At such limited ranges, and for the large dimensionalities we 

are processing, the rule of thumb is using as many trees as effi-

ciency restrictions will allow. As for the subspace assignment, we 

opt for a simple partitioning: the dimensions are assigned to the 

subtrees the most balanced possible way. 

4. EXPERIMENTAL RESULTS 

For the evaluation of our system, we have used the APM database, 

composed by SIFT descriptors generated from 1 500 images 

transformed from 100 originals. The images are old photographs 

(XIX and first half of XX centuries) from the collection of the 

Arquivo Público Mineiro, the State Archives of the Brazilian State 

of Minas Gerais. Each image suffered three rotations, four scale 

changes, four non-linear photometric changes (gamma correc-

tions), two smoothings and two shearings — a total of 15 trans-

formations. Each transformed image had its SIFT descriptors 

calculated and aggregate into a database of 2 871 300 descriptors. 

The queries are the SIFT descriptors calculated from the original 

images, amounting to 263 968 descriptors. The SIFT (Scale 

Invariant Feature Transform) descriptors [4] are among the most 

robust under similarity transformations (translations, scale 

changes and rotations) and photometric distortions. Their dimen-

sionality of 128, however, is very high, creating a challenge to 

match the descriptors. 

The ground truth is the set of the correct nearest neighbors for all 

query descriptors, according to the Euclidian distance. It was 

computed using the sequential search, a slow method, but which 

guarantees exact results. We tested the performance of the descrip-

tor matching by itself, comparing Projection KD-Forests to 

OMEDRANK (an optimized version of MEDRANK, proposed by 

Fagin et al. in the same paper [9]) and to the KD-Tree [6]. The 

results are on Figure 3. 

Performance is measured in two axes: efficacy (the capability of 

returning the correct results) and efficiency (the of doing it fast). 

To measure the efficacy we use the precision: the fraction of the 

results which coincides with the ground truth. From the point of 

view of the user, the most critical efficiency metric is the wall 

time spent on the search, but using it to compare the methods can 



be misleading, since it depends heavily on the machine, the 

operating system, and even on the current load (concurrent tasks) 

at the time the experiment is performed. We choose, therefore, to 

compare the methods by counting, for each method, how many 

target descriptors were accessed per query descriptor. 
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Figure 3: Performance comparison of descriptor matching 

using Projection KD-Forest, KD-Tree and OMEDRANK. The 

small number besides the data points indicates the number of 

trees (KD-Forest) or lines (OMEDRANK) 

As we have mentioned in § 3, an important parameter for Projec-

tion KD-Forest is the number of trees. This corresponds roughly 

to the number of lines in MEDRANK (since each additional tree 

or line means an additional indexing structure and an additional 

random access to the data). There seems to be a ―law of diminish-

ing returns‖ for this parameter on the KD-Forest, and the sweet 

spot, on the database analyzed, is around 4 or 6 trees. Note that 

MEDRANK, even with 8 lines, has worse performance than the 

KD-Forest with 2 trees. Note also that there is sharp increase in 

quality from the simple KD-Tree to the 2-tree KD-Forest, indicat-

ing the considerable benefit in the multiple subindexes scheme. 

We have also tested the performance of the image identification 

system as whole. We wanted to test the general performance of the 

system and how much one would gain in speed (and loose in 

precision) by using the Projection KD-Forest in the place of the 

exact sequential search. Because of the large amount of local 

descriptors, the precision of the system is very high. The MAP 

(mean average precision) of the system using the exact sequential 

matching is of 0.9626. For the same reason, the impact of the 

Projection KD-Forest in precision is minimal: though we loose on 

average 10% of the votes on the correctly matched images, those 

were so many to begin with, that the MAP of the final results is of 

0.9623 — a negligible loss. The gains in efficiency, however, are 

enormous: running time in the version using the Projection KD-

Forest was between 20 and 25 times shorter. 

5. CONCLUSION 

We have presented an effective and efficient system architecture 

for image identification, based on local descriptors. At the heart of 

this architecture, lies Projection KD-Forest a new indexing 

scheme which, associating multiple moderate-dimensional KD-

Trees in a clever way, allows to perform approximate kNN search 

with a very good compromise between speed and precision. 

Using a database issued from a collection of a cultural institution 

we show that our system has a very good performance, and that 

the speed-up obtained by Projection KD-Forest (up to 25 ) has 

negligible impact on precision (less than 0.1%). 

In our current work we are exploring how the subspace assign-

ment affects the performance of the KD-Forest, and whether there 

is an optimal way to do this assignment. 
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